Chapter 1

Introduction

1.1 Polyamines

The polyamines putrescine, spermine and spermidine (Fig. 1.1) are near ubiquitous polyca-
tionic aliphatic amines required for a number of essential cellular processes, particularly in or-
ganisms undergoing rapid proliferation. Putrescine is typically formed from ornithine by or-
nithine decarboxylase (ODC) which then serves as a scaffold for the addition of amino-propyl
groups from decarboxylated S-adenosylmethionine (formed by S-adenosylmethionine de-
carboxylase: AdoMetDC) to produce spermidine (spermidine synthase) and spermine (sper-
mine synthase), respectively (Fig. 1.2). Spermidine and spermine can also be back-converted
to their precursors via the combined action of spermine/spermidine N!-acetyltransferase
(SSAT) and polyamine oxidase (PAO). Ornithine is produced from arginine by arginase to
release urea. Alternatively, arginine may also serve as the source of putrescine via arginine
decarboxylase and agmatine ureohydrolase (Fig. 1.2, Tabor and Tabor, 1984, 1985; Cohen,
1998).
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Figure 1.1: The polyamines: putrescine, spermidine and spermine.
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Figure 1.2: Outline of polyamine metabolism. Pathways that have been identified in the
malaria parasite Plasmodium falciparum are indicated in green. The inclusion of spermine
synthase is by virtue of low levels of spermine synthesis by spermidine synthase.

The polycationic nature of polyamines enables them to interact electrostatically with
large biological macromolecules such as DNA/RNA and proteins (Bachrach, 2005). It has
been suggested that within the nucleus polyamines form aggregates mediated by phosphate
ions. These so-called nuclear aggregates of polyamines (NAPs) in turn interact with DNA
(D’Agostino and Luccia, 2002; D’Agostino et al., 2005; Luccia et al., 2009). Polyamines can
thus affect DNA conformation and chromatin remodeling by enhancing DNA condensation
within the tight confines of the nucleus. This in turn affects DNA stability and transcription
(Childs et al., 2003; Wallace et al., 2003; Janne et al., 2004).

Polyamines are also known to interact with various proteins with varying effects depend-
ing on the polyamine species, concentration and protein species. Casein kinase 2 (CK2)
interacts with spermine via it’s ( regulatory subunit leading to enhanced activity. While
the biological function of CK2 remains uncertain it has been linked to malignancy via one
of its substrates, the oncoprotein Myc. Spermine is also known to modulate the function
of membrane proteins such as N-methyl-D-aspartate (NMDA) receptors. The formation of

protein-DNA complexes is also affected by the presence of polyamines. Complex formation is
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typically enhanced, although inhibition may be observed at high polyamine concentrations.
Polyamines have also been observed to affect protein degradation, depending on concentra-
tion and protein species (Childs et al., 2003).

Additionally polyamines are also required to form certain secondary metabolites, such as
the post-translationally modified amino acid hypusine (Tabor and Tabor, 1984; Park et al.,
1993) and of the glutathione analogue, trypanothione, in Trypanosoma (Fig. 1.3 Miiller et al.
2003; Heby et al. 2007). Hypusine is a post-translationally modified amino acid formed from
specific lysine residue of the eukaryotic initiation factor 5A (eIF5A). Firstly, butylamine is
transferred from spermidine to the side-chain amino group by deoxyhypusine synthase. This
is followed by (-hydroxylation (deoxyhypusine hydroxylase) to form hypusine (Park et al.,
1981, 1982). In the protozoan parasites of the trypanosomatid family spermidine is con-
jugated with glutathione to form trypanothione which replaces the usual glutathione redox
system. Glutathione is first conjugated with spermidine to produce glutathionylspermidine
by glutathionylspermidine synthetase, followed by a further glutathione conjugation to form
trypanothione (Miiller et al., 2003; Heby et al., 2007).
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Figure 1.3: Secondary metabolites formed from spermidine

Polyamines also bind to various species of RNA. Binding stabilises tRNA and affects the
conformation of 16s TRNA (Amarantos and Kalpaxis, 2000; Amarantos et al., 2002). Fur-
thermore, the presence or absence of polyamines causes translational frame-shifting in certain
mRNAs. The Tyl transposable element in yeast undergoes an increased +1 frame-shift to
produce the TYA-TYB fusion protein. During polyamine depletion there is increased +1
frame-shifting and transposition (Clare et al., 1988). In many eukaryotes ODC is regulated
by antizyme (AZ) which binds to ODC and targets it for non-ubiquitin mediated proteolysis.
AZ mRNA comprises two overlapping open reading frames. In the presence of polyamines
the ribosome undergoes a frame-shift to produce the functional protein (Rom and Kahana,
1994).
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Tight regulation of polyamines is required for progression through the cell cycle (Ack-
ermann et al., 2003). During the G1 and G2 phases an increase in cellular polyamines
is generally observed. Inhibition of polyamine biosynthesis is often observed to arrest cell
growth. Furthermore, polyamines are also associated with apoptosis. The association re-
mains uncertain however, with both increased and decreased polyamine levels being linked
to both increased and decreased apoptosis. (Wallace et al., 2003).

Polyamine biosynthesis has been identified as a possible therapeutic target for vari-
ous parasitic diseases (Miiller et al., 2003; Heby et al., 2007), cancers (Wallace, 2007)
and even HIV via the requirement for hypusine (Schafer et al., 2006). Polyamine biosyn-
thesis enzymes characterised in the malaria parasite P. falciparum include the bifunctional
S-adenosylmethionine decarboxylase/ornithine decarboxylase (Miiller et al., 2000; Krause
et al., 2000; Wrenger et al., 2001; Birkholtz et al., 2003, 2004), spermidine synthase (Haider
et al., 2005) and arginase (Miiller et al., 2005).

1.2 Malaria

1.2.1 Introduction and prevalence

Malaria is caused by protozoan parasites of the Plasmodium genus and is transmitted by the
female Anopheles mosquito. Five species of Plasmodium are known to infect humans: P. fal-
ciparum, P. vivaz, P. ovale, P. malariae and P. knowlesi (which till recently was thought to
only infect macaques, Singh et al. 2004). Of these P. falciparum is the most virulent, caus-
ing the most deaths. P. vivaz is the second most dangerous but is only common in tropical
regions outside of Africa (Fig. 1.4), the continent with the largest malaria burden (Hyde,
2007; Greenwood et al., 2008). Currently about 2 billion people are at risk of malaria res-
ulting in about 500 million cases annually and 1 million deaths. The majority of the burden
exists in developing countries of the tropics and sub-tropics with the majority of casualties
being among children. Malaria thus represents an significant impediment to the economic
development for much of the world. (Snow et al., 2005; Rowe et al., 2006; Greenwood et al.,
2008; Hay et al., 2009).

Plasmodium parasites exhibit a complex life cycle involving a vertebrate host and an
invertebrate host (Fig. 1.5). Infection of the vertebrate host begins with inoculation with
sporozoites by a mosquito of the Anopheles genus. The sporozoites then travel via the blood
stream to the liver where they infect hepatocytes. During this asymptomatic stage the sporo-
zoites multiply asexually, eventually releasing themselves from the hepatocyte as merozoites.
The merozoites then in turn infect erythrocytes for further rounds of asexual reproduction,
passing through various stages (ring — trophozoite — schizont), eventually bursting the red-
blood cell to release further merozoites or gametocytes. Free gametocytes are then taken up

by another Anopheles mosquito, where sexual reproduction occurs (Greenwood et al., 2008).

4



Introduction

Figure 1.4: Endemicity of P. falciparum for 2007 measure as the P. falciparum parasite rate
(PfPR, percentage population with detectable levels of parasites in the blood) for the 2 - 10
year old age group. Adapted from Hay et al. (2009).

Global attempts to eradicate malaria beginning in the 1950s achieved partial success in
some parts of the world outside of Africa. The two main components of this campaign were
the use of chloroquine for treatment and dichloro-diphenyl-trichloroethane (DDT') for vector
control. However resistance to both these interventions evolved and the campaign was never
attempted in Africa, where there is the highest intensity of malaria transmission. Further-
more, resistance has evolved towards sulphadoxine-pyrimethamine, the front-line treatment
that replaced chloroquine (Greenwood et al., 2008).

Current anti-malarials target a number of cellular processes, mostly within the asexual
erythrocytic stages of the parasite. Within the cytosol, folate biosynthesis is targeted via
inhibition of dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS). Anti-
folates remains the most common anti-malarial drug class, including pyrimethamine, pro-
guanil, dapsone and sulphadoxine. A DHFR inhibitor is typically used in combination with a
DHPS inhibitor, e.g. pyrimethamine and sulphadoxine (fansidar) or proguanil and dapsone.
The quinoline family of drugs including quinine, chloroquine, amodiaquine, mefloquine, halo-
fantrine and lumefantrine sequester in the digestive food vacuole of the erythrocytic stages.
While their mechanism remains generally unknown it is likely to be mediated by binding
haem thus inhibiting haem detoxification. A number of anti-bacterials target the parasite
by inhibiting translation within the apicoplast, a chloroplast derived organelle. These in-
clude azithromycin, clindamycin and doxycycline. Fosmidomycin acts on the isoprenoid
biosynthesis pathway within the apicoplast. Lately artemisinin and it’s derivatives have re-
ceived a lot attention for it’s ability as a fast acting drug. Artemisinin is typically combined
with longer acting drugs and is notable in that it also targets gametocytes, thus reducing
transmission. The mechanism of artemisinin’s action remains a topic of considerable debate
(Hardman and Limbird, 2001; Greenwood et al., 2008). Resistance has been detected in
most drugs in current use (Hyde, 2007). Resistance to artemesinin has been observed in the
lab and recent reports indicate this has also emerged in the field on the Thailand-Cambodia
border (Dondorp et al., 2009).
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Figure 1.5: Life cycle of Plasmodium. Sporozoites are inoculated by a female Anopheles
mosquito directly into the blood or more often into the dermis (and must then travel to
the circulatory system). Upon reaching the liver the sporozoites infect hepatocytes, which
rupture and release merozoites approximately one week later. The merozoites then infect
erythrocytes to initiate the red-blood cell stages. The parasite then passes through the
ring, schizont and trophozoite stages, later rupturing the erythrocyte to release yet more
merozoites for further infection. Alternatively, the bloods-stages may develop into the gam-
etocytes to be taken up by an Anopheles mosquito during the next blood meal. Adapted
from Greenwood et al. (2008).

A number of new targets have been identified in recent years, especially as a result
of the Plasmodium genome sequencing projects. Among these are proteases specific to
the digestive food vacuole required for haemoglobin degradation, fatty acid and isoprenoid
biosynthesis within the apicoplast, the shikimate pathway as well as lactate, orotate and
inositol metabolism (Gardner et al., 2002).

Attempts to generate a malaria vaccine have resulted in mixed success. Vaccination with
radiation attenuated sporozoites and sporozoite derived subunits provides partial protection
but with waning efficacy. Attempts to immunise against the erythrocytic stages have yet
to demonstrate significant protection. In non-human animals (Darwin, 1859) immunisation
against the sexual stages has been demonstrated to prevent transmission. While this does
not reduce disease it might prove useful in reducing transmission in humans (Greenwood
et al., 2008).

Apart from chemotherapy, vector control constitutes the other major arm of malaria

eradication. Distribution of insecticide treated nets (ITN) increase survivability in children,
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while indoor residual spraying (IRS) remains effective in certain areas. However, resistance to
pyrethroids, the insecticide most used in I'TNs is increasing and DDT only remains effective
in restricted areas (Greenwood et al., 2008).

There is thus an urgent need for new anti-malarial strategies if this global problem is to
be dealt with.

1.2.2 Polyamine metabolism as a Plasmodium drug target

Polyamines are essential for cell growth, proliferation and differentiation. Because of this
their metabolism has received a lot of attention as a possible drug target, especially within
the cancer research community. Consequently a number of potent inhibitors of polyam-
ine metabolism enzymes have been discovered and developed over the years (Fig. 1.6).
Attempts to use these to target polyamines in anti-cancer therapy have largely been disap-
pointing, however. In general, inhibiting polyamine biosynthesis induces cytostasis instead
of cytotoxicity within tumour cells (Marton and Pegg, 1995). The reason for the lack of
anti-tumour effects is largely due to compensatory mechanisms within the mammalian cell
for maintaining the polyamine pools. It has been identified that multiple components of
polyamine regulation will have to be targeted when targeting this metabolism for cancer
(Seiler, 2003a). Specifically, the uptake of exogenous polyamines by transport systems will
likely have to be targeted along with polyamine biosynthesis (Seiler, 2003b). Among the in-
hibitors identified, the most well known is alpha-difluoromethylornithine (DFMO). DFMO
has been used successfully to treat West African Sleeping sickness caused by T. brucei gambi-
ense (Wang, 1995). The low toxicity of this drug and its ability to penetrate the blood-brain
barrier contribute to it’s effectiveness in this regard. The dependence of Trypanosomes on
the spermidine derived glutathione analogue trypanothione renders them particularly vul-
nerable to polyamine depletion. The viability of polyamine metabolism as a malarial drug
target has been extensively reviewed by Miiller et al. (2008). DFMO has been found to
inhibit P. berghei sporogony in Anopholes stephensi (Gillet et al., 1983) as well as protect
mice from sporozoite infection (Lowa et al., 1986), suggesting that DFMO may have utility
as a prophylactic. Targeting the blood stages has proved less promising, however. Inhibition
of PfODC decreases putrescine levels (Wright et al., 1991), while PfAdoMetDC inhibition
reduces both spermidine and spermine (Gupta et al., 2005). Cytostasis at the trophozo-
ite stage can be induced by inhibition of PfODC or PfAdoMetDC but mice infected with
P. berghei are not cured (Assaraf et al., 1987; Bitonti et al., 1987; Gupta et al., 2005). Co-
inhibition of P. falciparum ODC/AdoMetDC induces partial transcriptional arrest at the
trophozoite stage and transcriptional regulation of proteins in response to polyamine de-
pletion (van Brummelen et al., 2009). Arrest at the trophozoite stage can be rescued by
the addition of exogenous putrescine (Assaraf et al., 1987), however, the effect of exogenous
spermidine and spermine remains uncertain due to conflicting reports (Assaraf et al., 1987;
Wright et al., 1991; Bitonti et al., 1987). Exogenous putrescine is observed to accumulate

within the parasites of infected erythrocytes, while erythrocyte levels remain similar to unin-
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fected cells. Uptake of exogenous spermidine and spermine has been suggested by the work
of Fukumoto and Byus (1996) but also remains uncertain due to conflicting reports (Gupta
et al., 2005). Despite these conflicting results, inhibition of polyamine uptake is considered
an important target within the parasite. Other polyamine metabolism and related enzymes
that have been identified as potential drug targets include S-adenosylmethionine synthetase
(that produces AdoMet), spermidine synthetase and methylthioadensine (the product of Ad-
oMetDC) recycling enzymes (Miiller et al., 2008). To date the most promising result has
been obtained when both PfODC and PfAdoMetDC are inhibited together with exogen-
ous polyamine uptake by the inclusion of bis(benzyl)polyamine analogues. This combined
approach was found to be curative of P. berghei infected mice (Bitonti et al., 1989). Un-
published results of Brun and Walter with the AdoMetDC inhibitor CGP 40215A produced
curative results in P. berghei infected mice but without affecting polyamine levels, thus the
target remains unclear (Miiller et al., 2008). While current results are mixed, polyamine

metabolism within Plasmodium remains a target worth investigating.
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Figure 1.6: Common inhibitors of polyamine metabolism.

1.3 Computational structural biology and rational drug

design

1.3.1 Rational drug design

High throughput techniques in modern drug chemistry allow for the generation of large
libraries in the order of thousands to millions of compounds. This can be similarly followed

up by high throughput screening assays to identify novel lead compounds that may ultimately
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become or serve as scaffolds for new drugs. Following this approach blindly has only produced
modest results, however. Successful high-throughput screening depends on striking a good
balance between structural diversity of the compound library while not over-sampling futile
regions of chemical space (Lipinski et al., 2001; Snowden and Green, 2008). The average cost
of bringing a new drug to market is in the order of $800-900 million (DiMasi et al., 2003;
Vernon et al., 2009). Much of the cost results from attrition of lead compounds during the
late stages of the research pipeline due to problems with biological availability and toxicity.

A number of computational techniques have been developed in recent years that refine this
process and have the potential to substantially reduce the cost of drug discovery. Rational
drug discovery depends on having structural information of potential binding compounds
and/or the protein target in question. Considering that many drugs act by binding an
enzyme active site, the first question that often arises is whether ligand binding can occur
for the target protein. A number of docking algorithms exist to predict ligand binding if
the structure of both the protein and ligand are at hand. During protein docking various
conformational combinations of the ligand and/or protein are sampled and scored in order
to determine the most energetically favourable binding. Docking can be applied to whole
compounds from large libraries numbering in the millions or to individual fragments which
can later be assembled into a larger compound with higher affinity (Klebe, 2006; Orry et al.,
2006). Although accurate sampling is computationally expensive, such in silico screening
is fortunately also embarrassingly parallel and can be distributed across many thousands of
computers. While in silico docking is not yet absolutely reliable (Ferrara et al., 2004) it can
be used to screen out compounds that are unlikely to bind and focus on the most promising
candidates.

When the protein structure is absent it remains possible to predict the binding of poten-
tial leads by extrapolating from the activities of known ligands and their structures. Using
various statistical methods it is possible to extract quantitative structure activity relation-
ships (QSAR) comprising 2D and/or 3D structural descriptors that contribute positively or
negatively to activity. These QSARs can then similarly be used to screen the activity of
novel compounds (Béhm et al., 1999; Livingstone, 2000). An example of QSARs is given in
Figure 1.7.
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Figure 1.7: Examples of 3D QSARs derived from 39 butyrylcholinesterase inhibitors. A
Comparative Molecular field Analysis (CoMFA) QSAR (left) and a Comparative Molecular
Similarity Analysis (CoMSIA) QSAR (right). Sterically favourable (green), sterically unfa-
vourable (yellow), positively charged favourable (blue) and positively charged unfavourable
(red) regions are depicted. Adapted from Zaheer-ul et al. (2008).

In addition to predicting binding it is also important to understand a compound’s effect at
the organismal level. It is not sufficient for a compound to bind the target in question. A lead
should also possess good properties with regards to absorption, distribution, metabolism,
excretion and toxicity (ADMET). Unpromising drug leads can therefore be screened out
using QSARs with respect to ADMET. Due to the high attrition rate of drug leads at the
late stage in development it is becoming essential to screen out as many bad candidates early
in the drug discovery process as possible. The most popular of these screens is "Lipinski’s
rule of 5”7, whereby it was observed that most sold drugs posses five or less hydrogen bond
donors, 10 or less hydrogen bond acceptors, a molecular weight of 500 Da or less and a
clog P of 5 or less (Lipinski et al., 2001).

A good example of the application of rational drug discovery methods for malaria is the
so-called World-Wide In Silico Docking of Malaria (WISDOM, http://wisdom.healthgrid.org)
project. During the first round of WISDOM about 1 million compounds were docked
using FLEXX (Rarey et al., 1996) and AUTODOCK (Goodsell et al., 1996) on two P. fal-
ciparum plasmepsins using a distributed network on the EGEE (Enabling Grids for E-
sciencE, http://www.eu-egee.org) computing grid. A number of known inhibitors were iden-
tified as well as a class of novel guanidino based inhibitors from about 40 million dockings.
Some if these compounds were later confirmed to be active in vitro. During round two di-
hydrofolate reductase from P. falciparum and P. vivax as well as glutathione-S-transferase
from P. falciparum were docked against the same ZINC derived library using FLEXX to yield
about 140 million dockings. In addition to EGEE a number of other European and affiliated
grids were used (Kasam et al., 2009).

1.3.2 Structural modeling

To fully exploit all the methods of rational drug design it is necessary to have the 3D struc-

ture of the target protein. The most reliable protein models are generated experimentally via
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X-ray crystallography and NMR. Current protein structure determination methods are time
consuming, however (Bourne and Weissig, 2003). The Protein Data Bank (PDB) currently
contains > 57 000 protein structures largely determined using X-ray diffraction and NMR
(http://www.rcsb.org). In contrast the number of protein sequences grows much faster.
For example just the well-curated SwissProt protein database contains > 500 000 sequences
(http://au.expasy.org/sprot /relnotes /relstat.html). Despite the efforts of structural genom-
ics projects which have rapidly increased the pace of protein structure determination, there
is a considerable gap between high-throughput structure and sequence data. Newer methods
such as high-energy X-ray based methods under development promise to eventually allow
for direct determination of protein structure in solution (Mardis et al., 2009; Tiede et al.,
2009). Until such techniques become standard computational modeling can fill the gap. Fur-
thermore, for reasons discussed below, Plasmodium proteins have proved more difficult than
usual to crystallise. For these reasons it is often necessary to follow in silico based methods
to determine the structures of Plasmodium proteins. In this study computational methods
are relied on heavily to understand the unique structural features of certain proteins from
Plasmodium polyamine biosynthesis metabolism.

The holy grail of structural modeling is to be able to predict the 3D structure from
sequence alone. The theoretical basis of this is the assumption that the native protein
fold is also the global energy minimum of the macromolecule. Therefore, with an accurate
mathematical representation of the protein it should be possible to predict the structure by
predicting the global minimum. A number of approaches are available for this. The most
reliable method would be to model the molecule using computational quantum chemistry.
Due to the large computational resources required, however, this approach can only be
followed for small molecules (a few hundred atoms) and is generally still not feasible for
molecules the size of proteins. Liu et al. (2001) have demonstrated with crambin that
quantum mechanical simulation is possible using a high performance computing and a semi-
empirical quantum representation. It is more common to represent only part of a protein
structure quantum-mechanically, e.g. the active site. Although quantum mechanics provides
the most accurate description, other methods are required for routine modeling (Leach, 2001;
Schlick, 2002).

A more feasible approach is to represent a protein molecule using classical (Newtonian)
mechanics. In this treatment the molecule is split up into geometrical components. The
terms/components most commonly included are bonds, bond-angles, torsions, improper tor-
sions, electrostatic interactions and Van der Waals interactions (Fig. 1.8). The energy of
each component is included in a large sum describing the molecule that can be referred to
as the scoring or energy function. The collection of mathematical forms that is used to de-
scribe each geometrical component is referred to as the force field. Force fields are typically
designed to give a physical description of the molecule in question that could be computed
in reasonable time. More complicated force fields include cross-terms to account for inter-

actions between components. Terms can also be derived statistically from distributions of
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known protein structures and possibly combined with geometric components (Leach, 2001;
Schlick, 2002).
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Forcefields are typically used to find an energy minimum (minimisation) as well as for
modeling the evolution of a protein in time (molecular dynamics). Using a combination of
these approaches structure can be predicted in silico. Protein folding typically occurs on a
microsecond to second time scale, whereas most molecular dynamics simulations are in the
nano-second order. However, with recent advances in methods and hardware it is possible
to model proteins ab initio. This is more feasible for short sequences but is now becoming
tractable for large proteins with adequate hardware resources. Furthermore, simulation runs
are being extended into the microsecond time range with millisecond order runs predicted
in the near future (Dror et al., 2009; Klepeis et al., 2009).

For the most part, ab initio simulations are not possible, however. Instead, starting struc-
tures for molecular mechanics-based simulations are generally generated via the method of
homology modeling. The basis of this method is to generate a structure via an alignment
with a homologue for which the structure is known. Where possible the co-ordinates of the
template can be copied for identical portions of the alignment. For non-identical regions
semi-empirical methods are used to generate starting co-ordinates. One of the most popular
methods is by the satisfaction of spatial restraints, implemented by the MODELLER program.
Probability distributions of protein structural features are derived from libraries of existing
structures. From these, an objective function can be generated for model structure. Minim-
isation of the objective function thereby yields a structural model (Fig. 1.9). Closely related
to homology modeling is threading (reverse-folding), which is based on the assumption that
there are a limited number protein folds. By threading the model sequence through each
structure and 3D database and scoring each possibility, remote homology can be detected
and in some cases a reliable model structure can be inferred (Bourne and Weissig, 2003;
Schlick, 2002).

14
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Figure 1.9: Homology modeling is implement in MODELLER.

1.3.3 In silico protein-protein docking

Many proteins function through their interaction with one another and other macromolecules
such as RNA and DNA. It is predicted that protein-protein interactions are several orders
of magnitude larger than the number of protein coding genes. A number of methods exist
to predict protein-protein interactions. The yeast two-hybrid system allows for wholesale
screening by using potentially interacting proteins to reconstitute a functional transcription
factor linked to a reporter gene (Fields and Song, 1989; Stelzl et al., 2005). Techniques
designed for testing individual interactions such as affinity purification and chemical cross-
linking can be combined with mass-spectrometry for large-scale mapping (Vasilescu and
Figeys, 2006). Further experimental methods include tandem affinity purification, synthetic
lethality, gene co-expression and protein arrays (Shoemaker and Panchenko, 2007). The
number of protein complex structures remains extremely small, however. Wholesale struc-
tural determination of protein assemblies require combining a number of techniques (X-ray
crystallography, NMR, cryo electron microscopy) and are still low throughput (Lensink et al.,
2007). Hence assembly structure determination is likely to lag behind individual structures
for some time. The development of computational procedures to predict protein complexes
from their individual components are therefore likely to play an important role in filling this
gap. A number of non-structural methods exist to predict proteins are functionally and/or
physically associated. These include gene neighbour and gene cluster detection, phylogen-
etic profiling, co-evolution, gene fusion (Rosetta Stone method), classification methods and
Bayesian networks (Shoemaker and Panchenko, 2007). In this study the proteins in ques-

tion are known to interact, the details of these interactions were therefore investigated using
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structural methods. While computational methods have allowed homology modeling and in
some cases ab initio structure prediction to become routine, protein-protein docking remains
comparatively under-developed. Recent progress has been promising, however, as evidenced
by the prediction competition CAPRI (Critical Assessment of PRedicted Interactions). Dur-
ing this competition blind prediction of a protein-protein complex is undertaken by various
groups prior to the imminent release of the experimental structure (Méndez et al., 2003,
2005).

A key problem in protein-protein docking is being able to successfully deal with protein
flexibility and conformational change upon assembly formation. A successful program must
be able to work with individual structures in the so-called unbound conformation to be of
any usefulness. Most protein docking algorithms proceed via two stages: rigid docking of the
individual proteins followed by further refinement of sidechains and /or protein backbone. Of
the most popular methods used for the first stage is the representation of the protein surface
on a cubic grid and the use of fast Fourier transforms or geometric hashing to determine
geometric complementarity of the protein species (The general procedure is outlined in Fig.
1.10). During this phase all translations and rotations of the so-called mobile species are
sampled and scored at predefined distance and angle intervals. Apart from geometric com-
plementarity other features such as electrostatic interactions, Van der Waals interactions,
hydrogen bonding and desolvation energies can be included to scoring. During the second
stage, high scoring orientations of the first stage can be further refined using methods more
akin to classical molecular mechanics based methods. This can include minimisation and
molecular dynamics as well as optimisation of side-chain packing from rotamer libraries and
backbone remodeling using Monte-Carlo sampling. Protein flexibility can also be handled by
the rigid docking of multiple conformations of target protein, e.g. from molecular dynamics
(Méndez et al., 2003, 2005; Lensink et al., 2007).
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Figure 1.10: A standard protein-protein docking protocol. The molecules are each discretised
on a 3D grid followed by the calculation of a correlation function using Fourier transform-
ation. This is used to determine the degree of geometric and electrostatic overlap for a
particular orientation. A 3D scan of all possible relative orientations is used to select high
scoring positions for further refinement and filtering. Adapted from Gabb et al. (1997).

Protein-protein docking is still too unreliable to unambiguously predict the correct re-
lative orientation and exact interface. However, despite the inability to predict the exact
orientation, contacting interface residues are often correctly predicted. Furthermore, the vari-
ous rounds of the CAPRI experiment have demonstrated that incorporation of pre-existing
biochemical data often aids in providing accurate predictions. Protein docking predictions

can therefore be used to direct course grained experiments such as site-directed mutagenesis
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of potential interface residues. Predicted complexes can also be used to help solve low res-
olution structures, e.g. from cryo electron microscopy (Méndez et al., 2003, 2005; Lensink
et al., 2007).

Increasingly protein-protein interactions are generating interest as therapeutic targets
(Fuller et al., 2009). Targeting protein-protein interactions present certain advantages com-
pared to traditional active site based drugs. Firstly, targeting active sites may not always be
the most appropriate approach. Secondly, an active site based drug may have detrimental
effects due it’s ability to also bind homologous proteins with similar functions. In the case
of targeting pathogens, it is desirable to avoid binding to the host cognates for a drug to
be effective. While often considered to be undruggable recent successes suggest this may
not be the case. The licensed HIV-I drugs enfuvirtide and maraviroc that block viral entry
demonstrate this (Melby and Westby, 2009). Proteins from the malaria parasite often pos-
sess unique features (discussed below) that make protein-protein interactions an attractive

alternative target for novel drugs.

1.4 Malaria proteins as drug targets

1.4.1 Expression of malaria proteins

The rationalised identification of new inhibitors depends on possession of structural inform-
ation. As for any other organism, the primary problem is obtaining high and pure protein
yields for crystallisation trials. Recombinant expression of Plasmodium proteins in F. coli is
notoriously difficult, however. A number of problems are typically encountered. The A+T
richness results in substantially different codon usage compared to E. coli. Plasmodium
genes are also typically much longer than their homologues in other organisms, as are the
resulting proteins. Increased protein size is due mostly to long protein inserts with gener-
ally little homology to cognate enzymes. These inserts tend to be disordered and of low
complexity, resulting in proteins that are not amenable to expression and crystallisation.
Further problems include sporadic mutations of low complexity sequences introduced by
E. coli, and cryptic prokaryotic translation start sites within Plasmodium genes. Improved
levels of protein expression may be obtained by fine control of expression conditions such as
a change of strain, addition of rare codon tRNAs or using a completely different expression
system. Recently it has become more popular to express the target protein from synthetic
genes coding for identical protein sequences but with a codon usage optimised for bacteria
(Sugiyama et al., 1996; Withers-Martinez et al., 1999; Yadava and Ockenhouse, 2003; Flick
et al., 2004; Christopherson et al., 2004). Mehlin et al. (2006) attempted a wholesale ex-
pression of 1000 Plasmodium genes and obtained soluble expression for only 63 genes. High
predicted disorder, molecular weight, p/ and lack of homology to E. coli proteins were all

negatively correlated with soluble expression.
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1.4.2 Existing structures

The difficulty of expressing Plasmodium proteins is reflected by the paucity of structures in
the Protein Data Bank (Kihara and Skolnick, 2003). As of June 2009, querying the PDB
(http://www.pdb.org) for structures of Plasmodium proteins and excluding sequences with
greater than 90% identity, yields 118 entries (de Beer et al., 2009). A closer inspection of all
released Plasmodium protein structures reveals 100 orthologues from multiple Plasmodium
species. In contrast, querying the PDB for human protein entries (excluding > 90% sequence
identity) reveals more than 4500 structures. Even though the number of Plasmodium protein
structures is still alarmingly sparse, there has been an almost doubling in Plasmodium protein
structures since 2005, largely due to the advent of structural genomics programs including the
Structural Genomics Consortium, (http://sgc.utoronto.ca) and the Structural Genomics of
Pathogenic Protozoa (http:// www.sgpp.org). The Structural Genomics Consortium (SGC)
reported 25 distinct Plasmodium protein crystal structures from five species. The success
rate of this study is similar to other structural genomics programs, and demonstrates the
viability of structural genomics for protozoa. This was partly due to treating orthologues
from multiple species as alternative expression constructs (Vedadi et al., 2007). The SGPP
Consortium has solved 40 structures from the parasitic organisms Leishmania, Trypanosoma
brucei, T. cruzi and Plasmodium of which 16 are Plasmodium proteins. The success is
attributed to pioneering a number of developments such as domain prediction, the use of

co-crystallents, capillary crystallisation and “fragment cocktail crystallography”.

1.4.3 Modeling of Plasmodium proteins

In lieu of the paucity of crystal structures for Plasmodium proteins it is often necessary to
resort to homology modeling. This approach depends critically on the alignment with tem-
plate structures. Unfortunately the biased nucleotide and amino acid composition (Bastien
et al., 2004b) and Plasmodium-specific inserts make it difficult to correctly identify core-
conserved regions. The presence of inserts often confuses multiple and structural-alignment
programmes. A number of techniques have been used to circumvent this problem (Fig. 1.11).
From a first pass alignment, approximate insert positions can be determined. Sequences
can then be split according to long inserts and re-aligned. Inserts can vary considerably
across different Plasmodium species (Birkholtz et al. 2004 and C. Claudel-Renard, personal
communication). While adjusting an alignment for modeling, it is useful to refer to phylo-
genetically diverse multiple alignments including as many Plasmodium sequences as possible
(Wells et al., 2006). As an adjunct to alignment, independent motif discovery (e.g. with
MEME, Bailey and Elkan 1994) can be used to fix mistakes that alignment programmes fre-
quently make when aligning long Plasmodium proteins with homologues (Wells et al., 2006;
de Beer et al.,, 2006). Further improvements can be made by using hydrophobic cluster
analysis (Callebaut et al., 2005) and secondary structure predictions to align homologous

regions within inserts. Once an alignment has been decided on, based on visual assessment,
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a series of models can be built. Because of the high degree of uncertainty that often accom-
panies alignments used for modeling Plasmodium proteins, it is usually not feasible to rectify
all structural anomalies. But by performing standard quality checks on a large sample of
models and summarising the results, it is possible to identify parts of the alignment causing
most problems. Refined alignments might benefit from species-specific matrices that take

into account the differences of amino acid distribution between the aligned proteins (Bastien

et al., 2004a, 2005).

Figure 1.11: Problems frequently encountered with modeling of Plasmodium proteins. See
text for further details.

Despite the difficulties with homology modeling of Plasmodium proteins there have been

some notable successes. P. falciparum DHFR forms part of a bifunctional protein that also
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carries thymidylate synthase. A number of existing drugs such as cycloguanil and pyri-
methamine target the DHFR domain, and have been used effectively in the past. However,
drug resistance has evolved that reduces the usefulness of this important class of drugs.
Hence P. falciparum DHFR has been a popular target for homology modeling efforts (Toy-
oda et al., 1997; McKie et al., 1998; Lemcke et al., 1999; Rastelli et al., 2000; Santos-Filho
et al., 2001; Delfino et al., 2002). Toyoda et al. (1997) were able to identify new inhibitors
in the micromolar range. McKie et al. (1998) and Lemcke et al. (1999) could rationalise
the pyrimethamine resistance caused by the Ser 108 Asn mutation. One of these models was
further used to identify new inhibitors acting in the nano- and micromolar ranges (McKie
et al., 1998). Delfino et al. (2002) in turn used their model to investigate a large number
of antifolate resistant mutants. Rastelli et al. (2000) further explained the cycloguanil res-
istance /pyrimethamine sensitivity conferred by Ala 16 Val/Ser 108 Thr, as well as the ability
for WR99210 to inhibit both pyrimethamine and cycloguanil resistant mutants. A number
of new inhibitors were also successfully designed. The high accuracy of the alignment used
for modeling meant that predicted dockings were subsequently confirmed with the crystal
structure of the complete bifunctional enzyme (Yuvaniyama et al., 2003).

Considerable work has also gone into modeling Plasmodium proteases essential to the
parasite’s intra-erythrocytic life stage. A number of these models have been used to identify
new inhibitors (Li et al., 1996; Desai et al., 2004, 2006; de Teran et al., 2006b), although the
increasing number of crystal structures for these proteases is likely to gradually replace the
need for homology models. de Teran et al. (2006a) demonstrated the advantages of using
multiple structures with plasmepsin IV from P. falciparum. A homology model and a low
resolution crystal structure were both used for inhibitor identification. The homology model
performed better on structural quality indicators and was more robust when calculating
binding energy for an inhibitor series. The enhanced structural quality of the homology
model was put down to the intermediate resolution of the X-ray structure (2.8 A). Further
improvements in predicting binding were gained by using a combined model employing both
structures, as well as using molecular dynamics to increase sampling. The improved docking
performance argues for making use of multiple experimental and predicted models instead
of relying on a single structure (Luksch et al., 2008).

Singh et al. (2004) used homology modeling to derive a chimeric berghepain-2 that more
closely resembled falcipain-2 in it’s sensitivity to inhibitors. The motivation behind this
approach was to create an in vivo rodent model of the P. berghei protein that mimics this
important human drug target in P. falciparum. Homology modeling with molecular dynamics
was used to predict the structure, substrate binding and MOA of histo-aspartic protease
from P. falciparum (Bjelic and Aqvist, 2004). Other noteworthy examples include homology
models of dihydropteroate synthase (DHPS) from P. vivaz and P. falciparum to explain the
refractory nature of the P. vivax enzyme to sulfadoxine (Korsinczky et al., 2004). A homology
model of histone deacetylase 1 from P. falciparum was successfully used to identify inhibitors

in the nanomolar range with significant selectivity compared to mammalian cells (Andrews
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et al., 2008). Homology models combined with molecular dynamics were used to explain
sulfadoxine resistance in mutants of P. falciparum DHPS (Rastelli et al., 2000).

A remarkable achievement is exemplified by the homology model obtained for P. fal-
ciparum farnesyltransferase (Ras FTase) based on a rat homologue (Glenn et al., 2005).
The sequence identity between the target and template was quite low (23%) including a
parasite-specific insert of approximately 100 residues in the Plasmodium protein. Using this
model in the docking program GOLD, a range of ethylenediamine based inhibitors with
IC59 < 50 nM were identified of which two had an ICsq of less than 1 nM. This range of
inhibitors was subsequently used together with the model for further rounds of optimisation
to derive new structures with better selectivity (up to 145 fold) towards the P. falciparum
enzyme compared to its mammalian counterpart. Preliminary pharmacokinetics promisingly
indicated that some of the compounds were metabolically stable (Glenn et al., 2005, 2006;
Fletcher et al., 2008). The results of this work are encouraging and demonstrate that low

sequence identity and the presence of inserts need not be a barrier to inhibitor discovery.

1.5 Summary and aims

Due to it’s prevalence and increasing drug resistance malaria remains a pressing world health
problem that requires urgent attention. Due to increasing resistance, the identification of
new drugs remains urgent. This will be best facilitated by a greater understanding of the
parasite’s basic biology. The high attrition rate of potential drug leads late in the research
phase has created the need for rational drug design. This approach will benefit most on gain-
ing structural knowledge of the parasite’s macromolecules that represent promising targets
for inhibition. However, Plasmodium proteins possess a number of characteristics that make
structural determination difficult using current experimental methods. To fill the gap compu-
tational methods can be applied to facilitate further experiments designed to understand and
possibly exploit these unique characteristics. The enzymes of the P. falciparum polyamine
pathway have been identified as a potential drug target and also exemplify this unique charac-
teristic of Plasmodium proteins. Compared to the human host, the arginase of P. falciparum
displays a strong dependency between trimerisation, enzyme activity and the presence of
the active site metals. Additionally, the bifunctional arrangement of S-adenosylmethionine
decarboxylase/ornithine decarboxylase is apparently unique to Plasmodium and is definitely
absent in the human host. This study describes the application of various molecular model-
ing techniques to further understand the unique characteristics of these enzymes. Homology
modeling and molecular dynamics of arginase revealed a novel inter-monomer interaction
that is involved in the structural metal dependency. This interaction may serve as a poten-
tial parasite-specific target. Homology modeling and docking of AdoMetDC and ODC from
five Plasmodium species was pursued to predict the quaternary structure of the bifunctional
complex. Conserved regions and specific residues were identified as likely candidates for

mediating AdoMetDC/ODC binding, and have targeted for further experimental follow-up.

22



Introduction

The findings discussed can and have been used to guide further experimental analysis that
may ultimately lead to novel therapeutic exploitation of these proteins.
Partof this work has been published in the FEBS Journal (Wells et al., 2009) and presen-

ted at the following conferences:

e Investigations into the structural metal dependency of malarial arginase with molecu-
lar dynamics. Intelligent Systems for Molecular Biology (ISMB). July 2007, Vienna,
Austria. 2.

e Investigations into the structural metal dependency of malarial arginase with molecular

dynamics. First African Structural Biology Conference. November 2006, Wilderness,
South Africa.
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