Die-back of cold tolerant eucalypts associated with *Phytophthora* spp. in South Africa

By

Bruce O’cliffe Zwelibanzi Maseko

Submitted in partial fulfilment of the requirements for the degree

Philosophiae Doctor

In the Faculty of Natural & Agricultural Sciences

University of Pretoria

Pretoria

Supervisor: Prof. T.A Coutinho
Co-supervisor: Dr T.I Burgess
Prof. M.J Wingfield
Prof. B.D Wingfield

2010
TABLE OF CONTENTS

Declaration i
Acknowledgements ii
Preface iii

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>DIEBACK OF COLD-TOLERANT EUCALYPTS ASSOCIATED WITH PHYTOPHTHORA SPP. IN SOUTH AFRICA: A LITERATURE REVIEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONE</td>
<td></td>
</tr>
</tbody>
</table>
| 1 | Introduction 1
2 | Overview of the genus Phytophthora 3
2.1 | Disease cycle of Phytophthora 4
2.2 | Taxonomic history of the genus Phytophthora 4
3 | Impact of Phytophthora diseases 5
3.1 | Phytophthora die-back of eucalypts 7
3.1.1 | Phytophthora related diseases in Eucalyptus nurseries 7
3.1.2 | Phytophthora related disease symptoms in Eucalyptus plantations 8
3.1.3 | Physiological and anatomical response to bark injury 9
3.1.4 | Variation of disease susceptibility amongst Eucalyptus spp. 10
3.1.5 | Variation in pathogenicity among Phytophthora isolates 10
3.1.6 | Assessment host tolerance and pathogenicity of Phytophthora spp. 11
4 | Role of environmental factors in the development of Phytophthora dieback on eucalypts 11
4.1 | Soil Moisture 11
4.2 | Temperature 12
4.3 | Soil nutrition 13
5 | Management of Phytophthora die-back in eucalypt plantations 13
5.1 | Quarantine and sanitation 13
5.2 | Silvicultural practices 14
5.3 | Breeding and selection for disease resistance 14
5.4 | Importance of maintaining genetic diversity 15
5.5 | Knowledge of the disease epidemiology 15
6 | Identification of Phytophthora spp. 15
6.1 | Non-morphological classification methods 16
6.2 | Methods for isolation, detection, and identification of Phytophthora 17
6.2.1 | Serological methods 17
6.2.2 | DNA probe detection methods 18
6.2.3 | Multigene phylogeny of Phytophthora species 18
6.2.4 | Protein electrophoresis 18
6.2.5 | Isozymes 19
6.2.6 | Restriction Fragment Length Polymorphisms (RFLPs) 19
6.2.7 | Random Amplified Polymorphic DNA (RAPDs) 20
6.2.8 | Amplified Fragment Length Polymorphisms (AFLPs) 20
7 | Conclusion 20
8 | References 22

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>DIE-BACK OF COLD-TOLERANT EUCALYPTUS ASSOCIATED WITH P. NICOTIANAE AND P. CINNAMOMI IN SOUTH AFRICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWO</td>
<td></td>
</tr>
</tbody>
</table>
| 1 | Abstract 49
2 | Introduction 50
2.1 | Materials and Methods 51
2.2 | Sampling 51
2.2.1 | Identification of isolates 52
2.2.2 | Morphology 52
2.2.2 | DNA sequence comparisons 52
2.3 | Mating type determination 54
2.4 | Pathogenicity tests 54
3 | Results 55
3.1 | Collection of samples 55
3.2 | Identification of isolates 55
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Acknowledgements</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIVE</td>
<td>References</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>139</td>
</tr>
</tbody>
</table>
I, Bruce O’cliffe Zwelibanzi Maseko, declare that this thesis, which I hereby submit for the degree Philosophiae Doctor at the University of Pretoria, is my own work and has not been submitted by me for a degree at this or any other tertiary institution

SIGNATURE:

DATE:
Acknowledgements

It is a pleasure to express my sincere appreciation to the following people and institutions for supporting me during the course of my studies:

I am heartily thankful to my supervisor, Prof. Teresa Coutinho, whose encouragement, guidance and support enabled me to complete this thesis.

Dr Treena Burgess for her critical intervention, and expert advice on Phytophthora, all which contributed immensely to the overall direction the research entailed in this thesis.

I am deeply grateful and indebted to Prof. Mike Wingfield and Prof. Brenda Wingfield for their valuable advice and guidance throughout my career. Thank for your tremendous support and endless patience.

My gratitude also goes to the Forestry and Agricultural Biotechnology Institute, the Tree Protection Co-operative Programme (TPCP) and the DST/NRF Centre of Excellence in Tree Health Biotechnology (CTHB) for providing me with financial support.

I offer my regards and blessings to members of the FABI team for their support and friendship and all of those who supported me in any respect during the completion my studies.

I am grateful to the staff of the Sappi Forests Research, Shaw Research Centre, particularly Mr Wayne Jones, and his team. I would like to acknowledge the contribution of Mr Robin Gardner and Mr Alpheus Ntombela from the Institute for Commercial Forestry Research (ICFR).

My sincere thanks and appreciation goes to my wife Duduzile for her unconditional love and support.

Most importantly, I thank my heavenly father for His grace to complete my studies.
Preface

Chapter 1: is a comprehensive review of the literature, which covers the taxonomy of the genus *Phytophthora*, methods used to control and identify *Phytophthora* spp. and an overview of root and collar rot of cold tolerant eucalypts in South Africa.

Chapter 2: deals with extensive surveys conducted in several *Eucalyptus* plantations in the Mpumalanga and KwaZulu-Natal Provinces of South Africa. *P. nicotianae* rather than *P. cinnamomi* was consistently and more frequently isolated from the rhizosphere soil and infected root collars of cold-tolerant *Eucalyptus* spp. However, pathogenicity tests showed that *P. nicotianae* isolates were less pathogenic than isolates of *P. cinnamomi*.

Chapter 3: deals with the role of *Phytophthora* root rot disease in the poor establishment and growth of *E. smithii*. Results obtained in this study indicated that three *Phytophthora* spp., namely *P. nicotianae*, *P. boehmeriae*, and the recently described *P. frigida*, are involved in the poor establishment of *E. smithii* in re-established study sites investigated. None of the above *Phytophthora* spp. were recovered from the virgin grassland site. Nevertheless, 20% seedling mortality was recorded at this *Phytophthora*-free site and seedling mortality did not differ significantly from the other three re-established sites investigated. Seedling mortality and absence of *Phytophthora* spp. on the virgin grassland site suggested that other factors play a role the poor establishment of *E. smithii* seedlings on the study sites investigated.

Chapter 4: deals with the development of reliable and robust screening methods of a large number *E. smithii* seedlings for tolerance to *P. nicotianae* and *P. cinnamomi*. Preliminary data indicated that total phenolics could be use as a potential robust tool for screening large number of seedlings. Three highly tolerant and susceptible *E. smithii* half-sib families were identified using the stem inoculation technique.

Chapter 5: is a taxonomic description of two previously unknown species of *Phytophthora* namely; *P. frigida* and *P. alticola*, associated with root and collar rot disease of cold tolerant eucalypts.