The characterization of inner core protein VP6 of African Horsesickness Virus

By
Pamela Jean de Waal

A thesis submitted in partial fulfilment of the requirements for the degree Philosophiae Doctor in the Faculty of Natural and Agricultural Sciences
University of Pretoria

Pretoria

May 2005
The light shines in the darkness, and the darkness has never put it out.

John 1:5
dedicated to my husband David
and my parents Jimmy and Jean
ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to:

Professor Henk Huismans for his guidance and support throughout this study.

Professor Paulette Bloomer, Drs Mandy Bastos and Wayne Delport for their assistance with the phylogenetic analyses.

Members of the Genetics Department at the University of Pretoria for assistance and support, especially Sharon Cormack, Eben von Well and Ruan van Rensburg.

Members of the School of Biological Sciences, especially Professor Jacques Theron and Dr Ben Mans for their advice.

My husband, David, for his assistance with the manuscript, his patience, unfailing support and encouragement.

My parents, parents-in-law, brothers and friends for their interest and encouragement.
SUMMARY

The characterization of inner core protein VP6 of African Horsesickness Virus

by

Pamela Jean de Waal

Promoter: Prof. H. Huismans
Department of Genetics
University of Pretoria

For the degree PhD

VP6 is one of the minor structural core proteins of African horsesickness virus. The minor core proteins VP1, VP4 and VP6 are presumed to constitute the dsRNA dependent RNA polymerase transcription complex of the virus. In the Orbivirus prototype bluetongue virus (BTV), VP6 has a helicase activity. The aim of this investigation was to characterize the primary structure and nucleic acid binding function of the inner core protein VP6 of African horsesickness virus (AHSV).

To characterize the primary structure of AHSV VP6, VP6 genes of serotypes 3 and 6 were cloned and sequenced. Both genes encode a 369 amino acid polypeptide.

A comparison to the VP6 proteins of other Orbiviruses indicated that in all cases the proteins are rich in basic residues and in glycine. The proteins are highly conserved within serogroups but the conservation between serogroups is low. VP6 of AHSV-3 and AHSV-6 have 93.5% identity and 96% similarity in amino acid residues. AHSV-6 VP6 has 27% identical and 46% similar amino acid residues to BTV-10 VP6. Phylogenetic analysis of four orbivirus VP6 genes indicated that AHSV and BTV are most closely related to each other. Motifs characteristic of known helicases were identified by sequence analysis. Glycine rich protein motifs and a N-glycosylation signal were present. No nucleic acid binding motifs identified in other proteins were found in AHSV VP6.

To characterize the VP6 protein of AHSV VP6, the genes were expressed using both a baculovirus and a bacterial expression system. Proteins were found to be soluble and the VP6 expressed in insect cells was found to be N-glycosylated.
The nucleic acid binding function of AHSV VP6 was investigated. Bacterially expressed VP6 was demonstrated to bind nucleic acids by electrophoretic mobility shift assays. Baculovirus expressed VP6 bound double and single-stranded RNA and DNA in nucleic acid overlay protein blot assays. Competition assays indicated that VP6 may have a preference for binding to RNA rather than DNA. Glycosylation was found to play no direct role in nucleic acid binding but the binding is strongly dependent on the NaCl concentration.

A series of truncated VP6 peptides were produced to investigate the importance of localized regions in nucleic acid binding. Two partially overlapping peptides were found to bind dsRNA at pH 7.0, while other peptides with the same overlap did not. Binding appeared to be influenced by charge as reflected by the isoelectric points (pI) of the peptides and experiments indicating the effect of pH on the binding activity. However, only peptides containing amino acid residues 190 to 289 showed binding activity. This region corresponded to the region on BTV VP6 that contains two binding domains. It is proposed that the dsRNA binding domain in AHSV VP6 is a sequence of positively charged amino acids constituting a domain that determines the nucleic acid binding characteristics of the peptide. The mechanism of binding of baculovirus expressed VP6 in a nucleic acid overlay protein blot is proposed to be charge related.
DECLARATION

I declare that the thesis which I hereby submit for the degree Philosophiae Doctor at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

Signature: ……………………………………… Date: …………………………………………………
TABLE OF CONTENTS

CHAPTER 1: LITERATURE REVIEW

1. **INTRODUCTION**
 1.1 INTRODUCTION
 1.2 FAMILY REOVIRIDAE
 1.3 ORBIVIRUSES
 1.4 AHSV AND BTV EPIDEMIOLOGY, TRANSMISSION AND GEOGRAPHICAL DISTRIBUTION
 1.5 ORBIVIRUS INFECTION
 1.6 AFRICAN HORSESICKNESS PATHOGENESIS
 1.7 DETECTION OF AHSV IN INFECTED AND VACCINATED HORSES
 1.8 ORBIVIRUS MORPHOLOGY
 1.9 STRUCTURE AND FUNCTION RELATIONSHIPS OF ORBIVIRUS GENES AND GENE PRODUCTS
 1.9.1 The outer capsid: VP2 and VP5
 1.9.2 The core
 1.9.3 The inner core
 1.9.4 The nonstructural proteins: NS1, NS2, NS3 and NS3A
 1.10 VIRAL ENZYMATIC FUNCTIONS
 1.10.1 Viral Helicases
 1.10.1.1 Structural features of helicases
 1.10.1.2 Helicase families
 1.10.1.3 Function of the conserved motifs
 1.10.1.4 Helicase activity
 1.10.1.5 Models of helicase activity
 1.10.1.6 Prevalence and role of helicases in viruses
 1.10.1.7 Past and future aspects of viral helicases
 1.10.2 Viral Transcriptase Activities
 1.10.3 Replication and transcription in BTV
 1.11 AIMS

CHAPTER 2: CLONING AND CHARACTERIZATION OF THE GENOME SEGMENT ENCODING VP6 OF AHSV

2. **INTRODUCTION**
2.2 MATERIALS AND METHODS

2.2.1 Preparation of dsRNA for cDNA synthesis

2.2.2 Sephadex column chromatography

2.2.3 cDNA synthesis

2.2.4 Alkaline agarose gel electrophoresis

2.2.5 Glassmilk purification

2.2.6 Preparation and Transformation of competent \textit{E. coli} cells

2.2.7 Plasmid isolation

2.2.8 Preparation of Recombinant Plasmid DNA by Cesium Chloride gradient purification

2.2.9 Amplification by PCR

2.2.10 Cloning of the PCR product

2.2.11 Subcloning of the genome segment encoding VP6

\hspace{1cm} 2.2.11.1 \textit{Subcloning into M13}

\hspace{1cm} 2.2.11.2 \textit{Subcloning into pBS}

2.2.12 Manual sequencing

2.2.13 Sequence analysis

2.2.14 Phylogenetic analysis

2.2.15 Primary Structure Analysis

2.2.16 Hydrophilicity and Secondary Structure

2.3 RESULTS

2.3.1 Cloning of AHSV serotype 9

2.3.2 Amplification of the genome segment encoding VP6 of AHSV by polymerase chain reaction from pools of cDNA

2.3.3 Subcloning and sequencing

2.3.4 Sequence analysis

2.3.5 Phylogenetic analysis

2.3.6 Amino Acid Sequence Analysis

2.3.7 Hydrophilicity and Secondary Structure

2.4 DISCUSSION

CHAPTER 3: CHARACTERIZATION OF THE VP6 PROTEIN OF AHSV

3.1 INTRODUCTION

3.2 MATERIALS AND METHODS

\hspace{1cm} 3.2.1 \textit{In vitro} expression

\hspace{1cm} 3.2.2 \textit{In vitro} translation

\hspace{1cm} 3.2.3 Polyacrylamide gel electrophoresis
3.2.4 *In vivo expression using the BAC-to-BAC system* 75

3.2.5 Preparation of competent cells by the DMSO method 75

3.2.6 Generation of recombinant bacmids in DH10BAC cells by transposition 75

3.2.7 Isolation of composite bacmid DNA 75

3.2.8 Transfection into *Spodoptera frugiperda* cells 75

3.2.9 Infection of Sf9 cells 76

3.2.10 Virus titration by plaque assay 76

3.2.11 Infection of monolayers for virus stocks and protein 76

3.2.12 Western immunoblot 76

3.2.13 5’ modification by PCR 77

3.2.14 Automated sequencing 77

3.2.15 Cloning and expression in A baculovirus System 78

3.2.16 Cloning and expression using A bacterial system 78

3.2.17 *In vivo* protein labelling 78

3.2.18 Sucrose gradient analysis 78

3.2.19 Ni-NTA column purification 79

3.2.20 Glycosylation assay by PAS staining 79

3.3 **RESULTS** 80

3.3.1 *In vitro* translation of VP6 mRNA 80

3.3.2 *In vivo* baculovirus expression 80

3.3.3 Bacterial Expression 84

3.3.4 Western immunoblot analysis 87

3.3.5 Protein solubility studies 88

3.3.6 Protein purification 89

3.3.7 Glycosylation assay by PAS staining 91

3.4 **DISCUSSION** 92

CHAPTER 4: ANALYSIS OF NUCLEIC ACID BINDING ACTIVITY OF AHSV-6 VP6 96

4.1 **INTRODUCTION** 96

4.2 **MATERIALS AND METHODS** 97

4.2.1 Nucleic acid overlay protein blot assays 97

4.2.2 Competition assays 97

4.2.3 Preparation of single and double-stranded nucleic acid probes 98

4.2.4 Specific activity calculations 98
4.2.5 N-Glycosidase F deglycosylation 99
4.2.6 Tunicamycin deglycosylation 100
4.2.7 Deletion mutation analysis 100
4.2.8 Screening of composite bacmid DNA by PCR 100
4.2.9 Electrophoretic mobility shift assays (EMSA) 100

4.3 RESULTS 101
4.3.1 Nucleic acid overlay protein blot assays 101
4.3.2 Affinity of AHSV VP6 for different nucleic acids 102
4.3.3 Effect of salt concentration on binding activity 104
4.3.4 Investigation of nucleic acid preference 105
4.3.5 Deglycosylation of baculovirus expressed VP6 109
4.3.6 Effect of deglycosylation on VP6 solubility 110
4.3.7 Investigation of the role of N-linked glycosylation of VP6 110
4.3.8 Preparation of baculovirus recombinants that express different truncated VP6 peptides 113
4.3.9 Expression of truncated proteins in a baculovirus system and immunological screening by western blot 114
4.3.10 Binding of double-stranded RNA by truncated VP6 proteins 117
4.3.11 Effect of pH on double-stranded RNA binding of truncated VP6 proteins 117
4.3.12 Demonstration of binding activity of bacterially expressed VP6 by EMSA 120

4.4 DISCUSSION 122

CHAPTER 5: CONCLUDING REMARKS 129

CHAPTER 6: RESEARCH OUTPUT 133

CHAPTER 7: REFERENCES 134
LIST OF FIGURES

Figure 1.1 Model for the packaging of dsRNA in the BTV core particle. 13
Figure 1.2 Cartoon illustrating the movement of the NTP raw material into the core particle and the site of exit of the mRNA transcript and by-products. 14
Figure 1.3 The inchworm model of helicase activity. 24
Figure 1.4 “Rolling” mechanism for Rep-catalyzed DNA unwinding. 25
Figure 1.5 Crystal packing interaction of the crystals of HCV RNA helicase. 27
Figure 1.6 Crystal structures of two hexameric helicases. 28
Figure 1.7 Model for helicase activity based on changes in the conformation of both the protein and nucleic acid substrate. 30
Figure 2.1 AHSV-9 dsRNA analyzed on a 1% TAE agarose gel. 45
Figure 2.2 Autoradiograph of cDNA synthesized from AHSV-9 polyadenylated dsRNA. 46
Figure 2.3 PCR amplified VP6 genes from AHSV-3 and AHSV-6 cDNA. 48
Figure 2.4 Restriction endonuclease selection for recombinant pBS clones. 48
Figure 2.5 Nucleotide sequences of the segment encoding VP6 of AHSV-3 (U19881) and AHSV-6 (U33000) aligned using CLUSTAL X. 51
Figure 2.6 Restriction enzyme mapping of the genome segment encoding VP6 of AHSV-3 and -6. 51
Figure 2.7 Autoradiogram of manual sequencing illustrating conserved 5’ and 3’ sequences of the genome segment encoding VP6 of AHSV-6. 51
Figure 2.8 Nucleotide phylogenetic analysis of the genome segment encoding VP6 from four Orbivirus serogroups. 56
Figure 2.9 Functional constraint analyses of VP6 from four Orbivirus serogroups using parsimony methods (PAUP ver 4.0b5). 57
Figure 2.10 (a) CLUSTAL W alignment of VP6 of AHSV-3 and 6. 59
Figure 2.11 CLUSTAL W alignment of VP6 of AHSV-3 and 6; Chuzan virus; BTV-10 and 17 and St Croix River virus. 60
Figure 2.12 Alignment of Orbivirus VP6 putative motifs important for helicase activity with known SF2 helicases. 62
Figure 2.13 Hydrophilicity plots of the VP6 proteins of AHSV-6, BTV-10 and Chuzan virus. 63
Figure 2.14 Secondary structure prediction of VP6 of AHSV-6. 64
Figure 3.1 In vitro transcription of the AHSV-3 VP6 gene (T3) and the AHSV-6 VP6 gene (T7). 82
Figure 3.2 In vitro translation of the transcription product of the genome segments encoding VP6 of AHSV-3 and AHSV-6. 83
Figure 3.3 In vivo expression and western immunoblotting of VP6 of AHSV-3 and AHSV-6. 85
Figure 3.4 Comparison of expression of AHSV-6 VP6 in insect and bacterial cells. 86
Figure 3.5 Immunological screening of baculovirus and bacterial expressed VP6. 88
Figure 3.6 Sucrose gradient fractionation of a) baculovirus expressed VP6 and b) bacterially expressed VP6. 90
Figure 3.7 Glycosylation assay of VP6 of AHSV-6. 91
Figure 3.8 Comparison of nucleic acid binding activity of baculovirus and bacterially expressed AHSV VP6. 103
Figure 3.9 Autoradiogram of an assay to determine the affinity of AHSV-6 VP6 to various nucleic acid probes. 104
Figure 3.10 Investigation of the effect of salt concentration on VP6 nucleic acid binding activities. 106
Figure 4.1 Competition assays to investigate a nucleic acid binding preference for AHSV VP6 using a ssRNA probe. 108
Figure 4.2 Competition studies for binding preference between ssRNA and dsRNA by AHSV VP6. 109
Figure 4.3 Sucrose gradient fractionation of baculovirus expressed VP6 treated with tunicamycin. 111
Figure 4.4 Analysis of the role of N-glycosylation in AHSV VP6 nucleic acid binding activity. 112
Figure 4.5 Schematic diagram illustrating the cloning strategy for the production of truncated VP6 peptides. 114
Figure 4.6 PCR screening of recombinant bacmid DNA used for transfection. 115
Figure 4.7 Expression and immunological screening of truncated proteins expressed in Sf9 cells. 116
Figure 4.11 DsRNA binding by truncated VP6 proteins. 118
Figure 4.12 The effect of pH on dsRNA binding activity of the truncated AHSV-6 VP6 peptides. 119
Figure 4.13 Nucleic acid binding activity of bacterially expressed AHSV-6 VP6. 121

LIST OF TABLES
Table 1.1: Coding assignments for BTV and AHSV. 8
Table 2.1 Full-length sequences for orbivirus VP6 genes / VP6 proteins used in this study. 42
Table 2.2 Amino acid residue frequencies of AHSV, BTV and Chuzan VP6 expressed per 1000 residues. 52
Table 2.3 Amino acid and nucleotide similarity between VP6 of four orbiviruses. 53
Table 2.4: Motif analysis from VP6 alignment of 6 orbiviruses. 61
Table 2.5: Conserved helicase motifs and functional interactions. 69
Table 4.1 Estimated pl values of six epitopes identified in BTV VP6. 127
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHS</td>
<td>African horsesickness</td>
</tr>
<tr>
<td>AHSV</td>
<td>African horsesickness virus</td>
</tr>
<tr>
<td>AHSV-6</td>
<td>African horsesickness virus serotype 6</td>
</tr>
<tr>
<td>amp</td>
<td>ampicillin</td>
</tr>
<tr>
<td>AMV</td>
<td>Avian myeloblastosis virus</td>
</tr>
<tr>
<td>ATCC</td>
<td>American type culture collection</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine-5'-triphosphate</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>BRDV</td>
<td>Broadhaven virus</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>BTV</td>
<td>bluetongue virus</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CER</td>
<td>chicken embryo reticulocyte</td>
</tr>
<tr>
<td>Ci</td>
<td>Curie</td>
</tr>
<tr>
<td>CLP</td>
<td>core-like particle</td>
</tr>
<tr>
<td>cpm</td>
<td>counts per minute</td>
</tr>
<tr>
<td>Da</td>
<td>Daltons</td>
</tr>
<tr>
<td>dATP</td>
<td>2'-deoxyadenosine-5'-triphosphate</td>
</tr>
<tr>
<td>dCTP</td>
<td>2'-deoxycytidine-5'-triphosphate</td>
</tr>
<tr>
<td>dGTP</td>
<td>2'-deoxyguanosine-5'-triphosphate</td>
</tr>
<tr>
<td>dTTP</td>
<td>2'-deoxythymidine-5'-triphosphate</td>
</tr>
<tr>
<td>DEPC</td>
<td>diethylpyrocarbonate</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>ds</td>
<td>double-stranded</td>
</tr>
<tr>
<td>DTT</td>
<td>1,4-dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetra-acetic acid</td>
</tr>
<tr>
<td>e.g.</td>
<td>exempli gratia (for example)</td>
</tr>
<tr>
<td>EHDV</td>
<td>epizootic haemorrhagic disease virus</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EMSA</td>
<td>electrophoretic mobility shift assays</td>
</tr>
<tr>
<td>et al.</td>
<td>et alia (and others)</td>
</tr>
<tr>
<td>etc.</td>
<td>et cetera (and so forth)</td>
</tr>
<tr>
<td>EtBr</td>
<td>ethidium bromide (3,8-diamino-6ethyl-5-phenylphenanthridium bromide)</td>
</tr>
<tr>
<td>FCS</td>
<td>foetal calf serum</td>
</tr>
<tr>
<td>g</td>
<td>gravitational acceleration</td>
</tr>
<tr>
<td>HCV</td>
<td>hepatitis C virus</td>
</tr>
<tr>
<td>hr/s</td>
<td>hour / hours</td>
</tr>
<tr>
<td>h.p.i.</td>
<td>hours post infection</td>
</tr>
<tr>
<td>HPRI</td>
<td>human placental ribonuclease inhibitor</td>
</tr>
<tr>
<td>i.e.</td>
<td>it est (that is)</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-β-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>KAc</td>
<td>potassium acetate</td>
</tr>
<tr>
<td>kb</td>
<td>kilobasepairs</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>LacZ</td>
<td>β-galactosidase gene</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>μl</td>
<td>microlitre</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>mA</td>
<td>milliampere</td>
</tr>
<tr>
<td>mCi</td>
<td>millicurie</td>
</tr>
<tr>
<td>MCS</td>
<td>multiple cloning site</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>MHV</td>
<td>mouse hepatitis virus</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mmol</td>
<td>millimol</td>
</tr>
<tr>
<td>MMOH</td>
<td>methylmercuric hydroxide</td>
</tr>
<tr>
<td>m.o.i.</td>
<td>multiplicity of infection</td>
</tr>
<tr>
<td>M_r</td>
<td>molecular weight</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>NaAc</td>
<td>sodium acetate</td>
</tr>
<tr>
<td>NaOH</td>
<td>sodium hydroxide</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>NS</td>
<td>nonstructural</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>OVI</td>
<td>Onderstepoort Veterinary Institute</td>
</tr>
</tbody>
</table>
LIST OF BUFFERS

PBS:
137mM NaCl, 2.7 mM KCl, 4.3mM Na$_2$HPO$_4$.7H$_2$O, 14mMKH$_2$PO$_4$, pH 7.3

PSB (2x):
0.125M Tris-HCl pH 6.8, 4% SDS, 20% glycerol, 10% 2-mercaptoethanol

SBB:
50mM NaCl; 1mM EDTA; 10mM Tris-HCl, pH 7; 0.02% Ficoll; 0.02% polyvinylpyrrolidone; 0.02% BSA

STE buffer:
0.15M NaCl, 0.01M Tris-HCl pH 7.6, 0.001M EDTA

STE-Tx buffer:
0.15M NaCl, 0.01M Tris-HCl pH7.6, 0.001M EDTA, 0.5% Triton-X100
TAE buffer:
0.04M Tris-acetate, 0.002M EDTA, pH 8.5

TE buffer:
0.01M Tris-HCl pH 7.6, 0.001M EDTA

TGS buffer:
0.025M Tris-HCL pH 8.3, 0.192M glycine, 0.1% SDS