
Chapter 1

Introduction

“By morning the wind had

brought the locusts; they

invaded all Egypt and settled

down in every area of the

country in great numbers. Never

before had there been such a

plague of locusts, nor will there

ever be again. They covered all

the ground until it was black.

They devoured all that was left

after the hail—everything

growing in the fields and the

fruit on the trees. Nothing green

remained on tree or plant in all

the land of Egypt.”

Exodus 10: 13-14
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Population genetics and phylogeography have been shown to be indispensable in the

understanding of species demographics (Avise et al. 1987, Knowles & Maddison

2002, Knowles 2004). The purpose of this dissertation is to apply population genetics

principles to gain a better understanding of demographic processes in the African

Wild Silk Moth (Gonometa postica). Therefore, the purpose of this introductory

chapter is firstly, to review the known biology of the African Wild Silk Moth and

secondly, to introduce the necessary population genetic principles and methods that

will be used for demographic inference in later chapters.

The African Wild Silk Moth is a species that is currently of economic interest in

southern Africa. Both this species and its sister species, G. rufobrunnea, have been

shown to possess a silk fibre of exceptional quality (Freddi et al. 1993, Akai et al.

1997). In this respect the initiation of an African Wild Silk Industry in southern Africa

has been proposed as a potential means of poverty alleviation in rural southern Africa.

However, a consistent complaint from small-scale cottage industries that currently

utilize Gonometa silk is the insufficient supply of cocoons. Since the industry

currently only utilizes cocoons from which the adult moths have already emerged,

there is little or no effect of harvesting on the population dynamics of the species.

Rather, the insufficient supply of cocoons is directly related to the complex

population cycles experienced by the species. The species is characterized by two

generations per year, the first starting in September-October when adult moths

emerge from cocoons. Adult moths emerge without feeding mouthparts and survive

for three to five days (maximum nine days, Hartland-Rowe 1992) during which

breeding occurs. Eggs are laid, larvae emerge and pass through six instar larval stages

in approximately five weeks, after which the larvae construct cocoons, pupate and

enter a period of diapause. This period of diapause either carries through to the

following September when adults emerge, or is broken in February with adult

emergence and an additional population cycle. Typically, this second generation

comprises between 12-50% of the first generation (Hartland-Rowe 1992), and

culminates in pupae that emerge as adults in September. G. postica experiences large

inter-annual population size fluctuations (Veldtman 2004), though it is uncertain

which factors contribute to the cyclical nature of this species.
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In order to understand eruptions of this species several questions need to be

addressed. Firstly, the influence of climatic factors on the incidence of population

eruptions should be evaluated. It has been hypothesized that G. postica eruptions

follow periods of drought, where the rates of larval parasitism are reduced during

these times, thus allowing the normally heavily-parasitised larvae (Veldtman 2004) to

reach eruptive proportions (Hartland-Rowe 1992). Secondly, the interaction between

host plant, Acacia erioloba, phenology and G. postica is unknown. A. erioloba

experiences a leaf-flush in August prior to the emergence of adult moths (Smit 1999).

The timing of this leaf-flush in relation to rainfall, and the timing of G. postica

emergence, is crucial for the understanding of eruptions in this species. Related to the

phenology of the host plant, it is necessary to determine the quantity and quality of

foliage required for larvae to complete development, pupation and emergence as adult

moths. This interaction between climate, host-plant and G. postica would be crucial

for the understanding of complex population dynamics in this species. Ideally, a long-

term population dynamics programme should be initiated that evaluates the effect of

both exogenous and endogenous factors in determining local annual population sizes

of this species. The scale, however, at which such a study should be conducted is

uncertain since there are currently no dispersal estimates available, and therefore it is

uncertain what constitutes a population in this species. Such knowledge of dispersal

ability will further enhance the interpretation of the temporal occurrence of eruptions,

where eruptions in later years are sourced from nearby eruptions in preceding years.

The purpose of this dissertation is to estimate the degree of genetic connectivity

between eruptions within and between years, using spatial population genetic

analysis. Such an understanding, of dispersal ability in this species, will allow the

planning of harvesting strategies and potentially allow the incorporation of a dispersal

parameter into predictive distribution modeling that is planned for future research.

Several species exhibit complex population cycles and large fluctuations in both

density and population size (Finerty 1979, Bjornstad et al. 2002, Tallmon et al. 2002,

Turchin 2003). Turchin (2003) has reviewed the dynamics of such complex

population cycles and notes that such cycles are the result of the interaction between

endogenous and exogenous factors. These factors encompass environmental effects,

including climatic factors, population-specific effects such as density dependence and

inter-species interactions, such as predator-prey relations. Although the ecological
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literature of complex population cycles is extensive, comparatively few genetic

studies have been conducted. Population genetic analysis of snowshoe hare (Lepus

americanus) have attributed the observed spatial patterns of genetic variation to a

stepping stone model of gene flow influenced by density cycles, where local

bottleneck populations expand to previously unsuitable habitat and thus homogenize

genetic diversity across the distribution (Burton et al. 2002). The collared lemming,

another cyclic species, also has a spatial genetic pattern characterized by very little

population structuring. In this species, the inferred high levels of gene flow are

attributed to long-distance dispersal events (Ehrich et al. 2002). Similarly, deviation

from an isolation by distance model in spatial genetic structure in the butterfly Aglais

urticae is attributed to high movement rates, occasional long-distance migration and

rare extinction/recolonisation events (Vandewoestine et al. 1999). Northeastern

Australian rabbit populations also show large degrees of population size fluctuations,

yet differ in degree of stochasticity between the arid west and semiarid east (Fuller et

al. 1997). Spatial genetic patterns in this species corroborate the observation of a high

degree of gene flow inferred from population genetic data of cyclical species in that

the western populations exhibit reduced levels of structure versus that of the eastern

populations, which have fewer stochastic fluctuations in population size (Fuller et al.

1997). This general result of very little population structuring in cyclical species may

be worthy of further investigation (Burton et al. 2002). Theoretically, one might

expect a higher degree of population sub-structuring in species that exhibit population

cycles (Wright 1940), due to increased probability for different demes to become

fixed for alternate alleles, under random genetic drift during periods of small

population size. However, this effect is most likely dependent on the levels of

dispersal and whether fixation of alleles at particular demes can be removed due to

movement of alleles between demes in years of population size expansion. The effects

of extinction and recolonisation on spatial genetic pattern have been evaluated for

species with metapopulation structure (Wade & McCauley 1988, Whitlock &

McCauley 1990, Ibrahim et al. 2000, Ibrahim 2001). These results in general

indicated that the effect of population turnover on genetic differentiation is dependent

on the number of individuals colonizing a deme relative to the number of recurrent

migrants between demes (Whitlock & McCauley 1990, Ibrahim 2001). This is

intuitive for metapopulations since low numbers of founders are likely to produce

greater genetic structure, as is colonization from single versus multiple demes.
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Recurrent migrations will furthermore tend to homogenize genetic diversity given

high levels of migration. These results generally appear to hold for metapopulations,

yet some species do not have obvious metapopulation structure and simply exist as

continuous populations where neighbourhood sizes fluctuate as a result of local

changes in density. Dispersal in this instance does not occur between spatially defined

demes, but are rather effected as an individual dispersal distance in a continuously

distributed isolation by distance model. The effects of population size variations in

such species are likely to be different, and thus are explored within the context of this

dissertation.

Inference of population demography from genetic data

In order to address the dispersal ability of G. postica through spatial genetic analysis

it is necessary to use the currently available analysis approaches for spatial genetic

data. The purpose of the following section is to introduce the available methods. This

review of spatial genetic analysis methods is by no means exhaustive. Rather it is a

personal reflection on the development of the field and is biased towards simulation

and coalescent modeling approaches. Furthermore, although I have utilized spatial

autocorrelation analyses methods in the subsequent chapters I have not covered these

here. I feel that spatial autocorrelation approaches do not contribute to the

development of custom demographic analysis models that I personally believe is the

future of spatial population genetic analysis.

The inference of demographic parameters from population genetic data is a field that

has grown rapidly in past years. This field, originally termed phylogeography (Avise

et al. 1987) originated in the 1980’s and has enjoyed a long tradition of gathering

spatial genetic data, and subsequently inferring processes from the correlation of such

data with landscape, or historical geographical/climatic features and events (see

reviews by Avise et al. 1987, Avise 2000). This spatial pattern matching, however, is

fraught with ideological and theoretical problems, the most notorious being the

inference of complex demographic processes from a single gene tree. As such

phylogeography and analyses of spatial genetic data has moved from a pattern-based

descriptive science to one that involves the statistical testing of alternate hypotheses

against the observed genetic data. The rapid increase in computer power in the last
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decade has fueled this development of statistical phylogeography, which has been the

subject of a recent special issue of Molecular Ecology (Volume 13, 2004). In this

introduction I briefly review the history of spatial population genetic analysis and

introduce the current advances in statistical phylogeography, and demographic

inference. The purpose of this discussion is to provide a framework for the analysis of

spatial population genetic data collected from the focal species of this dissertation.

Summary statistic approaches

Probably the most important consideration for any analysis technique is the particular

demographic/migration model on which a particular technique is based. Three models

are common in the population genetics literature, the island model (Wright 1940,

Crowe 1986), the stepping-stone model (Kimura & Weiss 1964, Nagylaki 1982), and

the isolation by distance model (Wright 1943), where a suite of summary statistics

characterizes each. Historically, population genetics, and thus inference of

demographic parameters such as migration, has been strongly based on summary

statistics. Wright (1951) devised an approach to partitioning genetic variation in a

subdivided population based on the island model of migration, termed Fixation

indices or F-statistics. The calculation of FST has dominated the population genetics

literature, and is simply the variance in allele frequencies across populations (Va)

standardized by the mean allele frequency, .

FST =
Va

(1 )
 Wright (1951)

Several methods are available to estimate FST (Wright 1951, Weir & Cockerham

1984, Nei 1987), yet most make use of the relationship above. However, Slatkin

(1985, 1987) has suggested an approach based on the distribution and frequency of

rare alleles, and Barton and Slatkin (1986) have found these alternate measures to be

consistent over a wide range of assumptions of population structure, selection and

mutation. Recent reviews of FST, as a measure of population differentiation, should be

consulted for further discussion (Weir & Hill 2002, Excoffier 2003).

Of particular importance in calculating FST are the underlying assumptions of the

model, i.e. an island migration model in a Wright-Fisher population of constant size.
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The principal aim of calculating FST is the inference of both effective population size

(Ne), and migration rates between demes (m);

Ne =
Nd

1 FST
 Wright (1931)

FST =
1

4Nm +1
 Wright (1931)

where N  = population size, d = the number of demes and m  = migration rate.

However, considerations of the assumptions, in terms of underlying population

structure, of such calculations are paramount. Indeed, Whitlock (2004) has considered

the application of the above estimators of Ne and 4Nm applied to metapopulations. A

critical assumption in the above model is that of no variance in reproductive success

among demes. Since FST typically takes on values between 0 and 1, the above

estimator of Ne gives the nonsensical result of Ne always being greater than Nd, the

product of population size per deme, N, and number of demes, d (Whitlock 2004).

This result is contrary to what is expected is natural metapopulations, where large

variances in reproductive success among demes is expected, and thus highlights the

importance of considering the assumptions behind a particular model when analyzing

and interpreting data. Several theoretical population models have been developed for

the estimation of F-statistics and the analysis of population structure, including

extinction-recolonisation metapopulation models (Whitlock & McCauley 1990),

source-sink models (Gaggiotti 1996), and stepping-stone models (Kimura & Weiss

1964). However, since the purpose of many population genetic studies is to infer the

underlying genetic structure of the focal species, the suitable model is not known a

priori. Thus the development of statistical procedures that can simultaneously

estimate the underlying genetic structure of a population, and demographic

parameters, is a central challenge in population genetics (Excoffier 2003).

Given a continuous population the isolation by distance model (Wright 1943) is most

appropriate, where summary statistics of interest are those concerned with

neighbourhood size. Neighbourhood size essentially represents the number of

individuals an individual would encounter within its lifetime, and is dependent on

density (D) and the standard deviation of the distribution of dispersal distances ( ).
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The size of a neighbourhood (Nb) amounts to the number of individuals in a circle

with a radius twice the standard deviation of dispersal distances (2 ). Thus,

Nb = 4 D 2 (Wright 1943)

Rousset (1997, 2000) has developed methods for the estimation of neighbourhood

size from pairwise calculations of FST between demes and between individuals.

Typically, the method involves the calculation of pairwise genetic distances, and

subsequent plotting against the natural logarithm of distance. The inverse of the slope

of the regression provides an estimate of neighbourhood size (Rousset 1997, 2000).

Another summary statistic of importance is the calculation of , the composite

estimate of population size (N) and mutation rate (μ); 2Nμ in haploids and 4Nμ in

diploids. The need for estimating  arises from the fact that neither of the two

measures that comprise the parameter can be estimated independently from

population genetic or sequence data without prior information on mutation rates or

effective population size. Mutation rate, in particular is notoriously difficult to

estimate from genetic data due to the occurrence of back mutations. Back mutations

occur in DNA sequence data since mutation rate variation typically follows a

distribution with few sites of high mutation rate and many sites of low mutation rates

(Yang 1996). Several estimators of  are evident in the literature: the expected

number of alleles in an infinite-allele model (Ewens 1972), the number of segregating

sites in an infinite-site model (Watterson 1975) or nucleotide diversity, the mean

number of pairwise differences (Tajima 1983). The parameter  also proves useful in

maximum-likelihood inference of demographic parameters given the observed genetic

data.

Furthermore, the relationship between different estimators of  forms the basis for

Tajima’s D (Tajima 1989), the test of neutrality of mutations. Tajima’s D is based on

the premise that in a gene under selection,  estimated from segregating sites will be

substantially greater than  estimated from nucleotide diversity, since rare mutations

that are selected against are down-weighted in the calculation of the latter. Fu and Li

(1993) have further developed neutrality tests based on the observation that purifying
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selection is evident as an excess of mutations at the tips of a gene genealogy. Since

these tests compare mutations in the recent past to mutations in the distant past, the

use of an outgroup from a closely related species is recommended (Fu & Li 1993).

Although neutrality tests have been criticized for lack of statistical power  (Simonsen

et al. 1995), a central problem relating to neutrality tests is rather the difficulty in

distinguishing selection for a particular allele versus the demographic event of rapid

population growth. Both of these processes generate the same genetic signal (Tajima

1989), evident as a star-like pattern in a gene tree, or unimodal distribution of

pairwise genetic differences, or mismatch distributions (Rogers & Harpending 1992).

The use of multiple loci is thus crucial in any population genetics study, where

selection will be evident at only those loci under selection, whereas demographic

histories will be evident in the genetic patterns of all loci.

An extension to the analysis of mismatch distributions is the development of methods

to analyse a spatial range expansion versus that of simply an increase in population

size (Ray et al. 2003, Excoffier 2004). Initially, a coalescent simulation combined

with a demographic model of spatial expansion was used to observe the effects of

spatial expansions on intra-deme molecular diversity in a structured population model

(Ray et al. 2003). The results in general indicated that under low levels of migration

between demes a spatial demographic expansion generated multimodal mismatch

distributions. In contrast, large levels of migration between demes generated a pattern

that was indistinguishable from a structured population that had always been

exchanging a large number of migrants (Ray et al. 2003). Excoffier (2004) further

utilized these simulation results to derive an analytical expression of FST given a

structured population that has undergone a recent spatial demographic expansion. The

process of simulating a demographic process and observing the effects on patterns of

genetic diversity and subsequently devising an analytical algorithm is conducive to

the advancement of population genetic theory. In addition, the results from a

simulation model, and the data generated, can be subsequently input into the

analytical algorithm such that its power to detect demographic processes can be

evaluated.
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Model-based approaches

Model-based approaches to analyzing and interpreting spatial genetic patterns are

subdivided into three general approaches, comparative simulation modeling,

analytical-based inference and simulation-model-based inference. As is evident in the

example above (Ray et al. 2003) comparative simulation modeling provides a means

to understand the effects that a particular demographic process may have on inference

using summary statistics. Typically, comparative simulation modeling would

comprise the repeated simulation of a demographic event, and the repeated estimation

of a summary statistic of interest. General conclusions can thus be drawn regarding

the effect of the demographic event on the calculation of the statistic of interest. Such

simulations can either be effected forward-through-time where every individual in the

population is simulated, and a sub-sample is drawn for the calculation of summary

statistics; or backwards-through-time where only the genealogical history of the

sampled alleles need to be simulated. Such backwards-through-time models, based on

coalescent theory, have become popular due to their simplicity and mathematical

tractability. The neutral coalescent, based on a panmictic Wright-Fisher population of

constant population size, with no selection and no recombination, simply states that of

all possible events that could happen to a sample of n alleles one generation back in

time, only two are important: either all n alleles have distinct parents, or two alleles in

the sample share a common ancestor (Wakeley 2004). This process continues from

the samples observed in the present, backwards through time, until all samples

(lineages) have coalesced to a single common ancestor. The result is a genealogy of

the samples characterized by n-1 coalescent events, and a distribution of times to each

coalescent event (branch lengths). Kingman (1982) showed that the probability that n

alleles are reduced to n-1 alleles in the previous generation, in a total population size

N, is given by

Pn =
n(n 1)

4N
 Kingman (1982)

and thus the estimated time for n alleles to be reduced to n-1 alleles is given by

E(Tn ) =
4N

n(n 1)
 Kingman (1982)
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Therefore, since the genealogy comprises n-1 coalescent events the total time to

coalescence is given by

E(t) = E(Ti
i= 2

n

) = 4N(1
1

n
)

Per generation coalescent demographic simulation is a two-step process. Firstly, a

random genealogy is simulated under the demographic model of interest, followed by

the scattering of mutations onto the genealogy given the branch lengths and a

mutation rate. The demographic model of population size fluctuations for example,

could be implemented through varying N in the equations above at each generation to

calculate the probability of coalescence. These probabilities are used to construct

random genealogies, by drawing a random number at each generation. Coalescent

events occur when a random number is greater than the probability of coalescence at

the particular generation and is subsequently recorded as a coalescent event in the

genealogy. Mutations are scattered forward through time on each simulated genealogy

according to the branch lengths and mutation rates, and thus genetic data is generated

at the tips of the genealogy. The process is repeated thousands of times, each time

generating data and calculating a summary statistic of interest. Distributions of the

summary statistics of interest can then be observed to infer the effect of the

demographic process simulated. The result is an understanding of the potential

variance in genetic data under a particular demographic model, given that the gene

sorting process within populations is stochastic. Leblois et al. (2004) have used such

an approach to determine the effects of temporal changes in density and dispersal on

the inference of neighbourhood size in continuous populations.

In some cases analytical results are available for statistics of interest. For example, the

analytical formulation of the number of segregating sites in a sample n can be used to

make a maximum likelihood estimate of . However, this represents a point estimate

of , whereas a degree of error is often required. Obtaining a variance for such

estimation is not yet possible (Wakeley 2004). Furthermore, the variance of an

estimator is only useful when the errors are normally distributed, or when the

distribution is known and symmetric, a characteristic atypical of genetic data
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(Wakeley 2004). Thus the analytical-based inference of demographic parameters

given genetic data is limited and a simulation-based model of inference is required.

Simulation-based inference is dependent on maximum-likelihood (Edwards 1972) and

Bayesian methods (Bayes 1763), and thus these are first introduced. Likelihood-based

inference has the aim of evaluating the likelihood of a particular parameter given the

observed data. Thus the calculation of the probabilityP(D | ), of observing data, D,

given the parameters, , of a particular model is performed. The parameters of the

model typically include the genealogy of the sampled alleles, the population size-

mutation rate composite, , migration rates, and rates of population size increase or

decrease. Bayesian inference procedures also utilize likelihood in the calculation of a

posterior distribution for parameters, , but further allow the incorporation of prior

knowledge of the system under consideration. Such prior knowledge may take the

form of a direct-estimate of migration rates between demes, or some prior belief of

the effective population size. The posterior distribution is given by

P( |D) =
P(D | )P( )

P(D)
 Bayes (1763), Edwards (1972)

whereP( )  is the distribution of a prior. Priors in population genetic applications are

typically uniform and given sufficient data the posterior distribution is dominated by

the likelihood, such that the choice of prior has little effect on the conclusions drawn

(Stephens 2003). In the following discussion of inference, however, I will concentrate

on likelihood-based inference since the procedure of estimation in Bayesian inference

is similar.

Coalescent-based likelihood inference is based on the distribution of genealogies, ,

given the observed data. Associated with each genealogy are parameters, such as

branches, or mutations on the branches. Given that  is known, one could calculate the

probability of the data given the parameters of the model, i.e.P(D | , ) . However, 

is unknown and as such one needs to calculate the likelihood of a particular

parameter, or suite of parameters, by summing over all possible genealogies. This is

performed since a single data set can be obtained from many different genealogical
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histories. As such, the likelihood of the parameter is the sum of all probabilities for all

potential genealogies, given the parameters, 

L( ) = P(D | ) = P(D | , )P( | )  Felsenstein (1973, 1988)

The number of possible genealogies increases rapidly with the number of samples, for

three samples there are only three possible genealogies, for 10 samples 2571912000

genealogies and for 100 samples, 1.37 x 10
284

 genealogies (Felsenstein 2004). Thus,

summing over all possible genealogies becomes computationally unfeasible given the

sample sizes of typical population genetics studies. However, a glimmer of hope

resides in the observation that the proportion of genealogies that contribute

significantly to the sum across all genealogies is less than one in a million (Stephens

2003). This forms the basis of inference techniques, such as Monte Carlo integration

(Hastings 1970), which have the purpose of estimating the likelihood surface through

estimating the aforementioned likelihoods over parameter space. In summary, MCMC

focuses the calculation of likelihoods in genealogy space where the genealogies that

contribute most to the likelihood reside. Thus the amount of computation is reduced

and likelihood surfaces can be approximated. Typically, the process involves starting

at a particular point in genealogy space, evaluating the probabilities in the likelihood

function above, proposing an alteration to the genealogy such that a move in

genealogy space is suggested, and deciding whether to move to the suggested point

based on the ratio of the current probability to that of the proposed point. These

movements through genealogy space are typically referred to as chains. Coalescence

and importance sampling are extensively reviewed in both Stephens (2003) and

Felsenstein (2004) and thus will not be considered further.

Currently, the coalescent-based inference of demographic parameters is restricted to

only a few migration models and demographic scenarios. These scenarios include the

estimation of (i) gene flow in structured populations (Beerli & Felsenstein 1999,

2001), (ii) population growth/decline in both unstructured (Kuhner et al. 1998) and

structured populations (Kuhner et al. 2004), (iii) divergence time of two populations

that exchange/exchanged migrants (Nielsen & Wakeley 2001) and (iv) recombination

rates in structured/unstructured populations (Fearnhead and Donnelly 2001, Kuhner et

al. 2004). There is a potential to include more demographic scenarios in coalescent-
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based models, such as fluctuating population size in structured populations, and

indeed Knowles and Maddison (2002) and Knowles (2004) have noted that custom-

development of species-specific models for demographic inference will be the future

of phylogeographic analysis. Thus far I have only considered maximum likelihood

and Bayesian inference models that make full use of the sequence or allelic data

provided. However, there is a trend in the population genetics literature towards

maximum-likelihood or Bayesian inference conditional on summary statistics (Tavaré

et al. 1997, Weiss & von Haeseler 1998, Beaumont et al. 2002). These methods differ

from the inference process described above in that at each step in the chain, the

probability of the data given the parametersP(D | ) is replaced with the probability

of some summary statistic, k, given the parameters, i.e.P(k | ) . Given that the

summary statistic is a sufficient representation of the data, the evaluation of these

likelihoods is computationally faster than full-data methods. These methods may

allow the development of multi-parameter custom likelihood models for genetic data

analysis.

Dissertation outline

Chapter 1: Introduction and literature review

Chapter 2: Temporal and spatial distribution of African Wild Silk Moth, Gonometa

postica, eruptions in southern Africa

This chapter presents three years of presence/absence distribution data. The potential

cause of large-scale temporal changes in the distribution of eruptions is discussed and

recommendations are made with regard to future temporal data collection, and

climatic modeling.

Chapter 3: Characterisation of six microsatellite loci in the African Wild Silk Moth

(Gonometa postica, Lasiocampidae)

Species-specific microsatellite markers were developed for Gonometa postica using

an AFLP-based enrichment protocol (Zane et al. 2002). The six loci are reported

along with estimates of Hardy-Weinberg and linkage-disequilibrium. This chapter is

in press with Molecular Ecology Notes.
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Chapter 4: The effect of large annual population size fluctuations on spatial genetic

pattern in the continuously distributed African Wild Silk Moth (Gonometa postica)

The results of a single years analysis of microsatellite and mtDNA genetic data are

presented in this chapter. The results are peculiar in that a species that has low

dispersal ability and only lives for a few days appears to have little evidence for

isolation by distance in the data. Simulations are subsequently used in an effort to

understand the effects of population size fluctuations on spatial genetic pattern in a

continuously distributed species. The analysis in this chapter falls within the section

‘comparative simulation modeling’ as described above.

Chapter 5: Temporal and spatial genetic patterns in the African Wild Silk Moth

(Gonometa postica) and implications for cyclical population dynamics

The population genetic results from three years of successive sampling are presented

in this chapter. The analysis is focused on estimating the degree of population size

changes and detecting whether there may be weak signals of migration in the data.

Standard maximum-likelihood techniques are used, and the implications of the

assumptions of these techniques in analyzing the data are discussed.

Chapter 6: CoalFace: a graphical user interface program for the simulation of

coalescence

Coalescent analysis is at the forefront of current population genetics, and thus in the

preparation for a local workshop on phylogeographic analysis I developed a tool to

teach the applications of coalescent theory. This chapter describes the software and its

applicability in teaching population genetics and phylogeography.

Chapter 7: Conclusions

Appendix I: A population genetics pedigree perspective on the transmission of

Helicobacter pylori

During my PhD I collaborated on a project to determine the mode of transmission of

Helicobacter pylori using gene sequences and an extensive pedigree. The study

presented a unique opportunity to investigate transmission of this bacterium, due to

the abnormally high prevalence in a local South African community and the extensive
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sampling. I developed a simulation model, in collaboration with co-authors, which

contrasted different modes of transmission and their effect on observed genetic data.

This chapter is included as an Appendix here since although the species, and question

are different from my principal dissertation research, the method of using simulation

modeling for inference is common.

Appendix II: LatticeFlucII source code

The C source code for the simulation model used in chapter 4 is presented.

Appendix III: CoalFace source code

The kylix/Delphi source code for the CoalFace program presented in chapter 6 is

presented.

General Notes

Please note that all chapters (except 1 and 7) are written as manuscripts that have been

or will be submitted for publication. Since all chapters have supervisors or

collaborators as co-authors, I refer to the work being done by us, and not exclusively

by myself. However, the research presented in this dissertation is entirely my own

thought and execution, with useful discussions with my supervisors. The work

presented in Appendix I, however, was a combined effort between Michael

Cunningham, myself and other co-authors, and thus I have not included it in the main

part of the dissertation. However, I still have first authorship for developing the

simulation model and writing the manuscript. Since each chapter is in manuscript

format, each has a list of authors as will appear in published form. In addition, the

reference lists occur at the end of each chapter rather than at the end of the

dissertation. Due to this format, there may be instances of duplication across chapters.
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