Indirect interactions between elephants (*Loxodonta africana*) and mopane caterpillars (*Imbrasia belina*) through their shared food resource – mopane trees (*Colophospermum mopane*).

by

Helena De Nagy Köves Hrabar

Submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (Zoology)

in the Faculty of Natural and Agricultural Sciences

University of Pretoria

Pretoria

August 2005

Indirect interactions between elephants (*Loxodonta africana*) and mopane caterpillars (*Imbrasia belina*) through their shared food resource – mopane trees (*Colophospermum mopane*).

Helena De Nagy Köves Hrabar

Supervisor: Prof. J.T. du Toit

Director: Mammal Research Institute Department of Zoology and Entomology University of Pretoria

Submitted for the degree of Doctor of Philosophy (Zoology) in the Faculty of Natural and Agricultural Sciences

Summary

Mopane (*Colophospermum mopane*) trees are browsed upon by two key species, namely mopane caterpillars (*Imbrasia belina*) and African elephants (*Loxodonta africana*), which each inflict a different type of damage while feeding, namely defoliation (leaf removal) and pruning (branch and/or stem breakage). Damage type can have a significant influence on plant responses, and these induced changes in morphological and chemical characteristics of regrowth can influence the subsequent feeding behaviour by each species. The objective of this study was therefore partly to investigate the differential effect of defoliation by mopane caterpillars and pruning by elephants on mopane trees, and then to investigate whether these two taxonomically different species interact through

their shared food resource, by looking specifically at the effect of elephant utilisation of mopane on mopane caterpillar abundance.

To determine the comparative effect of each browsing type, mopane trees were subjected to simulated mopane caterpillar or elephant utilisation treatments, at various frequencies and times within the year. Regrowth characteristics were then measured on treatment and control trees, as well as on naturally utilised and unutilised trees. Reproductive investment was also recorded on naturally utilised and unutilised trees. Additionally, the impact of mopane caterpillar defoliation and elephant pruning on plant stress was investigated by measuring the level of fluctuating asymmetry (FA) in leaves. Then, to determine whether there is an interaction between elephants and mopane caterpillars, mopane caterpillar egg mass abundance in areas of high elephant impact was compared to that in areas of low elephant impact. Firstly, however, in areas without elephant damage, those tree characteristics determining host tree preference by ovipositing mopane moths were identified. From this, an understanding of how elephant utilisation may influence mopane caterpillar abundance could therefore be gained.

Defoliation and pruning had a significant different effect on mopane regrowth responses. Shoot and leaf length were significantly longer on pruned trees than control trees, for both naturally utilised and simulated elephant treatment trees, while there was no difference in shoot density. Defoliation, however, resulted in shorter shoots and leaves, particularly on naturally defoliated trees, which also had leaves of a higher nutritional value (tannin:protein ratio and total polyphenolic content) than control trees. A similar increase in leaf nutritional value was recorded in areas of high elephant impact in the Kruger National Park, but not after simulated or natural elephant damage in Venetia, where natural elephant utilization was less intense. Time since damage (i.e. first versus second flush) had a significant influence on regrowth after pruning, as shoot and leaf

iii

length were significantly longer on trees flushing for the first time, while within-season timing of damage was important for defoliation, as late-season defoliation had a greater negative impact than mid-season defoliation. Late-season defoliation also had a negative effect on leaf carriage into the dry season, while pruning appeared to aid leaf retention.

Reproductive investment was found to be unaffected by mopane caterpillar defoliation or elephant pruning, as mean pod density and pod mass on utilised trees was no different to unutilised trees. Defoliation also had no influence on a plant's likelihood of flowering that same season, with flowering being determined more by tree height. Unlike pod production, however, mean leaf density was significantly reduced in the regrowth of defoliated trees, presumably due to the use of stored resources for reproduction prior to the onset of regrowth.

Neither simulated nor natural defoliation by mopane caterpillars and pruning by elephants was found to affect the level of leaf FA in mopane trees, even though the degree of damage inflicted on trees was considerably higher than in studies on other species where increases in FA were observed. Mopane therefore appears to be extremely tolerant of herbivory in comparison to other species. A positive relationship between leaf nutritional value (higher protein and lower tannin and polyphenolic content) and FA was detected, but only when trees from all study areas (i.e. a wide range of environmental conditions) were considered simultaneously. Environmental conditions, rather than herbivory, therefore appear to have a greater stressing affect on mopane.

In the absence of heavy elephant utilisation of mopane trees, tree size, rather than shoot length, leaf length, leaf FA or leaf nutritional value, was found to have the greatest influence on oviposition behaviour of mopane moths. Ovipositing moths showed a preference for the tall riverine habitat over the shorter woodland and scrub mopane. This preference for large trees was, however, not evident at the individual tree level, as even

iv

though egg mass number per tree was positively related to tree height, large trees were not utilised more than expected according to the available canopy volume in each size class (resource availability).

Heavy elephant utilisation of mopane had a negative impact on the density of tall trees within an area, due to branch and stem breakage while feeding. Unsurprisingly then, mopane caterpillar egg mass abundance was also significantly reduced in these areas, even though the nutritional value of leaves was higher than in non-elephant impacted areas. Elephants therefore appear to have a negative effect on mopane caterpillar abundance, primarily due to their negative impact on the density of tall mopane trees. This megaherbivore and invertebrate do therefore interact through their shared food resource, mopane trees.

ACKNOWLEDGEMENTS

Most of all, I'd like to thank my parents for providing me with the opportunity to do this Ph.D., through their extended yet generous financial support, and their enthusiasm and genuine interest throughout. I realise how fortunate and truly spoilt I am.

Thank you to Johan du Toit, for coming up with the idea of this project, for approaching me to carry it out, and for his continual guidance and excellent help throughout. What I have learnt about being a scientist while under his supervision will be with me always.

I also thank Tim O'Connor for sharing his knowledge on mopane trees with me and for his help in teaching me data collection techniques prior to the start of my fieldwork. Additionally, I appreciate the time taken to look over part of this write up, as the comments were of much help.

Without funding and the study sites, this project would not have possible. I thank the National Research Foundation for providing the necessary finances. Thank you to De Beers Consolidation Mines Ltd. for allowing me to work in the Venetia-Limpopo Nature Reserve, and for the generous provision of free accommodation and the freedom to carry out the necessary work. It was a wonderful environment to work in and I thoroughly enjoyed myself. All the staff were extremely helpful and friendly, and a special thanks to Warwick Mostert for his help in providing me with all the necessary resources and information I needed. Thank you too to Kruger National Park for providing the second study site, and to the Shingwedzi research camp staff for all their help.

Many long hours of measuring trees in the heat were considerably reduced and made a lot more fun due to the voluntary help from my enthusiastic field assistants. Thank you to my mom, dad, Eileen Covarr, Matthew Covarr, Sally Hofmeyer and Tandy Ellery.

vi

My thanks also to Luanne Otter for all her work on the VOCs, in the field and in the lab, and to Dawood Hattas for doing the tannin and total polyphenol analyses.

Thanks to Harriet Davies for her constant willingness to help in problem solving during various aspects of the field work, and generally for listening to all my brainstorming sessions while in Venetia. Having someone to discuss the work with during those months was invaluable. Additionally, thanks to both Harriet and Warwick for their wonderful friendship, company and brilliant meals while in the field!

I will always have many warm memories from my time at the Mammal Research Institute. Thank you to everyone there whom I met over the years for making it such a wonderful place to work, and for the many great morning tea sessions. Thanks to Almarie Cronye and Elizabe Els for their secretarial assistance, and to Martin Haupt for his incredible willingness to help with just about anything. Also, thanks to my friend Dario Fornara for all his input during our discussions on plant-herbivore interactions.

Lastly, I thank Matthew Covarr for his love and endless patience and support during this period. The many long-distance phone calls and bunches of flowers are appreciated more than I can explain.

CONTENTS

Summary	ii
Acknowledgements	.vi
Contents	iii
List of Tables	xii
List of Figures	civ
CHAPTER 1: General introduction	. 1
CHAPTER 2: Study sites and species	14
2.1 Study sites	14
2.1.1 Venetia-Limpopo Nature Reserve	14
2.1.2 Kruger National Park	18
2.2 Mopane trees	.21
2.2.1 Distribution and ecology	21
2.2.2 Phenology	23
2.2.3 Uses	24
2.3 Mopane moths and caterpillars 2	25
2.4 African elephants in mopane woodland	29
2.5 References	30
CHAPTER 3: Differential effects of defoliation by mopane caterpillars and	
pruning by african elephants on the regrowth of Colophospermum mopane	

3.2 Methods	41
3.2.1 Treatment transects	
3.2.2 Natural mopane caterpillar and elephant browsing	44
3.2.3 Measuring regrowth	
3.2.4 Statistical analysis	46
3.3 Results	
3.3.1 Simulated treatments	
3.3.2 Naturally browsed trees	
3.4 Discussion	53
3.5 References	59
CHAPTER 4: Effects of pruning by elephants and defoliation by mopane	
caterpillars on reproduction in <i>Colophospermum mopane</i>	67
caterpillars on reproduction in <i>Colophospermum mopane</i>	
caterpillars on reproduction in <i>Colophospermum mopane</i> . 4.1 Introduction. 4.2 Methods	
caterpillars on reproduction in <i>Colophospermum mopane</i> . 4.1 Introduction. 4.2 Methods 4.1 Field work	
caterpillars on reproduction in <i>Colophospermum mopane</i> . 4.1 Introduction. 4.2 Methods 4.2.1 Field work 4.2.2 Statistical analyses	
caterpillars on reproduction in <i>Colophospermum mopane</i> . 4.1 Introduction. 4.2 Methods 4.2.1 Field work 4.2.2 Statistical analyses 4.3 Results	
caterpillars on reproduction in <i>Colophospermum mopane</i> . 4.1 Introduction. 4.2 Methods 4.2.1 Field work 4.2.2 Statistical analyses 4.3 Results 4.4 Discussion	
caterpillars on reproduction in <i>Colophospermum mopane</i> . 4.1 Introduction. 4.2 Methods 4.2.1 Field work 4.2.2 Statistical analyses 4.3 Results 4.4 Discussion 4.5 References	
caterpillars on reproduction in <i>Colophospermum mopane</i> . 4.1 Introduction. 4.2 Methods 4.2.1 Field work 4.2.2 Statistical analyses 4.3 Results 4.4 Discussion 4.5 References CHAPTER 5: Intraspecific host preferences of mopane moths (<i>Imbrasia</i>)	
caterpillars on reproduction in <i>Colophospermum mopane</i> . 4.1 Introduction. 4.2 Methods 4.2.1 Field work 4.2.2 Statistical analyses 4.3 Results 4.4 Discussion 4.5 References CHAPTER 5: Intraspecific host preferences of mopane moths (<i>Imbrasia belina</i>) in mopane (<i>Colophospermum mopane</i>) woodland	

5.2.2 Habitat description	
5.2.3 Host preference – habitat level	
5.2.4 Host preference – tree level	
5.2.5 Statistical analyses	
5.3 Results	
5.3.1 Habitat description	93
5.3.2 Host preference – habitat level	
5.3.3 Host selection – tree level	
5.3.4 Host preference – canopy volume	
5.4 Discussion	
5.5 References	
CHAPTER 6: Elephants and mopane caterpillars : interactions through a	
shared resource	
shared resource 6.1 Introduction	
shared resource 6.1 Introduction 6.2 Methods	
 shared resource	
 shared resource	
 shared resource	
shared resource 6.1 Introduction 6.2 Methods 6.2.1 Area description 6.2.2 Utilisation by elephants 6.2.3 Oviposition by mopane moths 6.2.4 Statistical analyses	
 shared resource	
 shared resource . 6.1 Introduction . 6.2 Methods . 6.2.1 Area description . 6.2.2 Utilisation by elephants . 6.2.3 Oviposition by mopane moths . 6.2.4 Statistical analyses . 6.3 Results . 6.4 Discussion . 	
 shared resource 6.1 Introduction 6.2 Methods 6.2.1 Area description 6.2.2 Utilisation by elephants 6.2.3 Oviposition by mopane moths 6.2.4 Statistical analyses 6.3 Results 6.4 Discussion 6.5 References 	
 shared resource . 6.1 Introduction . 6.2 Methods . 6.2.1 Area description . 6.2.2 Utilisation by elephants . 6.2.3 Oviposition by mopane moths . 6.2.4 Statistical analyses . 6.3 Results . 6.4 Discussion . 6.5 References . 	

7.1 Introduction	
7.2 Methods	
7.2.1 Response to browsing	
7.2.2 Host selection	145
7.2.3 Statistical procedure	145
7.3 Results	147
7.4 Discussion	153
7.5 References	157
CHAPTER 8: General discussion	
APPENDIX A	168
APPENDIX B : Shoot growth	
B.1 The effect of browsing treatment on shoot growth rate of mopane	
B.2 Shoot growth rate over time	171
APPENDIX C	
APPENDIX D	175
APPENDIX E : Volatile organic carbon emissions from mopane trees	176
E.1 Brief introduction and methods	176
E.2 Results	
E.3 References	

LIST OF TABLES

Table 4.1	Pod and leaf production in mopane trees previously defoliated by mopane
	caterpillars or pruned by elephants, compared to unutilised trees (mean
	± SE values)74
Table 5.1	The mean \pm SE values of variables describing the three mopane habitat
	types found in the Venetia-Limpopo Nature Reserve, namely: riverine,
	woodland and scrub mopane94
Table 5.2	Results from ANOVAS and Tukey tests for variables describing differences
	between riverine, woodland and scrub mopane habitat types96
Table 5.3	Results from Wilcoxon matched-pairs tests, comparing characteristics of
	host and non-host mopane trees in woodland and riverine habitats
Table 5.4	The preference for different size mopane tree canopies by ovipositing
	mopane moths, firstly based on the number of trees within a canopy volume
	class and secondly, on the total canopy volume within a class 101
Table 6.1	The mean \pm SE values for variables describing areas of mopane woodland
	with high and low elephant impact, and the presence of mopane moth egg
	masses within these areas. The relationship between areas is also shown for
	each variable (Wilcoxon matched-pairs tests)122
Table 6.2	The selection of different size mopane trees by ovipositing mopane moth
	females, based on the number of trees within each size class and using
	canopy volume and tree height as two measures of tree size126
Table 7.1	Foliar FA in mopane (means \pm SE) regrowth after various browsing
	treatments ¹ and for trees with and without mopane moth egg masses ² .
	Estimates are from measures of leaf length, as mean values of the signed difference
	between right and left sides of a leaf (R-L), and as absolute values

xii

	of the difference between left and right sides (absolute leaf FA)149
Table 7.2	The mean coefficient of variation (CV) in values of leaf FA within individual trees
	after natural and simulated herbivory150
Table B.1	Mean (\pm SE) shoot length values measured three times during the growing
	season on mopane trees previously subjected to various elephant pruning
	and mopane caterpillar defoliation treatments. Letters indicate significant
	differences between treatments at each time of measurement170
Table C.1	The mineral content and water pH of soil samples collected at each
	experimental 'tree group' along three different transects (for Chapter 3)173
Table C.2	The mineral content and water pH of soil samples collected along transects
	in the three different mopane vegetation types

LIST OF FIGURES

Figure 2.1	Maps showing the location of the two study sites used in this study, namely
	the Venetia-Limpopo Nature Reserve and Kruger National Park15
Figure 2.2	Annual seasonal rainfall (July- June) for Venetia from July 1995 to June
	2005 (year indicates start of season)
Figure 2.3	Monthly rainfall in Venetia over the two year period during which the
	study took place. Arrows indicate when oviposition by mopane moths
	takes place (dashed arrow represents very few moths)17
Figure 2.4	Annual seasonal rainfall (July- June) for Shingwedzi in the Kruger National Park
	from July 1982 to June 2003 (year indicates start of season)19
Figure 2.5	Distribution of Colophospermum mopane in Southern Africa (from
	Mapaure 1994)
Figure 2.6	(a) An egg mass and newly hatched mopane caterpillars on a mopane leaf,
	and (b) a fully grown mopane caterpillar27
Figure 3.1	A comparison of the effects of various elephant pruning and caterpillar defoliation
	treatments on (a) mean (\pm SE) shoot length and (b) leaf size of mopane regrowth.
	Treatments included: simulated elephant pruning in
	August 2002 (E'02) and August 2003 (E'03), controls (Con), and
	simulated caterpillar defoliation in November 2002 (CN'02), February
	2003 (CF'03), November 2002 and February 2003 (CN&F), and
	November 2003 (CN'03)
Figure 3.2	Seasonal leaf carriage of mopane trees after simulated caterpillar and
	elephant utilization treatments (refer to in Fig. 3.1 for treatment code
	details and the text for score details). $DL = dead leaves$, $YL = yellow$

	leaves, ML = mature leaves, IL = immature leaves, LB = leaf buds50
Figure 3.3	The effect of natural elephant pruning and mopane caterpillar defoliation
	on the regrowth of mopane trees (mean ± SE values)
Figure 4.1	The number of leaves versus pods per 50 cm length of branch on (a) non-
	defoliated, (b) mopane caterpillar defoliated, (c) non-pruned and
	(d) elephant pruned mopane trees. Data from all branches are shown here
	(5 branches were sampled per tree)
Figure 5.1	The percentage of host trees per transect versus the mean tree height of the
	corresponding transect
Figure 5.2	The relationship between the number of egg masses per tree (score 0-3) and
	tree height. Heights are grouped into the following classes: $1 = 0 - 1.5$ m,
	2 = 1.6 - 3 m, 3 = 3.1 - 4.5 m, 4 = 4.6 - 6 m, 5 = 6.1 - 7.5 m, 7 = > 7.5 m100
Figure 5.3	The mean (\pm SE) height of trees for each egg abundance score in mopane
	(a) riverine and (b) woodland habitats100
Figure 6.1	A graphic representation of how tree height and canopy volume classes
	(a-d) were calculated
Figure 6.2	The density of mopane moth egg masses in areas of mopane woodland
	with high and low elephant impact (Wilcoxon matched-pairs test,
	<i>P</i> < 0.05)
Figure 6.3	The relationship between the number of mopane moth egg masses/ha and mopane
	tree canopy volume/ha in mopane woodland ($F_{1,12} = 14.5$,
	$P < 0.01, R^2_{adj} = 0.510$)
Figure 6.4	Mopane woodland heavily impacted by elephants, resulting in a double-
	tiered woodland structure consisting of tall, intact trees and coppicing
	damaged trees (the photo was taken in Chobe National Park, Botswana)130

Figure 7.1	A diagram of a mopane leaf, showing the measurements taken to
	determine fluctuating asymmetry. Asymmetry (FA) in: length = (A-B)
	and width = (a-b). Absolute asymmetry_FA_in: length = _A-B_and
	width = _a-b144

- Figure 7.2 The relationship between mean fluctuating asymmetry in leaf length (_log R log L_) and foliar (a) protein, (b) total polyphenolic and (c) tannin content in mopane trees, for all study trees combined......152
- Figure A.1 The relationship between mopane leaf length and width (N = 2834).....168

- Figure E.2 The emission rate of _-pinene (mean ± SE) from mopane leaves just prior to simulated caterpillar damage and 3 and 15 minutes after damage......180