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Abstract

This thesis studies the interaction with music synthesis systems using hand gestures.

Traditionally users of such systems were limited to input devices such as buttons, pedals,

faders, and joysticks. The use of gestures allows the user to interact with the system in a

more intuitive way. Without the constraint of input devices, the user can simultaneously

control more elements within the music composition, thus increasing the level of the

system’s responsiveness to the musician’s creative thoughts. A working system of this

concept is implemented, employing computer vision and machine intelligence techniques

to recognise the user’s gestures.
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Chapter 1

Introduction

This work studies the viability of using hand gestures as a way to interact with a

music arrangement system. Music arrangement (also known as mixing) is part of the

professional music production practice. Music, being an abstract form of art with a long

history, is being realised today increasingly with electronic means. Recent advances in

electronic music making include the building of powerful computers with tremendous

signal processing power, as well as customised input devices, for greater freedom of

expression and precision.

Motivation and Contribution

The study of interacting with music arrangement systems through gestures is motivated

by the fact that a large amount of work is devoted to specialised hardware control

devices, leaving the field of device-free interaction relatively unexplored. Another mo-

tivation for the study is that in classical music, an orchestra conductor communicates

musical expressions to members of the orchestra using body movements—it remains to

be investigated whether this form of communication is relevant in modern electronic

music.

This work sets out to build a gesture-based music arrangement system, and seeks to

find out whether gesture interaction in music will allow a greater degree of expression

and productivity. The primary contribution of this work includes the following:

• A device-free, vision-based gesture input mechanism is described and implemented.

The user interacts with the computer using hand gestures, which include static

and dynamic gestures. The construction of the recognition system draws from

computer vision and computational intelligence techniques.

1

 
 
 



CHAPTER 1. INTRODUCTION 2

• The input mechanism is integrated with a music arrangement application, which

serves to validate the performance (accuracy and CPU utilisation) of the input

mechanism. The resulting application is a demonstration program, called Virtuoso,

and is tested on today’s computer systems without specialised hardware.

• The above mentioned integration will no doubt require a substantial amount of

programming, and this program code needs to be organised. The organisation of

gesture interaction related code is studied in detail. This situation is analogous

to the mouse and GUI bringing about software frameworks based on forms and

controls, which capture recurring issues in interface programming. A software

framework is presented which connects all software components in a structured

manner. Future interaction programming projects may draw on the experiential

knowledge encapsulated in Virtuoso’s software framework.

• Whenever possible, the demonstration program features simultaneous, realtime

hardware-accelerated displays. The viewports facilitate debugging, verification of

results, and comparison of different image processing algorithms. It is hoped that

Virtuoso, being a highly visual program, will help promote awareness of gesture

recognition systems, through showcasing the program to a wide audience.

• Usability issues related to gesture recognition applications are discussed. These

issues include building a system that can be calibrated without a third-party user,

using gestures alone; as well as camera placement and body configurations.

Dissertation Layout

The content of this dissertation is organised as follows:

• Chapter 2 introduces the concept of device-free human computer interaction,

presents a literacy study on vision-based hand gesture recognition systems, and

previous work done on nouveau input devices for music making.

• Chapter 3 presents the theoretical aspects of the components involved in a hand

gesture recognition system. These components include the chroma keyer, the

vector keyer, the background subtraction algorithm, the Fourier descriptor, the

feed-forward neural network, and dynamic gesture path recognition. Then the

chapter describes the practice of music arrangement, the target application area

of gesture recognition.

• Chapter 4 presents Virtuoso, a gesture-based music mixing demonstration program.

The chapter provides implementation details and source code listings of the gesture

 
 
 



CHAPTER 1. INTRODUCTION 3

recognition and music mixing components in Virtuoso. This chapter tackles the

development of Virtuoso as a software engineering problem, and presents a software

framework for structured programming, and discusses recurring aspects of gesture

interaction programming.

• Chapter 5 presents experimental results on the various gesture recognition compo-

nents of Virtuoso, as well as an evaluation of the user interface of the music mixing

system.

• Chapter 6 concludes this dissertation and discusses ideas for future work.

 
 
 



Chapter 2

Background

This chapter covers some background material related to the construction of a computer

user interface used for electronic music creation. Section 2.1 motivates the use of a

device-free interface, supported by computer vision techniques. Section 2.2 presents a

general hand gesture recognition framework, where previous work done on modelling

the hand, recognising hand poses from captured images, and the interpretation of these

gestures in a computer user interface are discussed. Finally, section 2.3 lists a few novel

music interaction approaches using custom-built devices.

2.1 Device-Free Interaction and Computer Vision

One of the ultimate goals of system design is to establish an inexpensive mechanism to

communicate with the computer in a natural way without having to be in contact with

some input device. Using body gestures and speech are examples of natural interaction.

Some background literature on device-free interaction and computer vision is discussed

here, since it is the main objective of this thesis to develop a user interface using these

approaches.

2.1.1 Device Free Interaction

Device-free interaction refers to means of communicating with the computer without

having to wear or hold any special instruments, such as a keyboard, a mouse, or wearable

sensors [88]. Ideally, for interaction methods using computer vision approaches, the user

should not have to wear any restrictive or specially marked clothing.

The study of interaction between humans and machines has attracted the principal in-

terest of researchers in the past several years [39]. This coincides with the burst of

4
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activity surrounding the applications situated in the abstractions of our natural sur-

roundings, referred to as virtual environments [26]. With the tremendous growth in

computing power, it is possible to generate immersive graphics in real time with spatial

sound. Consequently, the user is no longer working with a system with input devices

placed on a desk. Instead, the user is usually standing while carrying input devices in

his hand and having cables connected to himself. Ironically, this hinders the ease and

naturalness with which the user can interact within the virtual environment.

Recent studies have shown that it is very natural to point at a virtual space coordinate

using the index finger and to explore virtual objects using one’s hands [79]. Furthermore,

for a team of people working in the same virtual environment, it is also easier for them

to understand each other’s actions if they can see each other manipulating objects in the

virtual environment. The ideas of virtual collaborative environments in which researchers

jointly design and test prototypes of new products are becoming a reality [80].

The more direct use of natural means of interaction like speech, hand gestures, or gaze,

has proven to play an essential role in immersive computing environments [59].

A device-free interaction mechanism, such as using hand signals and speech, has the

following advantages:

• It allows the user to interact with a computer system without the burden of being

physically in contact with some input device or without being connected to the

system with cables. This provides greater comfort, an extended usage time and

more freedom of movement.

• In a public environment, device-free interaction avoids the problems of unhygienic

equipment, vandalism and accidental damage.

• Imagine the number of possibilities when a group of users are using the same

system and interacting with each other at the same time. Device-free interaction

solves the problem of having to give each user a device (possibly expensive) to

hold or to wear. In a computer-aided education scenario, teachers and all pupils

can interact in the learning environment and participate in group activities. New

trends in human-computer interaction and virtual reality will promote use of group

interaction interfaces.

• Holding an input device in the hand or wearing it affects the user’s appearance.

This has an impact on telepresence applications [25], where a person appears to

be present at a remote location, through the use of live video transmission.

For device-free interaction in musical applications, a motion-based or visual approach

(such as hand signals) is preferred to an auditory approach (such as speech) — since
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musical applications already provide significant auditory feedback, speech will further

burden the user’s sense of hearing, and it would be difficult to capture the user’s speech

because the speech sound signal is mixed with the feedback audio signal.

A device-based approach usually concentrates on a specific part of the user’s body, such

as the hand or the head; while a device-free technique can usually scale up in size, for

example, by using a camera with a greater field of vision, and can be applied to the user’s

entire body. Capturing movement of the entire body is necessary for certain forms or

musical expression, such as dancing and orchestra conducting.

2.1.2 Computer Vision

To achieve device-free interaction, there must be a way for the computer to remotely

sense the physical state of the user. In computer vision, the system senses the environ-

ment by means of a constant stream of images coming from a video camera.

A visual approach also corresponds well with certain forms of musical expression, such

as dancing and orchestra conducting, in which movement of the entire body is involved.

Computer vision is not the only way a system can sense its environment without making

any physical connections, but recent studies in computer vision has been motivated by

the popularity of inexpensive desktop cameras. These cameras are commonly known

as Webcams and are equipped with CCD (charge coupled device) or CMOS (comple-

mentary metal oxide semiconductor) sensors. These cameras are traditionally used for

video-conferencing purposes, and are usually capable of capturing 320× 240 pixels per

image and a frame rate of 30 frames per second.

There are several other ways to sense the movement of a user remotely. Here are some

examples:

Acoustic sensing combines the use of a sound source and microphones to locate an

input device in space. The time delay between when the sound signal occurs and

when its sound arrives at a microphone is proportional to the distance from the

sound source to the microphone. Early devices include the sonic tablet (2D) and

the sonic pen (3D) [54]. Sound bursts are created by an electrical spark at the tip

of the stylus at 20 to 40 Hz. This serves as a consistent and omnidirectional sound

source. Three orthogonal unidirectional microphones are placed at the periphery

of the working environment, or alternatively four omnidirectional microphones

can be used. The position of the sound source can be calculated by finding the

intersection of the three intersecting cylinders or the four spheres. The radii of the

cylinders and spheres can be determined by the time the sound takes to arrive at
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each microphone. The disadvantage of these systems is that they typically only

work in relatively small volumes—less than 1 cubic meter.

Optical sensing uses LEDs mounted on the user combined with sensors mounted high

in the corners of a small and dimly lighted room. These sensors together deter-

mine the position of luminous points in 3D space. To track multiple points, several

LEDs which are intensified in turn can be used. To improve tracking performance

and ease of use, the installation of redundant sensors can avoid the problem of

occlusion, and small reflectors can replace LEDs at places like the fingertips. The

disadvantage of this technique is that the environment does not allow other lumi-

nous objects or displays, but it generally allows a greater freedom of movement

compared to acoustic sensing techniques [59].

Electromagnetic sensing employs transmitting and receiving antennas to determine

three-dimensional position and orientation. These antennas consist of orthogonal

components. Unlike acoustic and optical sensing, the device being held by the

user is usually the receiver and not the transmitter. A signal from the transmitter

induces a current in the receiving antennas, which are directional. The strength of

the current depends both on the distance between the receiver and transmitter and

on the relative orientation of the transmitter and receiver coils. The combination

of 9 current values induced by three successive pulses are used to calculate the 3D

position and orientation of the receiver.

Special care is taken to minimise the number of metallic objects in the operating

environment as they are able to absorb vast amounts of energy and affect the

tracker adversely. One advantage of electromagnetic sensing is that the receiver

is quite small, and can be mounted on most devices used in virtual reality appli-

cations. This technique is in widespread use today. An example is the Polhemus

3Space tracker, which has been used to digitise 3D objects, as well as being used

as a 3D pointing device [54].

Electric fields technology, unlike the previously mentioned sensing techniques, pro-

vides a truly device-free sensing mechanism [54].

It is known that the human body can conduct or absorb (ground) low-power radio

frequency radiation, which is relatively harmless. By constructing sets of trans-

mitting and receiving electrodes and placing the user in the path of the electrodes,

the state of the user can be determined by measuring the signal strengths on the

receivers. The user either acts as a medium to conduct the radio energy, or to

absorb the radio energy, depending on the electrode configuration.
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A feature of this technology is the way in which sensing scales up from a single elec-

trode (for sensing distance and contact) to multiple electrodes (object tracking),

and to an array of electrodes (for complete electrostatic three-dimensional imag-

ing). A sensing modality that allows one to collect as much or as little information

as needed in a particular application is appealing and uncommon.

Electric field sensing is inexpensive, and their implementations are more likely to

be non-obstructive, since the electrodes can be made transparent or hidden inside

devices or furniture. Researchers of electric field sensing observed that users in

general accepted the interface with ease, which means that users tend to forget

about the presence of any intervening technology and focuses on the application

[36]. Common objects can be modified to contain electric field sensors. This allows

user actions on and around familiar objects to be sensed responsively and reliably,

therefore activating the space around the objects without introducing any apparent

intrusive technology.

Electric field sensing also has remarkable space-time accuracy. Paradiso and Ger-

shenfeld [36] explores its use in musical applications. Because electric field sensing

is non-obstructive and accurate, it is ideal for capturing and analyzing the char-

acteristics and small nuances of a virtuous performance, without having to attach

extra sensing devices to the musician (Yo-Yo Ma in the case of [36]) or the instru-

ment being played.

Other remote sensing technologies include scattering mechanisms such as infrared and

ultrasound reflection [45]. To date, these sensing techniques still suffer from problems

such as background noise (sunlight for infrared and mechanical noise for ultrasound),

and having dependence over object surface texture and orientations, which adds to its

complexity [45].

The above mentioned remote sensing techniques are sometimes preferred to computer

vision techniques, motivated as follows:

• Given that the limiting performance of humans is in the order of a millimeter in

displacement and milliseconds in time, there is a tremendous difference between

what people can do and what cameras can reasonably be expected to recognise.

• Computer vision approaches are limited to video frame rates. Video cameras that

are commonly available are made for film making, surveillance, or for conducting

video conferences. Common camera frame rates are usually too slow compared to

optimal interactive refresh rates.
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• Image data captured from video cameras are not as readily usable as those cap-

tured from other remote sensing devices. Image processing requires enormous

input bandwidth and computation power. Bandwidth requirements by lowering

the frame rate, but this would decrease the responsiveness and accuracy of the

interaction.

• The scene to which the computer is exposed has to be restricted, so that deriving

meaning from the image remains a manageable problem. Some restrictions to

the scene include having a uniform background in the working environment, or

illuminating the room uniformly to provide sufficient brightness and contrast.

Despite these disadvantages, the power of desktop webcams are still to be exploited,

as they are growing in popularity. Computer vision will undoubtedly become a com-

mon way of device-free interaction, next to speech recognition, in various computing

applications.

2.1.3 Computer Stereo Vision

Computer Stereo Vision is not to be confused with human stereo vision [27]. In hu-

man stereo vision, the problem is usually about creating two images of an object or a

scene, each from a slightly offset viewpoint, and presenting each eye with an appropriate

synthetic stereo image, to tricking the brain into thinking it sees a three-dimensional im-

age. Computer stereo vision refers to the problem of understanding depth from images

captured from video cameras.

A single picture taken by a camera does not capture depth information—the picture is

flat or two-dimensional. This means that it is difficult to determine the distance from

one object in a picture to another. It is also difficult to determine the distance that an

object in a picture is from the camera simply by looking at the picture. This inherent

property of images taken by a normal camera presents a problem when it is necessary

to derive three-dimensional information from a two-dimensional picture.

Single Camera Solutions

Methods have been developed to estimate depth from a single image [27]. These methods

accomplish depth detection by means of analyzing shaded regions, or by searching for

hints within the image that reveal the necessary depth information.

If the situation allows, three-dimensional perception can be achieved by illuminating the

scene using several different lighting conditions and deriving depth information from
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these images, or analyzing distortions in stripes of light (usually laser) cast over the

scene. These techniques are collectively called active vision using structured lights [52]

[46].

In general, depth detecting methods require additional processing to be done to analyze

the scene being studied and to extract the depth hints, adding to already high image

processing costs. This may tend to be a problem in real time applications that require

a high frame rate. In addition, single camera techniques do not fully capture three-

dimensionality. The process of converting 2D to 3D can have subjective interpretations,

and information in a 2D image can be ambiguous and lead to multiple 3D solutions [52].

Multiple Camera Solutions

A more common solution to the problem is to use a stereo camera, or two cameras which

are configured in a fixed orientation relative to each other [27]. The two cameras share

a common (overlapping) field of vision of a significant size, while providing two slightly

different views of the same scene. Depth reconstruction is done by matching points

in these different views of a scene. Other approaches use multiple views of a scene to

construct a depth map, and the 3D position of an object can be calculated.

Stereo cameras and multiple camera methods have several problems and complexities,

including the following:

• More bandwidth and memory are needed for the additional cameras;

• The pictures from the different cameras need to be synchronised in time;

• Multiple camera solutions often require tedious setup work. For example, it is

complex to link several cameras to a single computer or to set up a network of

computers and cameras.

• Multiple camera techniques are expensive. There is additional cost for additional

cameras and video equipment. Stereo cameras also tend to be expensive;

• There is not much use for multiple camera arrays other than three-dimensional

determination;

• Processing costs will be higher for the additional processing and bandwidth of the

second video stream, and

• Special software may be required.

Therefore, multiple camera solutions tend to be used only in applications where their

complexity can be justified, and real-time interaction applications are rarely heard of.
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Catadioptrics

Catadioptrics is a branch in optics which studies the combination of mirrors and lenses,

or more scientifically a combination of reflecting and refracting surfaces (dioptrics is the

science of refracting surfaces and catoptics is the science of mirrors) [52]. A catadioptric

sensor therefore consists of video cameras, lenses and mirrors.

One of the main uses of catadioptrics is to increase a camera’s field of view by using

curved mirrors. While panoramic cameras are conventionally used to yield a large field

of view, multiple panoramic cameras may be used for 3D computation as well [51].

One example is found in [27] where accurate 3D determination is achieved using planar

mirrors and a single video camera.

Catadioptrics offers an alternative solution to the 3D reconstruction problem. It is a

means of using just a single video camera and some mirror(s) to obtain stereo images.

Using catadioptrics in this way is referred to as catadioptric stereo [50].

Several researchers have implemented working catadioptric stereo systems, for instance

[50] presents a real-time catadioptric stereo sensor as an alternative to conventional

stereo. Figure 2.1 illustrates the setup used in [50] for their camera-mirror sensor.

Much of the theoretical work on catadioptric sensors and stereo has already been done,

including issues pertaining to catadioptric image formation such as the shape of mirrors,

the resolution of cameras and focus settings of the cameras. In addition the complete

class of mirrors that can be used with a single camera have been derived [48]. The

geometry and calibration of catadioptric stereo using planar mirrors have also been

researched and a class of novel stereo sensors (catadioptric stereo) designed that avoid

the need for synchronisation, rectification and normalisation [48].

Catadioptric stereo has several advantages over conventional stereo:

• The camera parameters, such as gain, lens distortion, focal length and pixel size

are identical because only a single camera is used. This is also beneficial to the

stereo matching algorithm.

• A direct consequence of using only a single camera is that only a single set of cal-

ibration parameters are necessary. Therefore calibration is easier. Moreover these

parameters are constrained by planar motion and therefore only ten parameters

are needed instead of the sixteen that are required for traditional stereo cameras

[27].

• Synchronous data acquisition is not an issue. For conventional two-camera stereo,

the cameras need to be synchronised (not needed for a single camera).
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Figure 2.1: Catadioptrics: Camera and Two Mirrors [48]

Left image: a camera and two mirrors. Right image: Geometry of catadioptric stereo

using one mirror. The overlapped region is being viewed by the real camera and the

virtual camera simultaneously, providing two viewpoints of the same scene and facili-

tates stereo depth estimation. (Images copyright Joshua Gluckman and James Lane,

permission granted.)

An example of catadioptric stereo is seen in [49], in which the problem of determining

the pose of a hand in a sequence of stereo images is addressed. A scene is reconstructed

in 3D from images obtained by a stereo camera using a stereo correlation algorithm. A

model of a hand is then fitted to the 3D reconstruction from which the pose of the palm

and fingers are determined. This implementation involved the use of catadioptric stereo

in the form of one camera with mirrors.

2.2 Hand Gesture Recognition Framework

It was mentioned in section 2.1 that device-free interaction using computer vision tech-

niques provides an attractive alternative to cumbersome interface devices. This is used

as a foundation on which a computer user interface for musical applications is built. In

particular, this interface should interpret a user’s hand gestures. This section focuses on

previous work done on recognising static (pose) and dynamic (movement) hand gestures.

Traditionally, glove-based [81] [82] techniques are used to sense the static and dynamic

configuration of the human hand. However, this forces the user to carry a bundle

of cables that connect the glove to the computer. To overcome these limitations, a

vision-based approach was proposed in [59]. The most significant advantage of the

computer vision approach is that it is non-obstructive. Nevertheless, it is complex in

implementation.

Research on hand gesture recognition can be grouped into two main classes: The first

one is the formulation of the general problem of using vision-based hand gestures for
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Figure 2.2: A General Gestured-Based Interaction System

recognition. Next is the construction of a mathematical model of the hand, which

encapsulates enough detail for the analysis of hand gestures. These classes are discussed

in the following sections. A review of previous work on gesture analysis and recognition

is also presented.

2.2.1 Overview

Many of the gesture recognition approaches were implemented to focus on one particu-

lar aspect of gestures, for example, hand tracking, pose classification, or hand posture

interpretation. To effectively study the process of hand gesture interpretation, a global

structure of the interpretation system needs to be established. Such a system is illus-

trated in figure 2.2.

The system requires that a mathematical model of gestures be established first. Such

model is pivotal for the functioning of the system. Sections 2.2.2 through 2.2.5 are de-

voted to the in-depth discussion of gesture modelling issues. Once the model is decided

upon, analysis and recognition of video images can be done based on the chosen model.

Section 2.2.6 deals with how the hand model parameters are computed in the analysis

stage from image features extracted from single or multiple video input streams. Selec-

tion of features is specific to the task of gesture interpretation and crucial for effective

model parameter computation. Section 2.2.7 outlines the recognition stage which comes

after the analysis stage. Section 2.2.8 discusses the performance of existing gesture

recognition systems.
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2.2.2 Gesture Modelling

The proper modelling of hand gestures directly affect the quality of a gestural interface.

The modelling mainly depends on the intended application. A coarse model may be

sufficient for a simple application. However, if the purpose is a natural-like interaction, a

model has to be established that allows many, if not all, natural gestures to be interpreted

by the computer.

Classical definitions for hand gestures exist. These definitions are particularly related

to the communications aspect of the human hand and body movements. Psychological

and social studies tend to narrow the classical definition and related it even more to

man’s expression and social interaction [83]. However, in the domain of human-machine

interfaces the notion of gestures is somewhat different. In a computer controlled en-

vironment, the user wants to use the human hand to manipulate objects as well as

issuing system control commands. Classical definitions of gestures, on the other hand,

are rarely, if ever concerned with object manipulation and human-machine interaction

[83].

A definition of gesture suitable for computer analysis and interaction can be as follows:

let st ∈ S be a vector that describes the pose of the hands and/or arms and their spatial

position within an environment at time t in the parameter space S. A hand gesture

is represented by a trajectory in the parameter space S over a suitably defined time

interval I [37].

The above definition allows for two-handed gestures by having one vector for each hand.

In spite of the possibility two-handed gestures, it should be noted that most of the

gestures performed in a natural environment are of a single-handed type. The exceptions

to single-handed gestures include object manipulations that use two hands or some

modalising gestures (refer to Section 2.2.3 for definitions).

The construction of the gestural model over the parameter set S, as well as the definition

of the gesture interval I, will be presented in the following sections.

2.2.3 Gestural Taxonomy

Having a definition of gesture, the next step in gesture modelling is formulating a tax-

onomy of gestures. Several taxonomies have been suggested in the literature that deal

with psychological aspects of gestures. For example, a taxonomy that distinguishes

autonomous gestures (that occur independently of speech) from gesticulation (gestures

that occur in association with speech) [83]. Another taxonomy recognises three groups
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Hand / Arm Movements

Gestures Unintentional Movements

Manipulative Communicative

Acts Symbols

ModalisingReferentialDeicticMimetic

Figure 2.3: Gestural Taxonomy

of gestures: iconic gestures and metaphoric gestures, and beats [84]. A taxonomy that

is appropriate for user interaction [85] [86] is illustrated in figure 2.3.

According to the taxonomy, all hand/arm movements can firstly be classified into two

major classes: gestures and unintentional movements. Unintentional movements are

those hand/arm movements that do not convey any gestural information. Gestures

themselves can have two modalities: communicative and manipulative. Manipulative

gestures are used to act on objects in an environment (e.g. object movement, rotation,

etc.). Communicative gestures have an inherent communicational purpose, and can

either be acts or symbols, and are usually accompanied by speech. Symbols are those

gestures that have a linguistic role, and symbolise referential actions (e.g. circular

motion of the index finger may be a reference for a wheel) or are used as modalisers,

often of speech (e.g. “Look at that wing!” and a modalising gesture specifying that the

wing is vibrating). In the gestural interface context, symbols are the most commonly

used, since symbols can often be represented by different static hand postures. Finally,

acts are gestures that are directly related to the interpretation of the movement itself.

Such movements are classified as either mimetic (imitating actions) or deictic (pointing

acts).

A taxonomy of gestures largely influences the way the parameter space S and gesture

interval I are defined. Related to the gestural taxonomy is the classification of gestural

dynamics, which is the study of the change of gesture over time.

2.2.4 Temporal Modelling of Gestures

Human gestures are a dynamic process. Therefore it is important to understand the

temporal (dynamic) characteristics of gestures. Understanding the temporal nature

of hand motion helps to resolve the problem of segmentation from other unintentional
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1. preparation
2. stroke

3. retraction

Figure 2.4: Temporal States of Gestures

hand/arm movements, and is tantamount to the question of how to determine the gesture

interval, I.

Surprisingly, psychological studies of gestures provide a fairly consistent understanding

of the dynamic nature of gestures. The gesture interval I is called the “gesture phase”

[83]. A gesture is made up of three phases: preparation, nucleus (peak or stroke), and

retraction [84]. The preparation phase consists of a preparatory movement that sets the

hand in motion from some resting position. The nucleus of a gesture has some definite

form and enhanced dynamic qualities. Finally, the hand either returns to the resting

position or repositions for the new gesture phase. The three phases of a dynamic gesture

are illustrated in figure 2.4. An exception to the three-phased view of gestures is the

so-called beats, which are gestures related to the rhythmic structure of speech [83].

The above discussion can guide the process of temporal discrimination of gestures. How-

ever, a more useful set of rules can be developed that leads to the same temporal clas-

sification as presented above. According to Quek [85] [86], the following set of rules

determines the temporal segmentation of gestures:

• A gesture interval consists of three phases: preparation, stroke and retraction.

• The hand pose during the stroke follows a classifiable path in the parameter space.

• Gestures are confined to a specified spatial volume (workspace).

• Repetitive hand movements are gestures.

• Manipulative gestures have longer gesture interval lengths than communicative

gestures.

The three temporal phases are distinguishable through the general hand/arm motion:

“preparation” and “retraction” are characterised by the rapid change in position of the

hand, while the “stroke”, in general, exhibits relatively slower hand motion.
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These rules hold in the case of general gestures. However, practically the complexity

of gestural interpretation usually imposes more stringent constraints on the allowed

temporal variability of hand gestures. Hence, most of the work in vision-based gesture

interfaces that has been done so far often reduces gestures to their static equivalents,

i.e. hand poses [91].

2.2.5 Spatial Modelling of Gestures

Hand/arm movements are actions in a three-dimensional space. The description of ges-

tures, hence, also involves the characterisation of their spatial properties. The character-

isation has been influenced by the kind of application the gestural interface is intended

for. Some applications, such as controlling home electric appliances [87], only require a

simple mathematical model of the hand, while other applications, such as painting using

hand gestures, require more sophisticated hand models [26].

This gives rise to the following question: is there a model of hand/arm movements that

can provide a complete description of gestures? There exists such a model, as the human

hand and arm can be assumed to be an articulated object. This is valid in gestural

interaction since the deformations of the skin of the human hand does not convey any

additional information needed to interpret gestures. Therefore, the parameter space

S can be the position of all hand and arm segment joints and fingertips in a three-

dimensional space.

This basic definition can provide all the information required for correct analysis of hand

gestures. However, there are two hindrances in this approach. First the dimensionality

of the parameter space is high given the flexibility of the hand. Second, and more

important, to obtain the parameters of this model via computer vision techniques proves

to be extremely complex [91].

To overcome the complexity of the above mentioned model, two major approaches in

gesture modelling have been utilised so far [37], illustrated in figure 2.5. The first

approach is to model gestures using a three-dimensional 3D hand and/or arm model.

The second approach is appearance-based, i.e. comparing the visual appearance of the

hand to the visual appearance of known gestures. These two approaches are examined

more closely in the following subsections.

3D Hand/Arm Model

A three-dimensional hand model can be constructed by studying the complete set of joint

configurations in space [58]. In practice, a reduced set of equivalent joint angle parame-

ters together with segment lengths is usually used. The reduction of the hand model is
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Figure 2.5: Spatial Gesture Models
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Figure 2.6: Skeleton Model of the Human Hand

accomplished using sets of assumptions that generally hold, for example, by introducing

dependencies between different joints, and by imposing bounds on the movement ranges

of joint angles.

Most of the 3D hand/arm models are based on the simplified skeletons of the human

hand/arm. If global body/arm motion is of more importance, cylindrical models of the

human arms or body segments are used [89] [90] [91]. On the other hand, skeleton models

are more commonly used for the human hand, as the models mimic the hand skeleton

kinematics. Examples of studies of the human hand morphology and biomechanics can

be found in [92].

The human hand skeleton consists of 27 bones, divided in three groups: carpals (8

wrist bones), meta-carpals (5 palm bones), and phalanges (14 finger bones). Figure 2.6

illustrates a hand skeleton model. The joints connecting the bones naturally exhibit

different degrees of freedom (DoF). Most of the joints connecting carpals have very

limited freedom of movement. The same holds for the carpal-metacarpal joints (except
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for the trapeziometacarpal, as illustrated). Finger joints show the most flexibility: for

instance, the metacapophalangeal (MCP) and the trapeziometacarpal (TM) joint have

two degrees of freedom (one for flexion/extension1 and one for adduction/abduction2),

while the promixal interphalangeal (PIP) and the distal interphalangeal (DIP) joints

have one DoF (extension/flexion). Equally important to the notion of DoF is the notion

of dependence between the movements in neighbouring joints. For instance, it is natural

for most people to bend their fingers such that both PIP and DIP joints flex/extend.

Also, there is only a certain range of angles that the hand joints can naturally assume.

Hence, two sets of constraints can be placed on the joint angle movements: static (range)

and dynamic (dependencies). One set of such constraints was used by Kuch [93] in his

26 DoF hand model. Those constraints are grouped into

• static constraints for the fingers (excluding the thumbs), e.g.

0 ≤ θy
MCP,s ≤

π

2
− π

12
≤ θx

MCP,s ≤
π

12

where s denotes a static constraint, and

• dynamic constraints for the fingers and the thumb, e.g.

θy
PIP =

3
2
θy
DIP θy

MCP =
1
2
θy
PIP

θy
IP = θy

MCP θy
TM =

1
3
θy
MCP θx

TM =
1
2
θx
MCP

where θ is the angle between the joints and superscripts denote flexions/extensions (“y”)

or adduction/abduction (“x”) movements in local, joint centered coordinate systems.

Similar models with equal or lesser complexity have been used by other authors [96] [97]

[98] [99].

In general, it is computationally expensive to calculate the parameters of a 3D hand

model from captured images. A simpler hand model is needed for interactive applica-

tions. Furthermore, an accurate 3D hand model requires the lengths of finger segments

to be known, which vary from user to user, and this leads to a serious problem of system

calibration, as the lengths of finger segments of each user cannot be easily measured.

Therefore the next class of spatial hand models, namely appearance-based models, is

reviewed in the next section.
1Flexion: bending of the joint resulting in a decrease of angle, moving the base of the fingers toward

the palm; Extension: straightening of the joint resulting in an increase of angle, moving the base of the

fingers away from the palm.
2Adduction: medial movement toward the axial line, moving the fingers toward the middle finger;

Abduction: lateral movement away from the axial line, moving the fingers away from the middle finger.
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Appearance-Based Model

The second group of models is based on appearances of hands/arms in the image. This

means that the model parameters themselves do not encompass any of the parameters

mentioned in the previous section (i.e joint configurations in 3D space). They model

gestures by relating the appearance of any gesture to the appearance of the set of

predefined, template gestures.

A large variety of models belong to this group. Some are based on deformable 2D

templates of the human hand and/or arm [100] [101] [102]. Deformable 2D templates

are the sets of points on the outline of an object that are used as interpolation nodes of

the object outline approximation. The simplest interpolation function used is a piecewise

linear function. The template sets and their corresponding variability parameters are

obtained through principal component analysis of many of the training sets of data.

Template-based models are used mostly for hand-tracking purposes [101]. They can also

be used for simple gesture classification based on the multitude of classes of templates

[102].

A different group of appearance-based models uses 2D hand image sequences as gesture

templates. Each gesture from the set of allowed gestures is modelled by a sequence of

representative image n-tuples. Furthermore, each element of the n-tuple corresponds

to one view of the same hand or arm. In the most common case, only one (mono)

or two (stereoscopic) views are used. Parameters of such models can be either images

themselves or some features derived from the images. For instance, complete image

sequences of human hands in motion can be used as templates for various gestures [103]

[104]. Images of fingers only can also be employed as templates in a finger tracking

application [105].

The majority of appearance-based models, however, use parameters derived from images

in the templates. These classes of parameters are called hand image property parameters.

They include contours and edges, image moments, and image eigenvectors, to mention a

few [93]. Many of these parameters are also used as features in the analysis of gestures.

Contours as a direct model parameter are often used, for example, “signatures” (contours

in polar coordinates) [60]. Contours can also be employed as the basis for further

eigenspace analysis [63]. Other parameters that are sometimes used are image moments

[65]. They are easily calculated from hand/arm silhouettes or contours. Finally many

other parameters have been used, such as Zernike moments and orientation histograms

[67] [68]. These approaches can be compared to traditional generic object recognition

[19] or the military problem of target recognition and tracking [45].

Another group of models uses fingertip positions as parameters [31]. This approach is
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Figure 2.7: Gesture Analysis

based on the assumption that the position of fingertips in the human hand, relative to

the palm, is almost always sufficient to differentiate a finite number of different gestures.

The assumption holds in 3D space under two restrictions, which were noted by Lee and

Kunii [94] [95]: the palm must be assumed to be rigid, and the fingers can only have a

limited number of DoFs. However, most of the models use only 2D locations of fingertips

and the palm [69] [70] [71]. Applications that are concerned with deictic gestures usually

use only a single (index) fingertip and some other reference point on the hand or body

[71] [72] [73].

One model proposed by Smit et al has remarkable simplicity [41]. It uses the shape of

the bounding box of the object plus its relation to the center of gravity to effectively

discern between a small number of poses.

2.2.6 Gesture Analysis

Having established gesture models in the previous section, it is necessary to estimate

the parameters of these models based on a number of low level features extracted from

images of human users. Parameters of gesture models are acquired through a multi-stage

analysis of mono or multi-camera video input sequences of images. The gesture analysis

phase of the gesture interaction framework consists of three steps: hand segmentation,

feature extraction and parameter computation. A diagram of the gesture analysis phase

is presented in figure 2.7. These steps are discussed below.
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Localisation and Segmentation

Segmentation is the first task in gesture analysis, and involves the extraction of the

hand and/or arm from the rest of the image. This is generally a complex task due to

the computational bandwidth involved in image processing. Hence, to lower the burden

of the localisation process, three varieties of restrictions are used, namely restrictions

on background, restrictions on the user, and restrictions on imaging. Restrictions on

background are the most common. An examples of background restriction is the use of

a uniform and distinctive (dark) background, which greatly simplifies the segmentation

task. Additional restrictions on the user (e.g. wearing long dark sleeves) simplify the

localisation problem and so do the restrictions on imaging (e.g. camera focused on

hand).

If the above mentioned restrictions are imposed, extraction of the hands from the back-

ground is then performed by applying a threshold to the image directly. The threshold

applied can be a colour threshold or an intensity threshold. Less restrictive setups usu-

ally employ colour histogram analysis. The colour-space based analysis is applicable

because of the characteristic histogram footprint of the human skin [97] [73] [74].

Other techniques take advantage of motion analysis of the scene. Moving artifacts, are

mostly produced by hand/arm movements and can thus be used to segment out the

hand from other static objects, provided that the imaging background and the camera

remains stationary [85] [87].

Combining static image analysis and motion analysis techniques, one can perform a

YUVD (YUV is a colour representation which consists of one luminance and two chromi-

nance components, and D stands for difference) decomposition of the image. This

changes the representation of a series of images from RGB to luminance (brightness),

chromaticity (colour), and difference (motion) components. The extraction task can

then be performed easily [28].

Since both of the mentioned approaches may require additional processing steps (exclu-

sion of false candidates, for instance) several applications resort to the use of uniquely

coloured gloves or markers on hands and fingers [95] [70] [71] [75] [76]. These methods

are computationally easier but tend to reduce the naturalness of the interaction.

Feature Extraction

The gesture model in use dictates the extraction of low level image features for parameter

computation. But even for different types of hand model parameters, the image features
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employed to calculate the parameters are often very similar. For example, 3D hand

models usually require fingertips to be extracted as features.

Entire images of the hand and arms are often used as features by themselves. On the

other hand, a wide scope of image features can be obtained from captured images and

have been used for parameter computation in previous gesture recognition research [59].

Silhouettes are one of the simplest features and are widely used [100]. They are

easily derived from hand images in restricted background setups. Examples of

silhouettes as features are found in both 3D and appearance-based hand model

analysis. Furthermore, many of the higher level features and parameters (e.g.

image moments, contours, fingertips) can be extracted from the silhouettes.

Contours are generated by edge detection schemes, which are applied on silhouette

images or grey-scale images. Contours can be used in both 3D and 2D hand

model analysis. For 3D hand models, contours can be used to form sets of finger-

link candidates. For 2D hand models many different patterns can be associated

with contours, for instance signatures (polar functions of points on the contour

[62]) and size functions [77].

Fingertip locations can be used to obtain parameters for both 3D and appearance-

based hand models. The detection of fingertip locations, however, is not trivial due

to the number of possible configurations the fingertips can assume. Five possible

approaches to fingertip location determination are listed:

• Fingertips are distinguished by having the user wearing marked gloves [95]

[71].

• Pattern matching techniques can be used to match images to templates of

fingertips [105] and fingers [96].

• Some fingertip extraction algorithms are based on the characteristic proper-

ties of fingertips in the image. For instance, curvature of a fingertip follows

a characteristic pattern (low-high-low).

• Heuristics are used, for example, the finger usually represents the foremost

point of the hand in deictic gestures.

• Indirect approaches are used, such as image analysis using specially tuned

Gabor kernels [99] [31] [32] [33].

These are only some of the possible features that can be used. It is possible to combine

different features to form a more robust set of features for parameter computation.
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Parameter Computation

In this step, features extracted from the images are matched to the spatial hand model.

The type of computation involved depends on both the features and the nature of the

model parameters.

The parameters of most 3D hand gesture models are computed using successive approxi-

mation methods. The basic idea is to vary model parameters until the features extracted

from the model match the ones obtained from the data images. The matching proce-

dure usually begins with the palm and ends with the matching of fingers. Initial model

parameters are usually selected as either the ones that match a generic hand position

(e.g. open hand) or the ones obtained from the prediction analysis of parameters in the

previous images in the sequence. A multitude of features have been used for parameter

computation:

• The 3D volumetric model parameters are varied until the hand silhouette implied

by the model matches that of the input image [88].

• Lee and Kunii [94] proved that the 3D locations of the five fingertips together

with two additional characteristic points of the palm uniquely define a hand pose.

Similar approaches are found in [97], [98], [99].

• Contours and edges of the hand are used as a guide to successively adjust the 3D

model parameters [90] [91].

Many simpler models use direct mappings between the feature and the parameter spaces.

Most of the mappings are explicitly defined (e.g. image moments from image silhou-

ettes), while others employ interpolation on the feature-parameter correspondence tables

(usually obtained through a training procedure).

2.2.7 Gesture Recognition

In the gesture recognition phase, the parameters are classified and interpreted in the light

of the accepted model and the rules imposed by an appropriate grammar. The grammar

reflects not only the internal syntax of gestural commands but also the possibility of

interaction of gestures with other communication modes, for example, speech, gaze, or

facial expressions.

The trajectory of hand configuration in the parameter space (obtained in the analysis

stage) is classified as a member of some meaningful subset of the parameter space.
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This phase poses two problems. The first problem is the optimal partitioning of the

time-model parameter space:

• how to design a meaningful partition of the parameter space such that it reflects

the “natural” (human) perception of different gestures, while performing time

partitioning to extract the temporal phase (stroke) parameters, and

• how to determine class membership mappings in the parameter space.

The second problem is the actual implementation of the recognition procedure, which

is of a more practical nature. The computational efficiency of the recognition procedure

affects the number of possible applications of the gesture recognition system, for exam-

ple, whether real-time response is feasible or whether the system can be embedded into

hand-held devices.

Classification Methods

To perform the actual partitioning of the time-model parameter space, several methods

can be used. Temporal partitioning requires that the global hand motion be known,

since that is what distinguishes the three temporal phases [13]. The partitioning can be

performed using a number of different classification methods. These methods require

at least one representative gesture per class to be known. The class representative

can either be given ad hoc or determined through a learning-from-examples procedure,

such as averaging, hidden Markov models, and neural networks [65]. The membership

mappings for the classes are then based on a minimum distance measure from a class

representative.

Hidden Markov Models (HMM) is a technique that is particularly appropriate in this

case [65]. The states of the HMM can easily be associated with the temporal gesture

phases. The gesture HMM should contain at least, and usually more than, three (hidden)

states. The HMM training procedure is built on learning-from-examples based classifi-

cation of the time-parameter space, while the recognition procedure uses dynamic time

warping for temporally invariant classification. Gesture models that use HMM have

been employed in appearance-based recognition with notable success [65] [66].

A successful recognition scheme should be based on classification through distance-based

membership functions as well as the time-space context of any specific gesture [66]. This

can be established by introducing a grammatical element into the recognition procedure.

The grammar should reflect the linguistic character of communicative gestures as well as

the spatial character of manipulative gestures. In other words, only certain subclasses
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of gestural actions with respect to the current and previous states of the interface are

naturally plausible. For example, if a user reaches for the coffee cup handle and the

handle is not visible from the user’s point of view, the system should discard such a

gesture. Still, only a small number of systems exploit this fact. The grammars used by

gesture interaction systems usually introduce artificial linguistic structures, in the sense

that they build their own “languages”, which have to be learned by the user.

2.2.8 Effectiveness and Efficiency

Finally, the question of effectiveness (accuracy) and efficiency (processing power re-

quired) in recognition arises. There is a classical trade-off for this problem, which is

model complexity versus recognition time [37]. The more complex the model is, the

wider class of gestures it can, in general, be applied to. However, the computational

complexity increases, and hence, the recognition time.

Most of the 3D based gesture models are characterised by more than ten parameters.

Their parameter calculation (gesture analysis) requires computationally expensive suc-

cessive approximation procedures. The systems based on such models rarely achieve

real-time performance. Yet the applicability of the systems in the gesture recognition

field is superior to the simple appearance-based models [58].

On the other hand, the appearance-based models are usually restricted in their applica-

bility to a narrow subclass of applications. For example, enhancements of the computer

mouse concept, or hand posture classification. Appearance-based models are of lower

complexity and, thus, computationally more affordable and easier to implement in real-

time applications.

2.3 Special Interfaces for Music Creation

This section explores a few classes of user interfaces which seek to promote interactive

music creativity. These interfaces range from devices that control multiple scalar values

to abstract forms of interaction which controls overall musical expression.

There have been several efforts, academic and commercial, of developing and present-

ing new musical performances that highlight a dynamic interaction between traditional

forms and new technologies [6]. These implementations use the latest developments in

wearable sensors, gesture recognition software, and computer modelling of human ex-

pression. Their efforts expand and transform the skills of trained musicians, and define

a new set of possibilities for musical expression in the performing arts [7].
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2.3.1 Embedded Sensor Systems

The use of embedded sensor systems refers to the attachment of sensors to traditional

musical instruments [36]. For example, having microphones attached to an acoustic

piano. During a theatrical performance, the pianist can play the piano normally, while

the sound captured from the microphones can be used to drive a visualisation system,

and enhance the audience’s experience.

The motivation for exploring the issues of embedding sensor systems in musical in-

struments is that current instruments for the performance of computer music, such as

electronic keyboards, breath controllers, and MIDI guitars, are too difficult and unwieldy

to use in most situations. On the other hand, standard computer interfaces, such as the

mouse and joystick, do not have enough simultaneous degrees of freedom to phrase a

musical line with satisfying complexity.

Embedded sensors are very common in string instruments, such as guitar pickups and

techno-violins. An example of the application of such embedded sensors is an analysis

of Yo-Yo Ma’s playing style by attaching sensors to his cello [36] [6].

2.3.2 Controllers

In musical applications, a controller generally refers to a device capable of inputting

multidimensional values. For example, a slider inputs a continuous scalar value while a

joystick inputs a two-dimensional value. These devices were designed to fit a person’s

anatomy to facilitate musical expression, for example a foot pedal controller. A foot

pedal controller is similar to the foot pedal of a piano: depressing it causes the notes

being played to sustain. In electronic music, a foot pedal controller can be used to vary

the amount of distortion generated by a guitar amplifier, as both hands of the guitarist

are already occupied during guitar playing.

The actual usage of a controller is not restricted by the manufacturer or the designer of

the device, but is generally open to customisation by the user (musician). Some recent

research on controllers is listed below.

Matrix

The MATRIX [34] (Multipurpose Array of Tactile Rods for Interactive eXpression) is

a new musical interface, shown in figure 2.8. It gives users a 3-dimensional tangible

interface to control music using their hands, and can be used in conjunction with a

traditional musical instrument and a microphone, or as a stand-alone gestural input

device.
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Figure 2.8: The Matrix

(Images copyright Dan Overholt, permission granted.)

The surface of the MATRIX acts as a real-time interface that can manipulate the pa-

rameters of a synthesis engine or special effect algorithm in response to a performer’s

expressive gestures. One example is to have the rods of the MATRIX control the indi-

vidual grains of a granular synthesizer, thereby “sonically sculpting” the microstructure

of a sound. In this way, the MATRIX provides an intuitive method of manipulating

sound with a very high level of real-time control.

PalmDriver

The PalmDriver, shown in figure 2.9, is an electronic device based on infra-red (IR)

technology which consists of up to 8 sets of 4 sensing elements arranged as the vertical

edges of a square-based parallelepiped [43]. Embedded in the device is an on-board

microprocessor for pre-processing sensor data with calibration, liberalisation and other

ad hoc routines.

The PalmDriver can work as a stand-alone system and is equipped with a MIDI OUT

port. The measurements of distance to the different zones of the hands are calculated

from the amount of reflected light captured by the receivers (Rx’s). These measurements

are quite accurate considering the irregularity in shape and colour of the hand’s palms.

Analog voltage values coming from the Rx’s are converted into digital format and sent

to the computer at up to 80 times/sec as MIDI messages. It is possible to reconstruct

the positions and movement of the hands from the data coming from the PalmDriver. A

mapping scheme can be designed so that the parameters collected can be used to drive

a music creation task. This device is stable and responsive; as a consequence, sounds

generated by the computer provokes on the performer the sensation of “touching the

sound”. This sort of psychological feedback greatly contributes to give expression to
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Figure 2.9: The Palm Driver

(Images copyright Leonello Tarabella, permission granted.)

Figure 2.10: The Virtual Drums

(Image copyright James Lane, permission granted.)

computer generated electro-acoustic music.

2.3.3 Virtual Instruments

Virtual instruments either simulate a real natural instrument by electronic means, or

new instruments which open up a new space of creative expression. The behaviour and

input-output mappings of virtual instruments are much more well-defined compared to

controllers. This section provides an overview of a number of virtual instrument systems.

The Virtual Drums Project

The Virtual Drums project [27] aimed to create a simulator of a real drum kit in virtual

reality, which a person can play in an identical manner to playing a real drum kit. It

was in the creation of this virtual drum kit that the usefulness of the catadioptric stereo

(section 2.1.3) was realised.

The virtual drum kit consists of several key components:
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Visualisation The first aspect of the virtual drum kit is the visual component. This

includes using 3D computer graphics to create a realistic model of a drum kit,

shown in figure 2.10. To make the virtual drum kit realistic, the visualisation of the

drum kit includes cymbals which swing back and forth realistically and pounding

drums with some visual effect that illustrates when a drum is struck. The visual

effect chosen for the drums is a blue ripple which moves outwards from the center

of the drum. This visual cue is representative of the sound wave produced when

a drum is played. Along with these visual effects it is important to visualise

the drumstick. The position and orientation of the drumsticks are graphically

represented to provide the drummer with visual feedback for his movement of the

real drumstick. A wood-textured cylinder is used to visualise the drumstick.

Sound It is essential that this virtual drum kit have a realistic audio component. To

do this each cymbal and drum has an appropriate drum sound associated with

it. Appropriate sounds for each drum and cymbal were obtained and connected

to the appropriate pieces in the visual model. Additionally, spatial sound is used

which gives an indication of the source and location of a sound. This enhances the

apparent realism of the virtual drum kit. Volume may be used to indicate how

hard a drum or cymbal is struck.

Interaction The final part of this drum kit is the interaction aspect. Playing the virtual

drum kit should be identical to playing a real drum kit, or as close as possible to

it. An important aspect of achieving realism is to allow the drummer to play the

drums and cymbals with real, wireless drumsticks. Catadioptric stereo provides a

means for tracking the position and orientation of the drumsticks, and is used to

implement the interaction aspect of the Virtual Drum kit. The audio and visual

effects are triggered as the sticks move into positions where the drums are located.

Dancing Shoes (Expressive Footwear)

Joseph Paradiso [35] of the MIT Media Lab was the first to build a set of Dancing Shoes

in 1997, as shown in figure 2.11. These instrumented sneakers measure four points of

pressure, bend, pitch, roll, 3-axis acceleration, twist, and 3 axes of position in each

shoe. Many of these signals are converted to digital signals within the sneaker itself and

broadcast to a nearby radio receiver; the shoe is also powered by its own battery that

has a life of 3 hours. These shoes have gone through numerous revisions during 2001

to 2002 and have been used in several public performances. In the most recent version,

each sneaker measures 16 different parameters of the user’s movement.
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Figure 2.11: Expressive Footwear

(Images copyright Joseph Paradiso, permission granted.)

Two main classes of applications had been realised with the shoes. Advanced versions of

the system were sufficiently robust to engage professional choreographers and performers

for extended public shows, adding real-time music to dance performances. The shoes are

also useful in motion analysis problems, such as detecting certain dance styles from the

shoe data stream (e.g. discriminating between a waltz and a tango). After analyzing

several seconds of the real-time dance data, the appropriate musical accompaniment

would fade up once the classification was completed. Since the data streaming from the

shoe system provides a rich description of poditrial (functioning of the foot) activity,

further motion analysis can be applied to extract higher-level features, useful in dance

and sports training or podiatric therapy.

Virtual Pianos

The Imaginary Piano, shown in figure 2.12, consists of a real-time image-analysis of

video-captured system: here, the interaction “tools” are the bare hands of a pianist [23].

The pianist is sitting as usual on a piano chair and has in front nothing but the camera

a few meters away pointed at his hands.

There exist an imaginary line at the height where the keyboard usually lays: when a

finger, or a hand, crosses that line downward, a specific message (actually a NoteOn

MIDI message) is issued; “where” the line is crossed states the key number, and “how

fast” the line is crossed, states the velocity.

Due to the fact that the keyboard is not visible, it is difficult for the instrument player

to strike the right key accurately. This application should be considered an original

performance rather than an original instrument.
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Figure 2.12: The Imaginary Piano

The musician wears black clothing, making the fingers easier to track.

(Image copyright Leonello Tarabella, permission granted.)

2.3.4 Conducting

So far, the contribution of modern technology to music creation has been limited to

synthesisers, sound processing, filtering, and sequencing tools (the management of indi-

vidual parts in a musical composition or the editing of drum beats) [9]. So far there is

little extension from modern electronic music to classical music, and there is a need to

develop mathematical models of music analysis and interpretation.

It is said that the performance of the conductor determines the success or failure of an or-

chestra. The traditional art of conducting an orchestra contains a vast amount of knowl-

edge and information waiting to be understood using modern information-technology

techniques.

From controllers to virtual instruments to orchestra conducting, the mappings from sig-

nalling to desired reaction becomes less and less well-defined, from deterministic (e.g.

pushing the slider to increase sound volume) to abstract (e.g. waving the baton vigor-

ously to signal a lively interpretation). The rules of interaction may move from intuitive

to complex rules which are embedded inside a neural network.

Live performances using a combination of musicians and electronics has so far been a

problematic art [9]. Getting the two components to create a coherent sound is a ma-

jor problem. Automatic conductor following is one way to enable the above mentioned

combination. In this case, the conductor can control the electronics as one controls the

musicians. Conductor following requires multiple information technology tools. Pattern

recognition techniques are used to recognise the gestures (movements) the conductor

makes. The identified gestures need to be matched with general knowledge of the con-

ducting technique and the knowledge of the piece being conducted. Finally the conductor

following must create musical, expressive output.
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Most systems only track the tempo of the piece. Few can track dynamics or finer nuances

like staccato (playing musical notes in a disconnected manner) [10]. The main research

goal of conductor following is to interpret the tempo and other musical expressions

signalled by the conductor, and reacting musically in real-time.

Digital Baton

The Digital Baton [5] [2] is a new electronic instrument which has been designed and built

for the performance of computer music. The principle motivation for its design was to

create a gestural controller which replicated as closely as possible the feel of a traditional

conducting baton while retaining the maximum number of intuitive control parameters

for the user. The Digital Baton contains several sensor systems which capture many of

the modalities of hand motion and gesture for their application toward both discrete

controls and continuous, expressive gestures. Current software for the Digital Baton

makes use of its sensory functionalities in real-time music performance systems.

The Digital Baton hardware system, shown in figure 2.13, consists of a baton, an external

infrared sensor, a tracking unit, and a computer. The sensors on the baton include

an infrared LED for positional tracking, five piezo-resistive strips for finger and palm

pressure, and three orthogonal accelerometers for beat-tracking. Both the infrared sensor

and the baton send separate data streams (including values for absolute 2D position,

3-axis acceleration, 3-axis orientation, and surface pressure) via cable to the tracking

unit, which converts and sends the signals to the computer. The body of the instrument

consists of a clear tube attached to a urethane base into which the sensors have been

molded. Underneath the pliable surface of the base is a hollow, hard shell which houses

the more delicate electronics. The whole instrument was designed and molded to be

small and easy to hold for any sized hand, with unobtrusive and optimal placement of

sensors.

The Digital Baton has been designed both to allude to its original use as a musical

controller for conducting and also to allow for totally new applications. For example,

because it measures the individually-articulated movements of the fingers and palm, it

can be “played”, to a certain extent, like a keyboard instrument. Its transmission of

so many data channels also means that complex gestures which are conceived of, and

executed at once by the user can be analyzed in different modalities simultaneously,

providing an opportunity for new work in gesture-recognition and possible applications

in the study of conducting and performance.

The baton can be thought of as a meta-instrument : it makes no sound of its own and has

no internal mechanical functionality, and yet, in the conductor’s hand, it is used to direct
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Figure 2.13: The Digital Baton

(Images copyright Webb Chappell and Teresa Marrin Nakra, permission granted.)

the flow and form of the total musical result. Marrin Nakra and Paradiso [5] wanted to

combine this notion of the possibility inherent in the baton with the functionalities of a

traditional instrument, and ended up with a digital instrument which can execute both

the discrete, exactly-timed actions of individual notes and higher-level functions such as

shaping volumes and coordinating separate events in time.

The primary contribution of the Digital Baton is in its design as a digital object which

combines some of the tactile responsiveness of a traditional musical instrument with

the power of a modern computer-interface tool. While several others have already made

electronic batons and conducting systems, the Digital Baton combines ergonomic design

with quantity and resolution of sensory data channels and represents significant new

work in the design of performance interfaces. In conjunction with software systems, it

can be a powerful and versatile tool for musical performance and research.

In evaluating the design and usage of the Digital Baton [2], it has unexpectedly become

a model for the design of new interfaces and digital objects, and is currently being used

to record data for analysis in gesture-recognition research.

The research done by Marrin Nakra and Paradiso raised two major problems. The first

problem is the ergonomics of the device: the digital baton was designed to resemble a

traditional conducting baton with an enlarged handle, but inevitably it was too large and

heavy to be comfortably used by a conductor. Its wire also made it easy to trip on, which

was not ideal for performances. The second problem was that any musical mappings

(from gestures to expressions) that were made were entirely based on guesswork and trial-

and-error. To date, very little was known about the actual mechanics of conducting.

For example, how to determine a downbeat from a beat-2 or beat-3; how to demonstrate

piano versus forte; and how to cue various instruments. These issues led the research to

the second project in this area, which was The Conductor’s Jacket.
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Figure 2.14: The Conductor’s Jacket

(Image copyright Teresa Marrin Nakra, permission granted.)

Conductor’s Jacket

Marrin [3] and Picard presented the design and architecture for a device called the

Conductor’s Jacket, shown in figure 2.14, which was built to collect and analyze data

from conductors. This device is built into normal clothing and designed in such a way

as to allow for normal activity and not encumber the movements of the wearer.

The jacket records physiological and motion information from musicians in order to

better understand how they express affective (emotional) and interpretive information

while performing.

Marrin presented design considerations and some preliminary results from data collection

trials that were conducted on a range of professional and student conductors in real-

world situations.

The wearable form factor was ultimately successful, because it didn’t interfere with the

natural movements and expression of the individual, and the research team was able to

take measurements at the surface of the skin that indicated internal states in addition to

movement parameters. Numerous data collection experiments were undertaken with the

jacket and it has been a continual platform for research, education, and performance.
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2.3.5 Analyzing Physiological Signs and Interpretation Schemes

A very good question to ask is what features of a conductor’s physiology should be

analyzed [4]. An answer to this question is to collect as much information as possible

and then to decide which features are significant. Therefore the problem is one of data-

collection.

Besides sensing the arm and hand position and orientation, consider taking the physi-

ological measurements listed below into account, although the features listed below are

not visible from an orchestra member’s point of view, they certainly play a significant

part in a conductor’s performance:

• heart rate,

• blood pressure,

• breathing patterns, especially the tension in inhalation,

• muscle tension,

• perspiration, and

• body temperature.

Research projects such as the digital baton and the conductor’s jacket mentioned in the

previous section are the most elaborate sensing projects up-to-date and provide vast

amounts of motion and physiological data, captured from conductors working at various

rehearsal and live performance sessions.

The important question remains: how are these values related to musical expression?

Several gesture to musical expression mapping hypotheses have been suggested and

verified [6], for example:

• It was realised that humans, both trained and untrained, skilled and unskilled,

are able to internalise a great deal of expressive information without consciously

being aware of it.

• It appeared that the most significant results came from the volitional signals.

That is, the signals which are under purposeful control (and which the subject

is naturally aware of) tend to be the ones with the greatest information content.

Physiological signals that are not volitional, such as body temperature, and heart

rate, did not consistently correlate with the music.
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• Finally, the intuitiveness and naturalness of a mapping has mostly to do with

the audience’s perception, and not with the conductor’s ease of use. That is, a

conductor can quickly train to a system, even a difficult system, to the point where

the mapping and gestures feel normal and natural. But it is the audience that

ultimately decides if a mapping ‘works’ or not.

This concludes the discussion on conducting analysis, since the focus of this thesis is on

building an interface for music arrangement. For a full report, the interested reader is

referred to [6].

2.3.6 Conclusion

Music is an extremely complex and subtle art; it requires advanced engineering methods

to capture and represent it in enough detail and sophistication. Figuring out how to

quantify and reflect what musicians do when they express themselves in their art form

is a very interesting and fruitful research area, which remains rich with possibilities, as

research undertaken in this field have only just begun to scratch the surface [7]. Possible

research directions for integrating computer science and music are listed below:

• By continuing to develop better methods to sense and analyze musical perfor-

mances, quantitative analysis tools can be developed. These tools can be given to

students to evaluate their performances.

• By sensitively and carefully integrating amplified, synthesised, and sampled sound

into live performances, the overall palette of available sound is increased.

• Special effects and visuals can be added to musical performances, where the be-

haviour of the visual elements is driven by the shape of the musical performance.

• Instead of having performers change their established techniques, computer sys-

tems can be programmed to follow their natural movements, provided that a ma-

ture technology of gestural control exists.

With advanced musical analysis tools, many elusive questions can finally be studied in

depth and explained, such as how music contagiously conveys emotion and expression

from the performer to the audience.

2.4 Summary

Section 2.1 showed that device-free interfaces were much needed as new areas of software

applications were emerging. Section 2.2 presented a study of previous work done on
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device-free interaction using hand gestures and computer vision. Section 2.3 presented

a survey of recent studies on interaction models used in music creation applications.

 
 
 



Chapter 3

Theoretical Approach

This chapter presents the theoretical aspects of the individual components that con-

stitute a vision-based gesture recognition system. These components include image

processing filters which extract the hand from the video image, image invariants which

provide parameter values for gesture recognition, various techniques of static gesture

recognition (the recognition of a hand configuration or a pose) and several approaches

of dynamic gesture recognition (the movement of the hand in time which carries some

meaning), and lastly the theory and practice of music arrangement.

3.1 Computer Vision Framework

The first component presented is a computer vision framework. Its focus is to process

raw image data and to produce ready-to-use parameter values for further gesture recog-

nition analysis. Sections 3.1.1, 3.1.2 and 3.1.3 present image segmentation algorithms,

which identify objects of interest from a given image, for example, isolating the image

of the user’s hand from the background. Sections 3.1.4 and 3.1.5 present techniques

of extracting feature values from images which are useful for the gesture recognition

process. Section 3.1.6 outlines basic tracking techniques which aim to follow the user’s

hand movement in time while the hand is in the computer’s field of vision. Most of the

theory presented in this section is based on the research done by Van den Bergh [45],

where vision-based techniques were used to construct a device-free locator system.

3.1.1 Chroma Keying

Chroma keying is perhaps one of the most basic image segmentation techniques [54]. It

is typically used to mask regions of a specified colour, for example, blue. One of the

39
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Figure 3.1: Chroma Keying and Vector Keying

Chroma keying (top) seeks to discard the background and places the foreground object

on a desired background, while vector keying (bottom) seeks to identify regions of a

specific colour. Note that inverse chroma keying is similar to vector keying, but the

key colour can be learned in the vector keying approach.

applications of chroma keying is compositing. Actors are shot against a uniform blue

background, and chroma keying is used to generate a mask of the video image which

removes the background. Then the masked foreground image can be cut and pasted

onto another background. This technique is also known as bluescreening. An example

of chroma keying is shown in Figure 3.1.

The chroma keying problem can be defined as the task of identifying the background

region of an image, so that the foreground region can be obtained. There are many

solutions to the chroma keying problem. Most of these solutions produce accurate

results, but at the same time, they are often hardware-based, expensive, protected by

patents, or require some kind of human intervention for them to work properly.

A software-based chroma keying scheme suitable for gesture recognition applications is

described in the following section.

Software Algorithm

For the purpose of building a computer vision system for gesture recognition, a software-

based chroma keying algorithm is described here. This algorithm is computationally

efficient and produces accurate results (see chapter 5), thus making it the ideal choice

as the chroma keying component in the system. A full discussion of this algorithm can
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be found in [44].

The basic operation of a chroma keying algorithm requires testing all the pixels in a

given image. A pixel is considered to be part of the background if it has a dominant

blue hue. An efficient algorithm must allow the classification of a pixel to happen within

a few processor operations.

The idea is to provide a distance measure d of the pixel relative to blue, that is d =

f(r, g, b) where f gives the distance of the input colour values, measured in RGB space,

relative to blue. Having a distance value (instead of a binary value) allows the sensitivity

of the chroma keyer to be adjusted and allows the introduction of an alpha function

which produces image masks with soft edges. An alpha function further maps the

distance measure to the range of 0 to 1, with 0 being completely transparent and 1

being completely opaque. In compositing applications, using a chroma keying algorithm

which produces soft edges reduces undesirable visual artifacts.

Let r, g, and b be the measured red, green, and blue intensities of a pixel. The first test

is to determine whether b > r and b > g. This is to test whether the pixel appears to be

blue, or, that the blue component is the dominant component. However, this first test

suffers from the problem that it classifies impure shades of grey as blue. For example,

when (r, g, b) = (0.1, 0.1, 0.1), camera noise may offset the captured pixel to be classified

as blue.

The selection criteria for blue pixels can be narrowed down by adding a distance con-

straint, such as

d =
√

(b− r)2 + (b− g)2 (3.1)

Then, when d > dmax for some predefined threshold value dmax, the condition in equa-

tion 3.1 implies that the blue component is dominant enough and the pixel should be

masked out. The above distance measure requires multiplication (squaring) and square

root operations, and are very time consuming on some processors. Therefore a simpler

distance measure can be used instead, namely

d = 2b− r − g (3.2)

A test for a blue pixel now consists of only three arithmetic operations, namely one

multiplication and two subtractions. Using the distance measure in equation 3.1, a test

for a blue pixel consists of 6 operations, including two subtractions, one addition, two

multiplications and one square root operation.

Geometrically, the test criterion “b > r and b > g” classifies pixels as belonging to the

volume of a skew pyramid in RGB colour space. The test in equation 3.2 is a plane that

cuts the RGB cube into two parts. Thus a pixel is considered to be blue if it lies within

the intersection of these two volumes.
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Hue-based Approach

Another solution to the chroma keying problem is to adopt a hue-based approach: A

colour measurement can be represented in more than one way—besides using an RGB

triple, a colour could be described by using HSL (Hue, Saturation and Lightness) com-

ponents. In HSL representation, the blue colour has a hue value of 240◦, and a test for a

blue pixel is simply a test of whether the hue value lies within a small range of blue, say

230◦ − 255◦. Interestingly, most video editing systems in use today are HSL based and

this chroma keying approach presents a native solution. However, the HSL approach

may not be suitable for use in an RGB based computer imaging system, because the

image has to be converted to HSL colour space first, which slows down the algorithm

significantly.

3.1.2 Vector Keying

Chroma keying is most suitable in film-making applications [54] for the following reasons:

• it can be applied to any foreground object (the actor), as long as the foreground

object does not contain bright regions of blue;

• the cost of using a uniform background in filming is relatively low compared to

the overall budget; and

• it is not technically difficult to operate.

In gesture recognition applications, the requirements on image segmentation are differ-

ent:

• the object of interest (the actor) is already known to be the hand; and

• it is desirable to relax the colour requirement placed on the imaging background,

for example, allowing an arbitrary background as long as it does not contain hues

or shapes similar to the human hand.

Another image segmentation technique known as vector keying proves to be more suit-

able in the case of hand gesture recognition because of the two requirements listed above.

The vector keying technique identifies regions of interest in the image by matching pixels

to a particular colour of interest (e.g. skin colour).

One application of vector keying is to automate the process of counting the number of

people in a public place. A photograph is taken at the place of interest. Then regions of

the photograph with human skin tones are extracted using vector keying. The number of
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people present can be counted using further analysis techniques such as shape matching

on these extracted regions.

An example of vector keying is shown in Figure 3.1. Using vector keying in gesture

recognition is motivated by the fact that human skin tones can be approximated by

different shades of a certain hue. In other words, the captured colour values of human

skin tone conform to points on the line of a particular vector, for example,

v = [r, g, b] = [d, 0.5d, 0.5d] where d ∈ [0, 1].

Vector keying differs from chroma keying in the following ways:

• Geometrically, the specific chroma keyer implementation described in section 3.1.1

segments the RGB colour space by cutting the colour cube with a plane. On the

other hand, vector keying measures the correlation of a sampled colour to a hue

vector, resulting in a colour space segmentation that has the shape of an ellipsoid

(a three-dimensional ellipse).

• In vector keying, the key colour is programmable and learnable.

Vector Keyer Training

In video-based gesture recognition applications, the colour of skin tones can vary slightly

depending on the race of the user, lighting conditions, and camera imaging parameters

[45]. Vector keying offers a solution to this problem because the key colour used for

image segmentation can be learned automatically. A possible way of training the vector

keyer is outlined in the following sections. Before training can take place, the vector

keyer is presented with a training set of skin tone colours.

A method of obtaining the training set is to set up a scene consisting of the hand in

the foreground and a blue screen in the background. After performing chroma keying,

only pixels of skin tones remain. It will be discussed in the following sections that the

training colours are analyzed using statistical approaches. Therefore, it is important

that the set consists of the full range of possible skin colours but not include any colour

that is not considered to be a skin colour.

Vector Keyer Ellipsoid Parameter Computation

It is important to note that the colour values collected for vector keyer training do not

form a straight line in RGB colour space, but fall approximately inside an ellipsoid, with

its major axis aligned with the key colour vector [45].
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After the collection of vector keyer training images, one important task remains. It is

to compute the parameters of the ellipsoid based on the sampled colour values. Once

the parameters of the ellipsoid are found, vector keying can be performed by testing

whether a sampled pixel is inside the ellipsoid or not.

Depending on the technique used for ellipsoid parameters computation, the parameters

obtained will have different representations. For example, if the parameters computed

have the general quadric surface representation,

f(x, y, z) = ax2 + by2 + cz2 + 2pxy + 2qyz + 2ryz + 2ux + 2vy + 2wz + h

then f(x, y, z) < 0 is a test of whether the sampled point (x, y, z) is inside the bounding

ellipsoid.

The remaining problem is to determine the parameters of the ellipsoid. Assuming the

points in the ellipsoid correspond to a multivariate Gaussian distribution of three vari-

ables, the least square fit to the sampled data is calculated. The following section

provides an outline of the technique.

Using the Whitening Transform in Vector Keying

Instead of calculating the parameters of the ellipsoid directly, the whitening transform

can be used in the vector keying problem, as sampled skin colour values are approxi-

mately normally distributed [45]. This technique does not seek to calculate the ellipsoid

parameters directly. It is a transformation which operates on the original colour space

such that the ellipsoid of sampled colours is transformed into a sphere. The trans-

formation has a rescaling effect such that the transformed data have a unit normal

distribution, provided that the original data is also normally distributed. That is, for

N(0, 1), 67 percent of the values will lie within a standard deviation of 1 from the origin,

and a a standard deviation of 2 will include 97 percent of the sampled values.

Figure 3.2 demonstrates the geometrical effect of the transformation. The whitening

transform is used to transform the points inside the ellipsoid containing skin colours so

that they fall into a sphere around the origin.

In other words, let x = [r, g, b] be a sampled colour value which is intended to be

classified to be skin colour by the vector keyer. Let X be the set of all sampled skin

colour values, and x be the mean value of all x ∈ X. Then X forms an ellipsoid cloud in

3-dimensional space. Now let T(x) be a transformation which transforms the ellipsoid

to a sphere with the characteristics described above. Then the membership test for a

sampled pixel colour p = [r, g, b] is

‖q‖ < 2 where q = T(p)
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Figure 3.2: Whitening Transform

In the above equation, q is the transformed value obtained from the whitening transform.

Let Σx be the covariance matrix for the sampled values X. Let U be the matrix con-

taining the eigenvectors of Σx, and D be the diagonal matrix containing the eigenvalues

of Σx. It will be shown in the next section that

T(p) = D−1/2UT (p− x) (3.3)

The procedure for computing x, Σx, D and U is described in the next section.

The Whitening Transform

This section details the whitening transform which transforms the ellipsoid of sampled

colour values into a sphere. It makes use of the properties of eigenvectors and eigenvalues

of the covariance matrix of the sampled colours. In statistical terms, an uncorrelated,

normally distributed, statistically independent set of random variables may be obtained

using the eigenvalues and eigenvectors of the covariance matrix of the sampled values.

The variance of a univariate variable x is defined as

s2 =
1

N − 1

N∑

i=1

(xi − x)2

where N is the number of samples, xi denotes the ith sample, and x is the mean of the

variable x.

The mean of a sample of N vectors x is calculated as

x =
1
N

N∑

i=1

xi
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Figure 3.3: Principal Component Axes for a Two Dimensional Random Variable

where xi denotes the ith sample.

The covariance matrix for a vector x is defined as:

Σx =
1

N − 1

N∑

i=1

(xi − x)(xi − x)T (3.4)

If Σx is diagonal, then the variables are uncorrelated. Let u be an eigenvector of

Σx. The eigenvectors of Σx are directions of statistically independent random variables

and the eigenvalues are the associated variances. The eigenvectors ui are called the

principal components. Figure 3.3 illustrates the principal component axes formed in

two dimensions by correlated variables x1 and x2 in x. The vector u1 indicates the

direction of maximum variance, and the vector u2 denotes the orthogonal direction of

next-most significant variance. The value s denotes the standard deviation.

For a 3-dimensional colour vector variable x = [r, g, b], let u1, u2, and u3 be the eigen-

vectors of Σx, and let λ1, λ2, and λ3 be the corresponding eigenvalues. The following

properties hold:

UUT = UTU = I and UTΣxU = D

where I is the identity matrix, and

U =
[
u1 u2 u3

]
and D =




λ1 0 0

0 λ2 0

0 0 λ3




Thus Σx can be expressed as

Σx = UDUT

Now, let A be a linear transformation of the vector variable x,

y = Ax
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The covariance matrix of y then has the form

Σy = AΣxAT = AUDUTAT (3.5)

Letting

A = D−1/2UT =




1√
λ1

0 0

0 1√
λ2

0

0 0 1√
λ3




[
u1 u2 u3

]T

where D1/2 is the square root matrix such that D1/2D1/2 = D with inverse D−1/2. The

identity matrix is now obtained as

Σy = D−1/2UTΣxU(D−1/2)T = D−1/2UTUDUTUD−1/2 = I (3.6)

The primary function of the transformation A is to decouple a multivariate Gaussian

distribution so that the transformed variables have the identity matrix as their covari-

ance matrix. The transform UT rotates the axes to coincide with the direction of the

principal components. The transform D−1/2 divides the new basis vector magnitudes by

the standard deviation to provide unit basis vector magnitudes. Thus for a multivariate

Gaussian distribution, the equal probability contours form a circle after applying trans-

formation A. This transformation is called a whitening transform since the transformed

variables are representative of white (totally uncorrelated normal) noise [45]. Geomet-

rically, this is equivalent to taking an ellipsoid in arbitrary position and orientation,

moving it to the origin, rotating it to align with the axes, and scaling it to form a unit

sphere.

3.1.3 Background Subtraction

Background subtraction is an image segmentation technique, similar to chroma keying,

in that it separates an image into a background and foreground [54]. A problem with

chroma keying is that a background of uniform colour is required, which limits its appli-

cation areas. Background subtraction works on arbitrary backgrounds, but it requires

the background to remain static.

The background subtraction technique begins with a calibration stage, in which a cam-

era captures several images of the background scene, which should remain static from

then on. After the calibration stage, newly captured images are compared against the

background image. If a pixel’s intensity falls outside of the predicted intensity value of

the background, the pixel is marked to belong to the foreground object.

The success of this method depends on the accuracy of the background image being

memorised by the system. Since there is noise present in the CCD (charged coupled

 
 
 



CHAPTER 3. THEORETICAL APPROACH 48

device) image and the camera may vibrate during operation, it is not enough to use

one frame as the standard background image. A better mathematical model of the

background is needed. For example, observe that the intensity of a pixel is a sample

taken from a Gaussian distribution, and therefore it would be wise to construct the

background image using average and variance values captured from several frames [45].

This problem is further complicated by jittering, an effect commonly found in analog

cameras where the image shifts left and right in the time domain [45]. In other words,

the pixels appear to move with respect to the scene the camera is capturing.

Background subtraction has its limitations: Although this image segmentation technique

allows an arbitrary background, the user or the image being identified must still look

different from the background in order to be segmented properly. The camera and

background must remain perfectly still after the calibration stage; and depending on

the complexity of the background image model, this method is often computationally

expensive. Also, lighting levels must remain constant.

Despite the disadvantages, background substitution has become a common image seg-

mentation technique appearing in gesture-based interaction systems with smaller scopes

of applications, such as gaming or simple head and hand tracking for enhanced office

productivity. These applications take advantage of the idle time of the camera and at

the same time requires the ability to detect movement in captured video images. Back-

ground substitution provides a good solution as it does not require a uniform imaging

background, and the computational cost of these systems are kept to a minimal due to

the low resolution nature of today’s desktop video cameras.

3.1.4 The Need of Image Invariance

Using image segmentation techniques, a particular region of interest of an image is

isolated. Once this isolation has been performed, a method for identifying the parts

of the segmented image must be devised. Typically, the image is matched against a

predefined set of objects that could occur in the system’s field of vision, for example, for

a robot built to pick apples from a tree, those objects may be tree leaves and apples.

A brute-force approach to doing this would be to match the captured image against a

sample, or a template image. The difficulty lies in determining when a potential match

is correct or not. Surely a pixel-by-pixel comparison approach would be inappropri-

ate in most cases, as captured images will most likely differ from the sample image in

some ways, and yet they should be treated as identical. Therefore, the statistical mea-

sures about the image, such as its size, average colour or silhouette, are extracted and

compared to those quantities of the sample image.
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Figure 3.4: Examples of Linear Transformations

In other words, the quantities extracted are the invariant features (i.e. preserved fea-

tures) to the kinds of distortions (transformations) that are anticipated in computer

vision applications.

Figure 3.4 shows a few examples of transformations of a hand image. During the oper-

ation of the vision system, the hand can be placed at different parts within the field of

vision of the camera (translation), moved closer or further from the camera (scaling),

and rotated in various orientations (rotation and shearing). It is obvious that although

these images are not identical, they should be classified as being the same image. The

next section describes a method of extracting features values from these images that are

invariant to the above transformations.

3.1.5 Fourier Descriptor Invariants

An interesting approach used to extract invariant features, applicable to solid (silhouet-

ted) images, is described in this section as proposed in [45]. The invariant features that

 
 
 



CHAPTER 3. THEORETICAL APPROACH 50

r
0°180°

90°

270°

Centroid

amplitude

0                90              180               270

phase angle

Figure 3.5: Fourier Descriptor

The outline of the hand is traced from the silhouette obtained in the image

segmentation phase. The phase angle plus the distance from the outline to the

centroid (the amplitude) generate the phase-amplitude plot.

can be extracted include translation, rotation and scaling. The method first finds the

shape boundary of the silhouette of the hand using a radial search method. Then the

signal is transformed to the frequency-domain where scale and rotation invariance can

be obtained easily.

To obtain the shape boundary, first the centroid of the image is computed. At this

point, translation invariance is already achieved. Then the image is treated as a radial

amplitude signal around the centroid. The outline of the shape can thus be represented

as an amplitude r varying over a phase angle θ. As long as the shape is radially convex,

this representation of the outline is exact. Figure 3.5 shows an example of such a phase-

amplitude plot.

To recognise an object, the newly plotted graph of the captured image is compared to

the phase-amplitude plots of known objects. To do this, the frequency-domain repre-

sentation of the plotted graph is computed by applying the Fourier transform. Let f(t)
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be a continuous function of one variable, then the Fourier transform is defined as

F (s) =
∫ +∞

−∞
f(t)e−i2πstdt =

∫ +∞

−∞
f(t)[cos(2πst)− i sin(2πst)]dt (3.7)

where i is the imaginary unit with i2 = −1. The sine and cosine terms in the above

equation are derived from Euler’s formula

eix = cos(x) + i sin(x) and e−ix = cos(x)− i sin(x) (3.8)

Each F (s) yields a complex value. Let the magnitude of a complex number a + bi be

+
√

a2 + b2, then the magnitude of each F (s) represents the power of the sth harmonic

component, and the imaginary component of F (s) contains the phase shift. Therefore

a Fourier transform separates amplitude from the phase information.

It can be shown that the magnitude of the Fourier transform of two periodic functions

that are shifted versions of each other are equal [45]. This fact can be used to test if two

phase-amplitude plots derived from tracing the outline of a shape are equal. If they are

merely shifted versions of each other, then the magnitude of the Fourier components will

be identical. In other words, rotation invariance is obtained after applying the Fourier

transform.

Next, scale invariance is discussed. A scaled-up or scaled-down phase-amplitude plot of

the original signal f(t) is denoted as αf(t), where α is the scaling factor. Let Fα(s) be

the corresponding Fourier transform. Then according to its definition, Fα(s) = αF (s).

Therefore, to obtain scale invariance, each Fα(s) is normalised by dividing Fα(s) by

Fα(0), as follows

Fα(k)
Fα(0)

=
αF (k)
αF (0)

=
F (k)
F (0)

, k = 0, 1, 2, . . . (3.9)

Thus the Fourier transform can be used to construct a useful set of normalised F (s)

values that are invariant to translation, scaling and rotation. It should be mentioned

that a limitation of the Fourier descriptor is that it does not provide invariance to

rotations with respect to the camera plane, i.e. tilting the hand towards the camera.

In order to classify one silhouetted image of the hand, a series of normalised F (s) values

of the phase-amplitude plot is computed for s = 1, 2, 3, . . . , N , where N is a number

chosen depending on the accuracy of the phase-amplitude plot. These values can then be

used for further classification by using a neural network classifier, which will be discussed

in the following sections.
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Figure 3.6: Using a Tracking Window

3.1.6 Tracking Window

This section motivates the use of a tracking window to optimize bandwidth and poten-

tially simplify the image segmentation problem.

In computer vision it is often very useful to know the position of the objects of interest

(e.g. hand or head of the user) relative to the system’s field of vision or the user’s

operating environment. This problem is known as tracking and was first studied in

tracking of moving targets in military applications [28].

In gesture recognition applications, the camera’s field of vision is usually large in order

to cover the range of movements of the user’s hand. As a result the hand may cover

a small number of pixels compared to the entire captured image. Figure 3.6 illustrates

this scenario.

Since the hand is the primary object of interest, an opportunity for saving computational

bandwidth presents itself here if image analysis can be limited to a sub region of the

captured image. Analysing a sub rectangle of the entire image provides bandwidth

savings on per-pixel operations. This rectangular region is referred to as the tracking

window [28].

Another advantage of using a tracking window is that it simplifies the image segmenta-

tion problem. Fewer objects would be present in the tracking window compared to the

number of objects in the entire image. Therefore objects that will potentially disrupt

the operation of the system will less likely be considered for analysis. For example, in

Figure 3.6, the head will not be taken into consideration unless the hand moves close to

the head.

The position of the tracking window needs to be updated as the hand moves across the

camera’s field of vision in time. The simplest form of tracking would be to move the

window currently under investigation so that the next window will be centered around
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the centroid of the hand.

It is possible for the tracking mechanism to fail if the hand moves faster than half the

size of the tracking window within the time of one video frame. This is not likely to

happen given the fact that the human hand moves at a relatively slow speed compared

to video frame rates.

Tracking multiple objects is possible using multiple tracking windows. The tracking

task remains trivial as long as the objects being tracked do not overlap or come too

close to each other, which causes their tracking windows to overlap. If this happens,

additional image segmentation techniques have to be employed to discern the multiple

objects within the tracking windows.

3.2 Static Gesture Recognition

In a gesture recognition application, the user interacts with the system by issuing com-

mands with the hand. These commands have the form of predefined hand poses, for

example, a closed fist or a finger pointing at an object.

After the feature values are obtained from the computer vision framework using any

of the feature extraction methods discussed in the previous sections these values must

be further classified to correspond to the predefined gesture classes. A neural network

classifier is employed to perform this task.

3.2.1 Feed-Forward Neural Network Classifier

Neural Networks [56] are valuable tools in Computation Intelligence [15]. Neural net-

works are discussed in this section as they form an indispensable part in gesture recog-

nition, and in the understanding of abstract forms of orchestra conducting and musical

expression [9].

In typical gesture recognition applications, there are input hand signals from the user

which should be matched to the known output signals, but the relationships between

input patterns and desired output (or the mapping) is unknown. Neural networks have

the capability of learning these relationships by learning from a set of training examples.

Then it can generalise the problem to correctly predict the desired outcome of inputs

not provided to the system as training examples.

In mathematical terms, an input vector x of dimension n must be classified as belonging

to one of C classes. If the input space consisting of all possible vectors x is considered,

then a decision boundary between classes of vectors can be constructed in n-dimensional
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Figure 3.7: Two-Layer Feed Forward Neural Network

space. Together, these boundaries will determine which vectors will be classified as

belonging to a certain class k, where k = 1, 2, . . . , C. This is known as the classification

problem.

Such boundaries can be represented as functions in n-dimensional space, and it can be

shown that a suitable two-layer neural network can be constructed to approximate these

boundaries to arbitrary precision [56].

Figure 3.7 illustrates a two-layer neural network. It is referred to as a 2-layer network

as it has two layers of adjustable weights. The scalar components of an input vector is

fed into the input units. Each unit in the subsequent layers output a scalar value, by

computing a weighted sum of the outputs from the previous layer of units. Therefore

the network is also named a Feed-Forward Neural Network (FFNN).

The network consists of I input units (plus a bias unit), J hidden units (plus a bias

unit) and K output units. Linear functions serve as the activation functions in the

output layer, obviating the need for re-scaling the output data. The hidden units use

the standard sigmoid as activation function.

Let z be an I-dimensional vector which acts as the network’s input, and let zi be the

ith scalar component of z. Each hidden layer unit outputs a single scalar value. Let

these values form a vector y with components yj for 1 ≤ j ≤ J . Similarly, the output

of the neural network is a K-dimensional vector. Let this vector be o with components
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ok. Then forward propagation through the network is defined as follows:

ok(z) = f




J+1∑

j=1

wkjyj(z)




= f




J+1∑

j=1

wkj f(netyj (z))




= f




J+1∑

j=1

wkj f

(
I+1∑

i=1

vji zi

)
 (3.10)

where f is the sigmoid activation function,

f(x) =
1

1 + e−x
with

df

dx
= f(1− f) (3.11)

In equation 3.10, wkj is a weight value which connects output unit k and hidden layer

unit j. Similarly, vji is a weight value connecting hidden unit j and input unit i. Note

that 1 ≤ i ≤ I +1, 1 ≤ j ≤ J +1 and 1 ≤ k ≤ K. The symbols zI+1 and yJ+1 represent

the signal from the bias units, which is equal to −1. The symbols vj,I+1 and wk,J+1 are

the weight values for the biased input.

Another useful quantity, netyj , can be defined intuitively as the net input signal of the

hidden layer unit before the activation function is applied. Similarly, netok
is the signal

from the output layer unit before the activation function is applied.

Neural Network Training

For a neural network to function as a classifier, its internal weights must be determined

so that the neural network as a whole resembles the decision boundaries required for

classifying the input signals. The process of finding the neural network weights is called

neural network training. The aim of the training process is to minimize the error between

the desired output of the neural network and the actual output of the network.

To measure the performance of the network, an error function such as the standard

Sum-of-Squared Errors (SSE) function [15] can be used:

E =
P∑

p=1

K∑

k=1

(tk − ok(zp))2 (3.12)

where tk refers to the target value for output unit k, ok refers to the actual response

of output unit k, zp denotes the pth training pattern, and P is the number of training

patterns used. Although other error functions, for example, weighted SSE, exist for

neural networks, the SSE is simple to implement and produces good results [16].
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There are various neural network training algorithms [56]. One algorithm, called gradient

descent [53], finds the appropriate weight values by applying small adjustments to them.

The amount of adjustment is related to the derivative (gradient) of the SSE over the

weights. Let ∆w be the amount of adjustment made to a weight after a training pattern

is presented, then for each weight value w in the network,

∆w = −η(
∂E
∂w

) where E =
K∑

k=1

(tk − ok)2 (3.13)

In the above equation, the scaling factor η is called the learning rate, which controls

the amount of adjustment being made, in other words, the step size. The negative

sign before η indicates that weight updates push the network in the direction which

minimises the error.

Lastly the coding scheme for the neural network output is discussed. For gesture recog-

nition, the desired output from the neural network is not a vector of continuous values

but a discrete classification. Therefore a K-dimensional output vector o can be used.

The value of ok must be either 0 or 1. In other words, the output vector o is of the form

o = (0, 0, . . . , 1, 0, . . . , 0). In practice, the output vector produced from the NN consists

of floating point values. Then the component with the largest magnitude within the

vector can be taken as the classification.

It is possible that the gesture presented to the system in runtime does not belong to

any of the learned K classes, for example, when the hand is in a relaxed position. A

threshold is applied to the output vector o to prevent such a gesture from activating a

classification.

3.3 Dynamic Gesture Recognition

This section deals with techniques for recognising gestures that occur over time, for

example, waving the hand.

3.3.1 Temporal Segmentation

Referring to section 2.2.4, a dynamic gesture consists of three phases: preparation, stroke

and retraction. The objective of temporal segmentation is to distinguish the idle time

from the actual gesture signalling time. In other words, the stroke phase of the gesture

is identified.

In general, temporal segmentation can be performed by distinguishing certain measur-

able features during the gesture interval. For example, the “preparation” and “retrac-

tion” phases are characterized by the rapid change in position of the hand, while the
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“stroke” exhibits relatively slower hand motion, and the movement of the hand follows

a classifiable path.

The scope of this thesis is to explore the basic aspects of dynamic gestures. Therefore,

temporal segmentation is simplified by using static gestures as guides to identify the

stroke phase.

Static Gesture Assisted Temporal Segmentation

In this approach, the user of the gesture recognition application indicates the actual

duration of the dynamic gesture, which helps simplifying the temporal segmentation

task. Two possible schemes are discussed, as illustrated in figure 3.8.

• In the first scheme, the user assumes a pre-defined hand pose to indicate the start

of a dynamic gesture. The pose is maintained during the entire gesture interval.

At the end of the gesture, the hand relaxes.

• In the second scheme, the user assumes the pre-defined signalling gesture and then

relaxes the hand. At the end of the gesture, the user assumes the signalling gesture

again.

It can be seen that the hand pose helps in identifying the actual gesture stroke. Tem-

poral segmentation can be performed using one of the above schemes. The extracted

movement path of the hand can be further classified using the method presented in the

next section.

3.3.2 Using Eccentricity in Dynamic Gestures

A simple method of classifying a small number of gesture paths can be realized by

measuring the eccentricity values of the gesture path [11]. This is illustrated in Figure

3.9.

The eccentricity of a gesture path is defined as the skewness of the path, relative to the

straight line between the gesture start and end points.

The following characteristic values are representative of the gesture path:

• The number of turning points present

• The ratio of h1/d and h2/d where d = (d1 + d2 + d3)

• The ratio of d1 : d2 : d3
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Once these values are calculated, they can be matched (e.g. using the Euclidean dis-

tance) to the eccentricity values of pre-defined gesture paths.

3.4 User Interface for Electronic Music Arrangement

This section presents the intended application area of the previously discussed gesture

recognition techniques.

Using the techniques described in the previous sections, a user’s hand movements can

be captured in real-time and can be used as input commands for an electronic music

arrangement application, which is the goal of this thesis.

Electronic music arrangement is also known as mixing. Mixing is an interactive process

in which a musician or a sound engineer fine-tunes the parameter values of individual

parts of a music composition, such that each part contributes optimally to the final

sound track. This is usually done with the help of computers, while the music parts

being mixed are represented as sound waves in the digital domain.

3.4.1 Music Features in Electronic Music Arrangement

This section defines the scope of functionality of the mixing application which is to be

implemented. Specifically, the list of music features which are to be controlled by the

mixing application is discussed here.

Global Music Features

The features discussed here affect all parts of the composition.

Tempo This refers to how quickly the music score is played. Tempo is usually measured

in BPM (beats-per-minute). Typically, tempo is varied temporarily in a song for

a dramatic effect.

Overall Volume Likewise, the volume of the music can be altered for a dramatic effect.

It can also be changed gradually for fade-in and fade-out effects.

Partial Music Features

During the mixing process, the following parameter values are tweaked for each part of

the music composition, so that each music part contributes optimally to the final result.
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Volume This controls the loudness of the track and how much the track contributes

to the final mix. Care is taken so that the part is audible while not overwhelming

the final mix.

Mute/Solo Mute silences a selected musical part, while solo silences all other musical

parts so that the selected musical part can be listened to individually. The mute

and solo features are useful particularly in finding the responsible part that causes

a harmony problem in a music composition.

Panning/Positioning This refers to the placement of the sound in a stereo or multi-

channel speaker environment. In a stereo speaker setup, the sound is given the

impression that it is originating from a point along the line between the left and

right speakers. In a surround speaker setup, the sound appears to be originating

from a point on the plane the speakers are placed. The positioning effect is achieved

either by modifying the relative volume of the sound played by the speakers,

or introducing a slight phase difference to the sound when played through the

different speakers, thus tricking the ear to perceive the sound source as directional.

When the positioning of a sound source is changed over time, this is referred to as

panning. Panning gives depth to the listening environment and gives the listener

the impression that the sound source is moving in space.

Presence/Reverberation This gives the illusion of varying the acoustic environment

in which the musical part is recorded. A low presence gives the impression that

the music is played far from the listener in a large hall. A high presence gives the

impression that the music is played near the listener in a small room. The illusion

of presence is achieved by varying the amount of reverberation or echoing applied

to the sound wave.

Equalisation While a volume control allows the user to change the overall loudness

of a musical part, equalisation (EQ) allows the user to break down the sound

into discrete frequency bands and tweak the volume of each band. It is common

practice in mixing to adjust each musical part so that each part has a dominant

frequency band that is unique relative to other parts in the composition.

Other Parameters This includes other effects that can be realised in real-time using

a digital signal processor (DSP), which are becoming commonplace in modern

music. Some examples are vibrato, compression, delay, chorus, overdrive, etc.
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3.4.2 Camera Placement

In this section, two issues are discussed which involve the comfort level of a user in

a video-based gesture recognition application. The first issue is the placement of the

camera relative to the user’s working environment, and the second issue concerns the

users’ posture.

Video conferencing is one of the first applications of video cameras in mainstream com-

puting. During a video conference, the camera is usually placed in such a way that the

user’s upper body is in the camera’s field of vision.

Imagine a person using gestures in a working environment. One may think of, for

example, a traffic officer directing traffic using hand signals or a translator using sign

language in a meeting. Typically, the person using gestures holds his hands in front of

him in an upright position.

A standard camera placement for video conferencing applications provides an adequate

field of view that is suitable to gesture recognition applications, as illustrated in Figure

3.10. There are however a few inherent problems with this camera placement:

• The movement of the hand may block the user’s view of the computer screen.

• The extent of arm movement does not correspond well with tracking window ex-

tents. In other words, there are areas within the camera’s field of vision which are

not easily reachable by the user. This results in inefficient use of tracking space, or

the user has to stretch his movement to cover the entire tracking window extents.

• The user holds his hand in an upright position during the runtime of the appli-

cation, which results in physical fatigue. To remedy this, the user may relax his

hand while not issuing gesture commands. The side effect of relaxing the hand is

that the hand constantly enters and leaves the camera’s field of vision.

• This camera placement makes the image segmentation task more complicated as

there are competing features present such as the user’s head. The hand moves in

front of the user’s body and clothing which is more prone to variations than the

background environment.

An alternative scheme for camera placement and user posture is proposed in this thesis,

as shown in Figure 3.10. This posture has the following characteristics:

• For a more comfortable posture, the user’s arm is slightly bent inward. The user’s

arm is not extended in such a way to be in line with the imaginary line between

the user’s shoulders.
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Figure 3.10: Camera Placement

Left: Standard placement of the video camera in video conferencing applications.

Right: Placement and orientation of the video camera to suit the user’s anatomy.

• Instead of placing the camera to face the user with his body in the center, the

camera’s main field of vision is the area to the side of the user’s torso.

This way of placing the camera has the following advantages:

• The user’s view of the computer screen is not blocked by the movement of the

hand.

• The tracking window better fits the user’s arm anatomy.

• The user does not have to lift his hand fully upright. The system is less tiring to

operate, which translates to better ergonomics.

• The image segmentation task is simplified. There is nothing behind the user’s

hand except the background.
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3.5 Summary

This chapter presented an overview of a computer vision framework which extracts

useful features from captured camera images of the user. Then methods of identifying

the user’s hand pose were described. Schemes of recognising gestures over time were

also discussed. Lastly, section 3.4 listed basic requirements and design issues of user

interfaces for music arrangement applications.

The next chapter covers the implementation details of the gesture recognition system.

Since the goal of this thesis is a real-time productivity application, issues such as com-

putational performance and usability are important. These issues will be discussed in

detail in the next chapter.

 
 
 



Chapter 4

Implementation and the Virtuoso

Demo Program

This chapter presents the software design and implementation aspects of Virtuoso, a

music arrangement application that features an input mechanism using real-time video-

based gesture recognition. The name Virtuoso is chosen as the goal of the program is

to provide an effective user interface for greater musical expression, similar to how a

virtuous musician would have mastered the technical aspects of his instrument, thus

being able to focus on expression during performance.

Section 4.1 presents the functionality requirements of a gesture-based music arrange-

ment application. Section 4.2 discusses the hardware and software platforms on which

Virtuoso is developed. Section 4.3 gives an overall picture of how the components of

Virtuoso operate together as a system. Sections 4.4 to 4.7 provide implementation de-

tails of the individual components that made up of Virtuoso. Section 4.8 presents a

software framework which ties up all the components. This framework provides a soft-

ware environment in which vision-based experiments may be created.

4.1 System Components

The first step in designing and implementing Virtuoso is to identify its core functionali-

ties. This section presents the key software components which were identified during the

design of Virtuoso. This section also provides an idea of the scope of functionality that

Virtuoso covers, and the prerequisite knowledge required for system implementation.

64
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4.1.1 Bitmap Manipulation Component

The primary input for video-based gesture recognition is the stream of bitmap images

captured from the camera. Therefore adequate bitmap handling functionality is pivotal

to the success of the application. The Virtuoso application has a bitmap manipulation

component that fulfills the following requirements:

Bitmap Formats for Image Analysis: The following bitmap pixel formats are fre-

quently used for image analysis operations:

• Color images are represented in multi-channel formats. The 32-bit RGBA

(red, green, blue, alpha) format is used in capturing and displaying video.

A pixel consists of four 8-bit luminance values, one for each of the colour

channels, and an alpha (transparency) channel. The alpha channel is typically

not used, and exists as a means of aligning the pixels to a 32-bit storage

format suitable for modern CPU and memory architectures. In addition, the

bitmap component should be able to handle and perform conversion between

common byte order formats. These byte orders exist as there are various

standards defined by the video capture and display hardware. The imaging

component can handle orderings such as RGBA, ABGR and BGRA.

• Monochrome images are represented in the single channel format. The 8-bit

grayscale format and the 1-bit format are used during image analysis. For

example, an 8-bit grayscale mask with soft edges is generated by the chroma

keyer, and a black and white silhouette image is generated for the image of

the user’s hand.

Exposing Byte Streams: While the imaging component should hide the underlying

complexities of the bitmap representation from the software developer, it should

be able to expose the raw byte streams of the bitmap, such that external image

processing algorithms can operate on them.

File I/O: Being able to persist (i.e. save) a video image to a file has many advantages.

For one, intermediate results generated by the image processing modules within

Virtuoso can be persisted (saved to the hard disk) for further analysis with a third

party program and for reporting purposes. In Virtuoso, captured video streams

and image analysis intermediate results can be saved in uncompressed BMP or

AVI format in real-time. Images can also be saved in compressed JPEG format

for storage space conservation.
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Image Sequences: For gesture recognition applications, images are not only handled

or operated on in a singular fashion. Images are also handled (e.g. loading a set

of training images) and operated on (e.g. generating the Fourier descriptors of a

set of images) in sequences.

4.1.2 Display Component

Consider a computer mouse as an input device. Without the mouse pointer display on

the computer screen, the effectiveness of the mouse as an input device is greatly reduced.

Therefore a mouse input mechanism does not consist of the physical device alone, but

a visual feedback component.

Likewise, Virtuoso requires a visual feedback component. The visual feedback should

consist of at least the real-time camera captured image, so that the user of the system

can verify that the computer is “seeing” the correct scene for gesture analysis.

The displayed image is mirrored, as a person is more accustomed to seeing himself in a

mirror than working with the original image.

Since Virtuoso is a musical application, sound feedback is played through the speakers,

leaving the computer display relatively unused. With this extra screen real estate,

the display component can provide visual feedback of how the system is processing

video images and interpreting the user’s gestures. In order to accomplish this, two

requirements for the display component are proposed:

Multiple Viewports: Video-based gesture recognition involves a series of image pro-

cessing and analysis operations. A desirable functionality of Virtuoso is the ability

to examine the visual data in all stages in the image processing pipeline. The

Virtuoso program features a number of configurable viewports for displaying mul-

tiple images, so that intermediate results can be checked during runtime for con-

sistency.

Video Acceleration: To display the vast amounts of real-time visual data for video-

based gesture recognition, the display component of Virtuoso should make use of

modern hardware-accelerated displays, which expose their features through graph-

ics application programming interfaces (API’s), such as OpenGL and Microsoft

Direct3D.

4.1.3 Video Capture Component

The video capture component communicates with the system camera and outputs a

stream of images for further analysis. The following two requirements increase the
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flexibility and programmability of the system.

Device Independence: The system should be able to adapt to a variety of cameras.

These cameras may capture at various frame rates, pixel dimensions and byte-order

formats. With device independence, the performance of the gesture recognition

application under different camera configurations can be evaluated. For example,

the performance of the vector keying component can be tested with input from an

inexpensive webcam and with input from a broadcast-quality camera, which offers

greater colour fidelity.

Alternative Video Streams: From a programming point of view, it is helpful for the

system to be able to accept input video streams other than the live camera stream

itself, for example, from a pre-recorded video file. The advantages of this feature

are apparent during development of the system: This allows testing the program

in an environment where no live video streams are available, for example, when

there is no camera present or when lighting conditions become unsuitable due to

daylight changes during the course of the day.

Programming can be an interactive process: A program is run and terminated,

then the source code or system parameters are tweaked, the program is then

compiled and rerun. For Virtuoso, this means the programmer has to constantly

leave the desk and stand in front of the camera. This proves to be a distraction and

affects his concentration. Having a pre-recorded video stream as input is useful in

this case.

Further, the software debugging process typically involves reproducing a bug. It

is unreasonable to expect a user to move his hand twice in an identical manner

in the hope of reproducing the error condition. Instead, the live video stream is

recorded at all times, and if an error occurs, the saved video stream can be used

to reproduce the error condition.

Software test cases can be constructed by synthesising a test footage using a video

editing suite. The same test footage can be fed into the system repeatedly to

validate the correctness of image processing algorithms after making a change to

program source code.

4.1.4 Image Processing Component

After a video stream is captured from the camera, the user’s movement is extracted from

the video frames using image processing and computational intelligence techniques. The

image processing components are listed below. From an implementation point of view,
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it is important to note that these components must be able to operate at real-time frame

rates.

Background Subtraction: The background subtraction algorithm distinguishes the

image of the user from the background. Section 4.4.1 presents a detailed discussion

of the algorithm. It will be mentioned that the algorithm is computationally

expensive, but has a useful place in Virtuoso.

Chroma Keyer: The chroma keyer is used in Virtuoso to obtain a suitable training

set for the vector keyer. It takes input images which consist of the user’s hand on

a blue background. Its output is a series of images in which the blue pixels are

masked out, leaving the skin-colour pixels behind.

Vector Keyer: The vector keyer consists of two parts. The first part is a training and

learning algorithm. It calculates the whitening transform from the collection of

sampled skin-coloured pixel values. The training algorithm is executed only in

the preparation phase of the application, and is not executed during runtime. The

second part of the vector keyer is the runtime component. It applies the whitening

transform to input video images and outputs a bitmap of pixels that are classified

as skin colour. The result is a black and white silhouette of the user’s hand.

The vector keyer also includes an implementation of a vector and matrix class,

which handles the necessary operations involved for training.

Fourier Descriptor: The fourier descriptor is made up of two parts. The first part

accepts a silhouette image from the vector keyer, and produces a radial plot of

the silhouette. Referring to section 3.1.5, a radial plot gives the distance from

the centroid of the silhouette to the boundary of the silhouette, for any starting

angle θ, where θ is in the range of 0 to 2π. This is achieved by marching pixel by

pixel along the line which originates from the centroid until the boundary of the

silhouette is hit. The second part accepts the radial plot and computes the Fourier

transform of the radial plot, effectively transforming the signal into components

in the frequency domain.

4.1.5 Computational Intelligence Component

The following CI (Computational Intelligence) components complete the static hand

gesture recognition mechanism.

Neural Network: A feed-forward neural network learns the relationship between user

gesture images and the corresponding classifications. The system asks the user
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to give examples for each pre-defined hand signal. The examples given by the

user form a training set for the neural network. It is essential that the trained

neural network be able to classify gestures not seen during the training phase (not

new gestures, but new instances of known and trained gestures), that is, gestures

presented to the network during the actual use of the system.

The neural network should be able to have a variable size for training (i.e. variable

number of hidden units), depending on the number of classes of gestures that the

user wishes to have.

Neural Network Training Algorithm: A training algorithm is needed to find the

optimal weight values for the neural network so that the network can perform the

classification task. Such an algorithm typically initialises all weights to random

values and make small adjustments to the weights in an iterative fashion. The

process carries on until some criterion is met, for example, when the neural net-

work’s performance reaches the desired level to perform the task at hand. The

gradient descent method (the steepest descent algorithm in particular) is used for

the adjustment of the weights, and is discussed in section 4.5.2.

4.1.6 Music Component

The system demonstrates the possibility of using gestures in music arrangement appli-

cations. In order to do this, the following essential components are implemented.

Signal Processing: The system is a program which manipulates music. Most of the

manipulations required for music arrangement listed in section 3.4.1 can be realised

in the sound wave domain. Ideally, the system should be usable on audio work-

stations with a variety of sound card configurations. Therefore the system makes

use of audio APIs which expose a number of well-implemented signal processing

filters while offering hardware independence.

Sequencing: This refers to the management and editing of events which happen over

time. Musical sequencing software focuses on editing the musical attributes of

events (such as pitch) which happen over time. The time in which an event can

occur is likely to be guided by some music theory. Sequencing software can be

extended to more general choreography, such as coordinating coloured spot lights

in a live stage show.

While Virtuoso is not a sequencing software program, basic concepts of sequencing

and musical theory (e.g. bars, measures, beats, notes, scales and chords) need to

be modeled in program code. This is because some of the music manipulations
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CPU Intel Pentium IV 2.6GHz HT 512KB L2 Cache

Memory 2GB DDR400

Graphics nVidia GeForce 6800 128MB

Camera 1. Logitech QuickCam Pro 4000

2. ADS Pyro IEEE 1394 Webcam

3. JVC GR-D33AG DV Camera

Operating System Microsoft Windows XP

Development Environment Microsoft Visual C++ .NET 2005

Graphics API OpenGL

Video Capture API Microsoft DirectShow

Sound and Music API Firelight Technologies Fmod Ex 4.02

Hardware Platform

Software Platform

Table 4.1: Hardware and Software Platforms

required are not realisable in the sound wave domain, but are realisable in the

music score domain.

File I/O: The goal of Virtuoso is a system which allows the user to customise how each

musical part contributes to the combined result using gestures. The data (the

parameters for each part’s contribution) collected after a user session is saved so

that the audible result can be recreated at a later stage. This situation is analogous

to being able to save a document when using a word processing program.

4.2 Hardware and Software Development Platforms

This section discusses the hardware and software platforms on which Virtuoso is devel-

oped.

Modern computer hardware has enough signal processing power to enable many com-

puter vision systems to have real time performance. If a gesture recognition system is

well-optimised, it is possible to go beyond the recognition task itself, and utilise the

left over processing cycles for applications such as gaming and in this case, music ar-

rangement. For Virtuoso, the extra processor headroom is dedicated to music synthesis

and displaying additional visual data. Table 4.1 summarises the hardware and software

platforms used for the implementation of Virtuoso.
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Figure 4.1: Training Operation Flow Diagram

4.3 Operation Overview

This section describes how the software components listed in Section 4.1 function to-

gether in a system. Virtuoso operates in two distinct modes, namely training phase and

runtime phase.

Figure 4.1 presents the data types, the flow of data, and the relationship between various

system components during the training phase. The training phase consists of two sub-

phases. Firstly, the colour training phase enables the system to recognise skin colour.

Secondly, in the gesture training phase, the system learns the relationship between hand

silhouette images and symbols, taking the uniqueness of the user’s hand shape into

account. Training consists of the following steps:

• The system camera is exposed to a scene consisting of the user’s hand with a blue

background. Several images are captured as sample skin colours.
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• The images are chroma keyed. The blue pixels are discarded, leaving the skin

coloured pixels.

• The whitening transform is calculated for the skin coloured pixels. This yields the

vector keyer parameters. At this point the system is able to recognise skin colours.

A detailed discussion of vector keyer training can be found in section 4.4.3. This

concludes the colour training phase.

• After the colour training phase, the system camera can be exposed to scenes with

an arbitrary background, as long as the background does not contain skin colour.

• The system collects groups of images containing user hand poses. Each group

consists of several images of the user performing the same hand pose.

• The Fourier descriptor is calculated for each image. The intended class labeling for

each hand pose is already known. The Fourier parameters of all images together

with the classifications form a training set.

• A neural network training algorithm finds the optimal weights for the neural net-

work using the training set. This concludes the gesture training phase.

Figure 4.2 presents the system components connected in the runtime phase. Video input

is processed in the following steps:

• The system camera can be exposed to scenes with an arbitrary background, as

long as the background does not contain skin colour.

• The user positions his hand in front of the camera to issue gesture commands.

• The video input image is cropped according to the tracking window parameters.

• The vector keyer outputs a bitmap image indicating pixels with skin colour.

• The Fourier descriptor calculates the feature values describing the hand silhouette,

then the feature values are used as input values for the neural network to generate

a hand pose classification.

• Finally, ready-to-use gesture recognition parameters are generated for user inter-

action purposes.

The implementation of the above mentioned components with real time performance is

presented in the following sections.
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Figure 4.2: Runtime Flow Diagram

4.4 Computer Vision Implementation

This section is a detailed discussion of the implementation of the computer vision com-

ponents in Virtuoso.

4.4.1 Background Subtraction

This section motivates the employment of a computationally expensive but useful back-

ground subtraction algorithm and describes a simple optimisation based on the intended

usage of the algorithm in the system.

Imagine the scenario in which the user operates the system in the system’s training

phase. The user has to present himself in front of the camera for the colour and gesture

training tasks. During this intermediate stage, in which the system is not yet trained,

the system is unable to interpret gesture-based user commands. However, the user needs

to issue commands to the system, for example, marking the end of a particular training

task. The traditional keyboard and mouse inputs are used.

This presents a problem of having the user to move back and forth between the desk and

the camera. A possible solution to the above problem is to have a second user acting as

an operator of the system during the training phase.
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Figure 4.3: Touch Buttons

This series of images show the live video image, the same image with touch buttons

superimposed, and the user touching one of the buttons.

A desirable property of the system is the ability for itself to be operated with the user in

front of the camera during the entire lifetime of the system’s execution, from startup to

termination. There needs to be a basic mechanism for the system to detect movement

in the camera’s field of view without any priori knowledge or training.

A solution to enable the above training operation is to use the background subtraction

technique. As discussed in section 3.1.3, this technique does not require prerequisite

knowledge of the scene, and is sufficient for detecting movement in the environment.

The idea of touch buttons is introduced here. It is a mechanism which allows the user

to give simple commands such as start, stop, shutdown, idle, resume, yes, no, next and

previous entirely using gestures alone.

Assume that the live video image is constantly displayed by the system during runtime.

A touch button is then a button-like object which is superimposed on the video image,

typically located at the edge of the video image. An example of a touch button display

is shown in Figure 4.3.

A command can be issued by reaching out with the hand and “touching” one of the

buttons. The live video display plus the superimposed buttons provide a visual feedback

to the user. This situation is similar to a mouse cursor touching a button on the computer

screen, and should be familiar to most users.

Another improvement upon using background subtraction in the training phase is to

make the training procedure time driven. For example, the training steps move forward

from one step to the next at some pre-defined time intervals. The system displays

messages such as show me this colour now or show me this gesture now, then the user

has to provide the training example within the time window provided. This time driven

training process eliminates the need for user input.

Figure 4.4 presents the core background subtraction algorithm. In the source code
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listing,

• The source image is the live video image.

• The pixel model image is a reference image which the system believes to be the

background. This image is updated for every new video frame captured.

• The motion image is a grayscale image which indicates the regions in the camera’s

field of view where movement is detected. This image is calculated for every new

live video frame.

This algorithm is computationally expensive compared to the keying algorithms dis-

cussed in the following sections. For every captured video frame, two image updates are

performed. One for the pixel model image and one for the motion image. An averaging

operation is performed on the pixel model image. For the motion image, an expensive

distance measure is calculated which converts the RGB difference into a single grayscale

value.

An interesting discovery was made by the developers of Virtuoso on the pixel model

image—it had superior colour fidelity compared to a single image captured from the

video camera. This phenomenon is due to the fact that the colour value in each pixel

of the pixel model image is a result of averaging over several samples taken over time.

This feature is also found in the latest generation of consumer digital cameras and is

labeled as noise reduction, and works on static scenes assuming that the sensor noise

has a particular distribution, e.g. Gaussian distribution.

One drawback of the background subtraction scheme becomes apparent when the camera

placement is adjusted during system runtime, for example, adjusting the camera so that

it faces the user properly. The entire background will be shifted with respect to the

camera’s field of view, resulting in motion detected in the entire image, which results

in all touch buttons being activated. This problem can be addressed by introducing

a threshold value which invalidates the video input if too much movement is detected.

This value can be determined simply by actually moving the camera around to see the

amount of movement detected by the system.

Observe that background subtraction does not need to be done on the entire image—only

the pixels which fall under the area of a touch button need to be taken into consideration.

An optimisation of the algorithm is made by modifying the for-loops such that the

pixel model and the motion image is calculated only for regions belonging to the touch

buttons. Separate for-loops with distinct stopping conditions are created inside the

algorithm to detect motion in small pre-defined regions of the captured image. This
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void MotionDetector :: UpdatePixelModel(Image& videoImage)

{

unsigned char* source = videoImage.GetData ();

unsigned char* pModel = m_pixelModel ->GetData ();

unsigned char* motion = m_motionGraymap ->GetData ();

int p_inc = Image:: GetBytesPerPixel(Image :: BYTEORDER_BGRA );

int b_inc = Image:: GetBytesPerPixel(Image :: BYTEORDER_GRAY8 );

double maxDifference = 255 * 255 * 3;

double multiply = 10;

//Non -optimized , update all pixels

double rs , gs , bs , rp , gp , bp;

double distance , normalizedDistance;

for (int i = 0; i < m_pixelModel ->size; i++)

{

//Get values

rs = *( source +2); gs = *( source +1); bs = *( source +0);

rp = *( pModel +2); gp = *( pModel +1); bp = *( pModel +0);

// Update motion image

distance = SQ(rs - rp) + SQ(gs - gp) + SQ(bs - bp);

normalizedDistance = distance/maxDifference *255* multiply;

if ( normalizedDistance >255) normalizedDistance =255;

*motion = 255 - ( unsigned char)normalizedDistance;

// Update pixel model

*( pModel +2) = ( m_updateRate*rs) + ((1 - m_updateRate )*rp);

*( pModel +1) = ( m_updateRate*gs) + ((1 - m_updateRate )*gp);

*( pModel +0) = ( m_updateRate*bs) + ((1 - m_updateRate )*bp);

//Next pixel

source += p_inc ; pModel += p_inc ; motion += b_inc;

}

}

Figure 4.4: C++ Code of the Background Subtraction Algorithm
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results in substantial savings of processor cycles due to the ratio between the area of

touch buttons and the video image.

4.4.2 Chroma Keying

Figure 4.5 presents the source code of a software chroma keyer. Since the usage of the

chroma keyer in the system is to simply mask out blue pixels from a scene with the

user’s hand and a uniform blue background, a simple implementation is sufficient.

In the source code listing,

• The actor image is the live video image.

• The buffer image is an image buffer that is given to the chroma keying algorithm.

This is the placeholder for the chroma keyer’s output.

• The value m_useBlue is a system parameter which determines whether a blue

screen or a green screen is used.

• The memset() method used before the actual chroma keying operation is used for

speed optimisation. It sets all pixels in the buffer image to white, marking all

pixels as being the foreground. When the colour values for each pixel in the actor

image is examined, only a blue or green pixel results in an assignment operation

being done on the buffer image (marking the pixel as being the background),

otherwise no assignment operation needs to take place. This optimisation saves

assignment operations for all pixels in the foreground. Furthermore, the memset()

operation serves to initialise or clear the contents of the buffer image, since there

is no guarantee that the buffer image is cleared before chroma keying takes place.

The algorithm reduces the per-pixel calculations to two integer comparisons and one

boolean operation. The average number of operations needed per pixel is less, because

for some pixels the first integer comparison results in a false (when the pixel’s red value is

larger than its blue value), therefore eliminating the need to evaluate the second integer

comparison.

This chroma keying algorithm does not perform “soft-keying”. In other words, the

resulting silhouette image has hard edges, and pixel values are either 0 or 255. A soft

mask is useful for compositing applications, but is not suitable for Virtuoso as the rest of

the image processing mechanism is not capable of taking advantage of soft-keyed images.

Notice the method signature of the chroma keyer. It is possible to modify the algorithm

to not receive a buffer image and to return a new keyed image that is dynamically
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void ChromaKeyer :: KeyImageBuffered(

Image & actorImage , Image & bufferImage)

{

unsigned char* source = actorImage.GetData ();

unsigned char* target = bufferImage.GetData ();

unsigned char ru , gu , bu;

// Optimisation : Brighten all pixels first

//then blacken the blue/green pixels later

memset(target , ( unsigned char )255 , bufferImage.size);

if ( m_useBlue)

{

// Chroma key the blue pixels

for (int i = bufferImage.size; i > 0; i--)

{

// Assume the image is in BGRA format

bu = *( source );

gu = *( source + 1);

ru = *( source + 2);

if (bu > ru && bu > gu) * target = ( unsigned char )0;

source += 4; target ++;

}

}

else

{

// Chroma key the green pixels

//Code omitted , similar to above

}

}

Figure 4.5: C++ Code of the Chroma Keyer
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allocated in memory every time the chroma keyer method is called. However, for the

current system, since the chroma keyed image forms a part of the image processing

pipeline, it is better to have the buffer image as a statically allocated resource that is

initialised before the system is run. The same principle applies to other image buffers

found in the image processing pipelines.

It is also possible to modify the algorithm to operate on the actor image itself. In other

words, the actor image which contains the foreground and the background is operated

on directly. The pixels classified to be the background are set to black and the pixels

classified as foreground are set to white. This is known as “in-place” chroma keying, and

has the potential of enhancing processor cache performance. This is however not suitable

for the current system due to the fact that the resulting image is still in multi-channel

format (single channel is needed), and that the live video image will be unavailable to

be displayed on screen.

Finally, for compositing applications, the algorithm can be modified such that the buffer

image, which holds the result, is a colour image. An additional parameter called the

background image is passed to the chroma keyer. The buffer image is initialised to be

identical in content with respect to the background image, using a fast copying method.

Then if a pixel in the actor image is classified to be the foreground (i.e. not background),

the colour value of the pixel of the actor image is copied to the buffer image. This has

the effect of putting the actor onto a new background. Similar modifications to other

keying algorithms can be made based on the afore-mentioned requirements.

4.4.3 Vector Keying

This is the third and the last segmentation algorithm implemented in Virtuoso. Unlike

chroma keying and background subtraction, vector keying has the ability to learn the

key colour during a training phase, in which the system collects a training set of skin-

coloured sample pixels in RGB space.

Because of the whitening transform technique described in section 3.1.2 which is to be

applied to the samples, it is important that all points in the training set are of the

desired colour—no false pixels are allowed in the set. It is not difficult to obtain such

a training set. A scene can be set up consisting of solely the user’s hand and a blue

background. Chroma keying is applied to remove the blue pixels, leaving the desired

skin-coloured pixels behind.

In an actual calibration session, a user positions his hand in front of a blue background.

Several frames (around 10–15) are captured and chroma keyed to remove the back-

ground. The user may alter the orientation of the hand with respect to lighting in the
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scene, to present to the system all possible variations of brightness of skin colour.

The training set is built by collecting all pixels not masked out by the chroma keyer.

This set takes the form of colour vectors (r, g, b)k where k denotes the kth sampled

skin-coloured pixel. Assuming there are n sample images each with width w and height

h, and an average 10% coverage of skin-coloured pixels, then there can be as many as

n× w × h× 10% training samples.

In a non-realtime phase, the system computes the covariance matrix Σx of the training

set, as defined in equation 3.4. Eigenvalues and eigenvectors exist for Σx as the matrix

is symmetric and real, and can be found by first using Householder’s algorithm and then

applying a QR factorisation pass (a process of decomposing a m × n matrix into the

product of an orthogonal m ×m matrix Q and an upper triangular m × n matrix R)

[45]. This yields the required rotation matrix that will transform the RGB space so that

the hue vector will line up with the coordinate axes. The above calculated parameters

are saved for later use by the runtime phase.

The runtime phase of the vector keying is relatively simple. To begin, the mean vector

of the training set, along with the rotation matrix and the eigenvalues are retrieved

from a previous training session. Then, pixels in new input images are transformed

according to equation 3.3 by first subtracting the average, followed by rotation with

the eigenvectors and finally scaling the result by the eigenvalues. The resulting point

is then tested to see if it falls inside a sphere of radius R (R is usually 2). Figure 4.6

is a listing of the runtime core loop of the algorithm. The example provided here does

not calculate a black and white mask as required by the rest of the system, but outputs

an 8-bit luminance value, with a white pixel representing the likelihood of skin colour.

This output can be used to visually verify the correctness of the algorithm.

The vector keying algorithm is comparatively faster than background subtraction, but

involves more computations than chroma keying. Fortunately, vector keying only has

to be applied to the tracking window portion of the video frame during actual system

usage.

The next section describes the technique to extract usable feature values from segmen-

tation images for gesture recognition.

4.4.4 Fourier Descriptor

After the image of the hand is extracted by the previous image segmentation algorithms,

the Fourier descriptor is applied to the silhouette image to extract invariant features for

further analysis. The Fourier descriptor is calculated in two stages. Firstly, a phase

amplitude plot is generated by tracing the pixels of the silhouette. Then a discrete
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unsigned char * source = sourceImage.GetData ();

unsigned char * buffer = bufferImage.GetData ();

double maxDistanceSquared = SQ(THRESHOLD * 2);

double scaleFactor = 255.0 / maxDistanceSquared;

for (int i = 0; i < sourceImage.size; i++)

{

// Transformation

double r, g, b, tf0 , tf1 , tf2;

r = double (*( source + 2)) - avg0;

g = double (*( source + 1)) - avg1;

b = double (*( source + 0)) - avg2;

tf0 = r * rot00 + g * rot01 + b * rot02;

tf1 = r * rot10 + g * rot11 + b * rot12;

tf2 = r * rot20 + g * rot21 + b * rot22;

// Calculate distance

double distanceSquared = SQ(tf0 ) + SQ(tf1 ) + SQ(tf2);

//Write luminance value

if ( distanceSquared > maxDistanceSquared)

{

distanceSquared = maxDistanceSquared;

}

double luminance = 255 - distanceSquared * scaleFactor;

*buffer = luminance;

//Next pixel

source += 4; buffer ++;

}

Figure 4.6: C++ Code of the Vector Keyer
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Figure 4.7: Radially Convex Interpretation

Fourier transform is applied to the plotted graph to transform the data into frequency

domain.

Calculating the Phase Amplitude Plot

To calculate the phase amplitude plot, a line searching algorithm is used. The algorithm

takes into account the discrete nature of the hand silhouette isolated by the previous

image segmentation techniques. The line search algorithm computes a sequence of dis-

tance values versus phase angle. In other words, it measures the distance between the

edge of the shape to the centroid at uniform angle increments. For the size of the im-

ages, 512 steps were sufficient. This means around 0.7 degrees per sample. A modified

version of the midpoint line drawing algorithm is used to “walk” along the line between

the centroid and the edge [45].

The actual implementation does not measure the distance from the centroid to the edge

of the shape, but rather assumes that the last active pixel along the line is the edge.

This assumption is valid for a solid, radially convex shape. If the shape is non-solid, the

line search method still yields a usable result. Figure 4.7 illustrates the radially concave

scenario. The concave areas in the thumb and index finger are being seen as “filled” by

the line searching algorithm.

On the other hand, if an active pixel (noise) is present outside of the shape, then the

pixel can be taken to be part of the shape being measured, resulting in a sharp spike

in the phase-amplitude plot. If noise consists of only a few isolated, individual pixels,

then the next stage of the algorithm (the Fourier transform) will be used to filter out

the noise without introducing a noticeable error.

After the position of the last active pixel has been found, the Euclidean distance of

the pixel from the centroid is calculated. Distance calculation happens for each angle,
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resulting in a plot of distance against phase angle.

Because of the discrete nature of the images, there will be some jittering with the plotted

graph, which reflect the jagged edges of the image. Recall from section 3.1.5 that the

phase-amplitude plot is to be transformed into frequency domain. Since the goal of the

algorithm is to recognise the user’s hand and fingertip configurations, the most useable

Fourier features are therefore those of the lowest harmonics. It means that noise in the

plotted graph is effectively filtered out. Chapter 5 shows that for the purpose of gesture

recognition, a few of the first Fourier components are sufficient.

The Fast Fourier Transform (FFT)

In section 3.1.5 the Fourier transform for a continuous function f(t) is defined as [18]

F (s) =
∫ +∞

−∞
f(t)e−i2πstdt =

∫ +∞

−∞
f(t)[cos(2πst)− i sin(2πst)]dt (4.1)

Recall from the previous section that the phase-amplitude plot is an array of floating

point values (r’s) sampled at an evenly spaced interval, ∆θ. Therefore in practice, a

discrete version of the transform, called the Discrete Fourier Transform (DFT), is needed

to calculate the transform of the phase-amplitude plot, defined as

Fs =
N−1∑

k=0

fk e−i2πsk/N (4.2)

where fk is the kth sampled value, N is the total number of samples, and Fs yields the

sth component in the frequency domain.

The above equation implies that each Fs term can be calculated independently from

other Fs terms. All Fs terms can be calculated by iteratively evaluating individual Fs’s.

It will be shown that the DFT has a computational complexity of O(n2).

A faster version of the DFT exists, called the Fast Fourier Transform (FFT) [17], with

a complexity of O(n log n). The FFT was developed by Gauss in 1805 and then popu-

larised by Cooley and Tukey in the mid-1960s [17]. The reduction in complexity using

FFT is significant. For example, in signal analysis applications it is not unreasonable

for N = 216. To compare FFT with DFT, this means the difference between 16×216 for

O(n log n) and 232 for O(n2), or it is roughly the difference between seconds and weeks.

The FFT is based on the following assumptions:

1. It is assumed that all of the Fs terms are calculated and required by the application

at hand.

 
 
 



CHAPTER 4. IMPLEMENTATION AND THE VIRTUOSO DEMO PROGRAM 84

2. It is also assumed that the input data size is a power of 2 [17].

FFT algorithms exist for data sets with size not a power of 2, provided that N consists

of small prime number factors [18].

The principle of FFT is to exploit the redundancy in calculating each of the Fs terms.

To illustrate this, define W as the complex number

W = e−i2π/N (4.3)

Then, Fs can be expressed as

Fs =
N−1∑

k=0

W skfk (4.4)

To make the redundancy clear, equation 4.4 is rewritten using the Danielson-Lanczos

Lemma [17]. The notations F e
s and F o

s are explained in the next paragraph.

Fs =
N−1∑

k=0

e−i2πsk/Nfk

=
N/2−1∑

k=0

e−i2πs(2k)/Nf2k +
N/2−1∑

k=0

e−i2πs(2k+1)/Nf2k+1

=
N/2−1∑

k=0

e−i2πsk/(N/2)f2k + e−i2πs/N

N/2−1∑

k=0

e−i2πsk/(N/2)f2k+1

= F e
s + W sF o

s (4.5)

The above equation shows that a discrete Fourier transform of length N can be written

as the sum of two discrete Fourier transforms, each of length N/2. One of the two is

formed from the even-numbered points of the original N , and the other from the odd-

numbered points. F e
s denotes the sth component of the Fourier transform of length N/2

formed from the even components of the original fk’s, while F o
s is the corresponding

transform of length N/2 formed from the odd components. Although s in equation 4.5

varies from 0 to N − 1, the transforms F e
s and F o

s are periodic in s with length N/2. So

for s ≥ N/2, F e
s = F e

s−N/2.

Now equation 4.5 can be used recursively. Having reduced the problem of computing Fs,

computing F e
s and F o

s can also be simplified to calculating the transforms of their even-

numbered data points and odd-numbered data points. It was mentioned that the FFT

works on data sizes that are powers of 2. This means the data can be subdivided all the

way down to transforms of length 1. A one-point transform is simply an individual fk.

That is, for a length 1 transform, F eoeeo···oee
s = fk for some k. This one-point transform

does not depend on s, since it is periodic in s with period 1. Figure 4.8 illustrates the

breakdown of a transform of size 8 down to individual fk’s.
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Figure 4.8: Complete FFT Breakdown Diagram for N = 8

Decimal Binary Bit Reversed Result in Decimal

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7

Table 4.2: Bit Reversed Ordering for N = 8

Observe that for the FFT, the ordering of the fk terms is not sequential, but are or-

dered in such a way that adjacent pairs contribute to the parent transform. This is

true for the bottom row. In the illustrated example, the ordering of the fk terms is

(0, 4, 2, 6, 1, 5, 3, 7), and is the result of repeatedly dividing the transforms into even and

odd terms. This sequencing varies for different data sizes N . For example, when N = 4,

the ordering is (0, 2, 1, 3). For N = 16, the sequence becomes (0, 8, 4, . . . , 15).

An interesting bit reversal routine determines the correct sequencing of the fk terms for

data size N = 2b, where b is the number of bits required to represent in binary format

the numbers 0, . . . , N − 1. The effect of this routine is shown in table 4.2. The correct

placement of the fk item is simply k written in bit-reversed form. Recall that each fk

term is a child Fourier transform of the form F eoeeo···oee
s . The exact same result can be

obtained for the placement of fk by reversing the string of e’s and o’s.

This concludes the discussion of DFT and FFT. The DFT is an essential component

of the Fourier descriptor. Invariant features are extracted and then used by the neural

network classifier to recognise hand poses.
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4.4.5 Tracking

As discussed in section 3.1.6, a tracking window limits the area on which image analysis

is done on the video input image. This saves computational bandwidth and has the

potential of simplifying the image segmentation task.

The tracking window has to follow the hand at all times to ensure the computer sees

the entire image of the hand. Therefore at each frame the window’s position is updated.

This can be done simply by using the centroid values of the hand computed by the

Fourier Descriptor.

The size of the tracking window has to be chosen so that it is larger than the image

of the hand when the hand is in a stretched pose (i.e. the “Five” pose). There exists

a relationship between the size of the tracking window and the input image, if it is

assumed that the camera’s field of vision corresponds to the range of movement of the

user’s hand.

4.5 Gesture Recognition Implementation

This section describes how static gestures can be recognised from invariant feature values

computed from the previous sections. Methods for recognising dynamic gestures, which

are made up from changes of the user’s hand position over time, are then presented.

4.5.1 Neural Network Classifier

Virtuoso makes use of a compact implementation of a neural network. The network

consists of three layers of neurons, with vectors of weight values. The input layer has 12

neurons, which is equal to the number of Fourier Descriptor feature values. The hidden

layer has 24 neurons to perform the classification, and the output layer has up to 12

neurons, so the network can classify up to 12 classes of gestures.

A feed-forward routine computes the output vector from the input vector, which realises

the mapping from the input space to the output space. The gradient descent training

algorithm is then implemented to find optimal weights for the network. Additional

routines are written for saving and loading the layout and weight values of the network.

4.5.2 Neural Network Training

The gradient descent algorithm is summarised in figure 4.9, and will be explained in

detail in the following paragraphs.
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Algorithm

TrainNeuralNetwork()

initialise NN weights

initialise epoch ε = 0

repeat

for each training pattern z, do

calculate actual NN response for z

update weights in output units: wkj ← wkj + ∆wkj(p) + α∆wkj(p− 1)

update weights in hidden units: vji ← vji + ∆vji(p) + α∆vji(p− 1)

next training pattern z

ε ← ε + 1

until stopping condition

¤

Figure 4.9: The Gradient Descent Algorithm

Weight Initialization

An important part of the training algorithm is the choice of initial values for the weight

values. The neural network in Virtuoso uses random values from the distribution

w ∼ U

(
− 1√

fan in
,

1√
fan in

)

to initialize the weights, where fan in is the in-degree (number of inputs) of the unit.

Weight Updates

A small adjustment is made to each output unit weight wkj by the amount ∆wkj , and

to each hidden unit weight vji by the amount ∆vji. The notation ∆wkj(p− 1) denotes

the weight update in the previous iteration, and the term α is called the momentum

which preserves weight updates from the previous iteration.

To calculate ∆wkj and ∆vji, the second part of equation 3.13 is rewritten to obtain the

error function of a training pattern p over the network output as

Ep =
1
2

K∑

k=1

(tk,p − ok,p)2 with
∂Ep

∂ok,p
= −(tk,p − ok,p) (4.6)
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The chain rule is used repeatedly to obtain the derivative

∆wkj = −η(
∂E

∂wkj
) = −η

∂E
∂ok

∂ok

∂netok

∂netok

∂wkj
= −η

(
− (tk − ok)

)
(1)(yj)

= η(tk − ok)yj (4.7)

and ∆vji = −η(
∂E
∂vji

) = −η
∂E
∂yj

∂yj

∂netyj

∂netyj

∂vji

= −η

(
K∑

k=1

∂E
∂ok

∂ok

∂netok

∂netok

∂yj

)
∂yj

∂netyj

∂netyj

∂vji

= −η

(
K∑

k=1

−(tk − ok)wkj

)(
(1− yj)yj

)
(zi)

= zi

K∑

k=1

(1− yj)wkjη(tk − ok)yj

= zi

K∑

k=1

(1− yj)wkj∆wkj

= zi(1− yj)
K∑

k=1

wkj∆wkj (4.8)

where η is a scaling factor called the learning rate. Chapter 5 shows that for the imple-

mentation of Virtuoso, a value of 0.02 for the learning rate η and 0.9 for the momentum

α produce good results.

Stopping Condition

The following criteria are used to terminate the training process:

• Training can stop if the performance of the network has reached a desired level,

that is the error has been minimised to a small enough value.

• The training set patterns are usually divided into the training set and the valida-

tion set. The validation set is not used for training, but is used for calculating an

addition measure of performance called the generalisation error, which indicates

how well the network reacts to data not seen during training. Network training can

stop if overfitting in the network is observed. In other words, the network memo-

rises the training patterns but fails to generalise the problem. This is characterised

by the training error significantly better than the generalisation error.

• Training may terminate if the time elapsed or the epochs ε trained has exceeded

a pre-defined threshold.

This concludes the discussion on neural network implementation and training. Finally

the image of the user’s hand pose is classified into one of the pre-defined gesture classes.
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4.5.3 Static Gesture Recognition

To recognise a hand pose from a pre-defined collection of hand poses, it suffices to

examine the output vector from the neural network. Let the output vector be v, then

the identified gesture belongs to class k if the kth component of v has the highest value.

Some classes of gestures will cause a larger error rate than others. In other words, there

are some gestures which, when presented to the system, are more likely to yield a false

classification. In practice, this problem can be solved by identifying a few gestures which

the system can effectively recognise, and use only those gestures in an application.

4.5.4 Dynamic Gesture Recognition

To identify the user’s hand movement in time as a dynamic gesture, the position of the

user’s hand over time has to be captured. Therefore the centroid values of the user’s

hand computed by the Fourier descriptor are stored for each frame. These centroid

points form a dynamic gesture path over time.

Due to noise from the video input, there will also be noise in the centroid values. A simple

smoothing scheme is used to filter out the noise in the gesture path. Let P1, P2, . . . , Pn

be sampled points on a gesture path where n is the number of points. A series of

smoothed Wk values, where k = 1, . . . , n, are obtained by the following formula:

Wk = rWk−1 + (1− r)Pk

where r is a constant factor by which sampled points are smoothed. In general, r is

proportional to the video frame rate. Besides the above smoothing scheme, Kalman

filters can also be used [57].

Besides video noise, another issue with capturing a gesture path is that when the user’s

hand pose changes from one class to another, the centroid of the hand will shift even

when the user has not moved the hand. Figure 4.10 illustrates the shifting of the hand

centroid even when the arm and the palm have remained stationary. Therefore Virtuoso

only considers gesture paths up to the point when the user’s hand pose changes, as

changing the hand pose has a jittering effect on the centroid.

In practice, the last few points of a gesture path are cut off and not considered in

dynamic gesture recognition, as it is during those few frames when a user changes his

hand pose. Furthermore, as the hand’s movement is relatively slow compared to the

video frame rates, a new centroid point is only sampled if a small but sufficient amount

of time (typically 100 milliseconds) has elapsed since the previous sampling of a centroid
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Figure 4.10: Shifting Hand Centroid
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Figure 4.11: A Dynamic Gesture Path

point. This sampling over time ensures each sampled point covers a significant distance

compared to the previous one.

Having a gesture path with filtered sampled points, the identification task becomes

trivial. Figure 4.11 shows an actual dynamic gesture path captured in Virtuoso, and the

quantities which are measured from it for analysis. The measured quantities include:

• the spatial relationship between the gesture starting point and end point;

• the spatial relationship between the gesture endpoints, and the bounding box;

• the aspect ratio of the bounding box;

• the number of turning points; and

• the eccentricities of the turning points.

Further analysis can be performed on the gesture paths, but the variations of the above

measured quantities combined already describe a considerable number of unique gesture

paths. Note that rotational invariance is not required for dynamic gestures. For example,
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Figure 4.12: An Example Mixer Graph

it is possible to make simple gesture strokes going up, down, left, right, and diagonally

to mean different actions.

This concludes the discussion of gesture recognition. The following sections discuss the

use of recognised gestures in a music mixing application.

4.6 Music Engine

This section describes a real-time music arrangement application and its implementa-

tion. Ultimately, the user’s hand gesture serves as input to operate the arrangement

application.

4.6.1 The Mixer Graph

To achieve the task of mixing, sound waves belonging to musical parts have to go through

a series of signal processing components to produce the combined result. These signal

processing components plus the connections between them can be visualised as a graph

and is often referred to as a Mixer Graph. Figure 4.12 shows an example mixer graph

suitable for music arrangement purposes.

The mixer graph in Virtuoso is implemented based on the FMod Ex API version 4.0

by Firelight Technologies [20]. FMod is a suitable choice as it provides a simple and
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Figure 4.13: The Mixing Desk

modern C++ programming interface. Its core functionalities match those required by

a mixing application. FMod handles the mixing of sound waves, spatial placement of

sounds, DSPs (digital signal processors), and the traversal of wave data in time. A mixer

graph can be constructed and manipulated in FMod by instantiating signal processing

objects, and making connections between them.

Other relevant features of FMod include the ability to extract spectrum and waveform

data from the mixer graph, which Virtuoso displays for further visual feedback. FMod

offers the option to operate in hardware-accelerated mode, or in software mode for more

precise control. Virtuoso uses software mode as it already offers sufficient performance

for the mixing task.

4.6.2 The Mixing Desk

Figure 4.13 shows a mixing desk, which is a visual representation of the mixing mecha-

nism. The musical parts, also known as tracks, are laid out sequentially on the screen.

Each track has a label which shows the name of the musical part, and a number of

sliders which show the parameter values within the mixer graph. The parameter values

Virtuoso can control include volume, pan, reverb, chorus, and parametric equalisation.

Furthermore, the waveform or spectrum of the track can be displayed.
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The Master Track appears above the individual tracks. It has a waveform and spectrum

display to show the result of mixing the parts.

The mixing desk also has a Transport component, which allows the user to traverse the

sound data in time. It has the basic functions including play, stop, pause, fast forward,

and rewind. Finally a record function is implemented and when activated, remembers

the user’s actions and adjustments made to musical parts.

4.7 Gesture Interaction

The previous sections have described the implementation of gesture recognition and

music mixing components of Virtuoso. To use gestures as input for mixing, it is pos-

sible to connect gesture recognition results directly to music mixing commands, or in

a “hard-wired” way so to speak. This was indeed how early versions of Virtuoso were

implemented.

However, as the size of the application grew, recurring issues and patterns were dis-

covered. As a result, a more structured approach of connecting input to action was

developed, by encapsulating recurring aspects into reusable components. The encap-

sulation process is similar to the development of software for the mouse. Intermediate

components, such as forms, buttons and scroll bars connect mouse input to application

functions. These components encapsulate recurring aspects of their programming, for

example, how they draw themselves on the screen, or how they can be activated with

the keyboard besides using the mouse alone. These aspects can be studied, improved,

and most importantly, reused.

This section presents the recurring aspects of gesture interaction programming. Section

4.7.1 presents how raw gesture recognition parameters are processed into simpler ones,

to be consumed by user interface elements. Section 4.7.2 describes a much needed

method of synthesising artificial system input for the development and testing of gesture

interaction methods. Section 4.7.3 describes the interaction components implemented

and tested in Virtuoso. Finally, Section 4.7.4 presents how Virtuoso uses gestures as

mixing input.

4.7.1 Gesture Analysis Driver

From a software programming and code reusability point of view, the gesture recognition

parameters computed from the previous sections are packaged in some data structure,

and made universally available for the programming of all user interface elements.
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Figure 4.14: Gesture Analysis Driver

For optimal code reuse, this set of gesture recognition parameters has to be chosen

carefully, as every interface element will be built on top of it. Furthermore, there are

some derived parameters which are frequently needed for interaction programming, for

example, whether the hand has moved in the current frame compared to the previous

frame. These derived values can be pre-computed and included in this data structure

to prevent repeated evaluation by the user interface elements.

This situation is similar to that of building a mouse driver: An application developer

does not concern himself with the voltage or electric current going through the mouse’s

electronic circuits, nor does he concerns himself with the sensor noise of the mouse. A

mouse driver outputs a useful stream of values, such as x and y coordinates, for user

interface elements to work with. All user interface elements then subscribe to mouse

movement and clicking events.

Figure 4.14 shows a graphical representation of the gesture driver in Virtuoso. The

features of the driver and the derived values computed are listed below:

• The x and y values of the centroid of the hand are normalised to the range of [0, 1].

The normalised coordinates are displayed within the interaction square. Note that

this normalisation scheme does not preserve the aspect ratio of the camera’s field

of vision, but allows various camera configurations to be tested. For example, it

is possible to use a camera with a higher pixel resolution, or rotate the camera

view by 90 degrees (as shown in the figure), and all user interface elements will

still function because of the normalisation. In the example, the centroid value will

have a higher vertical resolution than horizontal resolution.
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• The gesture driver computes a set of smoothed x and y values for the centroid

of the hand, which serves to eliminate noise from the video input. The smoothed

values are calculated in a way similar to how a dynamic gesture path is smoothed,

or obtained alternatively by using Kalman filters.

• The white shaded area in the camera’s field of vision is called the effective tracking

area. It is the area in which the centroid of the hand can be without the hand

shape being “chopped” off by the camera’s view boundaries. In other words, the

effective tracking area is the area in which hand pose recognition is likely to yield

a useful classification. In practice, it is impossible to have the centroid of the hand

to be found at the edge of the camera’s field of vision. Therefore, in Virtuoso it is

the effective tracking area that is mapped to the interaction square.

• The gesture driver keeps the gesture recognition results for every video frame in

the past 10 seconds, so that interface elements can query the recognition history

if needed.

• The gesture driver performs extra computations to check whether the video input

is in a valid state. For example, a coverage value is calculated which is the number

of white pixels in the silhouette image. If coverage is too large, it is likely that

image segmentation has falsely classified some background pixels as foreground. If

coverage is too small, it is likely that image segmentation is not working properly

or the tracking window is not focused on the user’s hand. The Fourier descriptor

and neural network classification are only calculated when coverage is within a

reasonable range. Another parameter being computed is whether the segmented

image falls entirely within the tracking window. If for example the edge of the

tracking window contains a white pixel, then it is likely that the hand has moved

too close to the camera.

• Results computed by the Fourier descriptor and the neural network are included.

The values are: The centroid of the amplitude-phase plot, the aspect ratio of the

bounding box of the silhouette image, and finally the classification of the hand

pose.

• Values that indicate change over time are pre-computed by the gesture driver, for

example, the vector which represents the movement of the hand.

• The gesture driver computes whether the current state of gesture recognition has

a certain level of stability. For example, whether the hand has been stationary

for some time. User interface elements which trigger sensitive system actions (e.g.

delete) will not activate if gesture recognition is not in a stable state.
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The variables listed above are packaged in a data structure and serve as a basis on which

all user interface elements are built.

4.7.2 Gesture Synthesis

This section describes a technique of synthesising video input data to enhance produc-

tivity in the software development process of video-based gesture interaction systems.

A programming session for video-based gesture interaction systems typically involves

the programmer having to position himself in front of the camera to issue a few gesture

commands, and then having to go back to the desk and keyboard to fix a piece of program

code. This cycle of having to stand up and sit down proves to be an inconvenience for

the programmer. A possible solution to the problem is for Virtuoso to be able to accept

alternative inputs.

As mentioned in Section 4.1, Virtuoso’s framework is already capable of using test images

and videos as input. While they were useful for verifying the correctness of image

segmentation and static gesture recognition, a more interactive, spontaneous way of

synthesising input data is needed for testing the user interface. As a result, a novel

way of generating test input videos, named gesture synthesis, was devised during the

development process of Virtuoso.

Gesture synthesis aims to produce a synthesised video input stream in real time, that

resembles a video stream captured in a live session. Synthesis is done using previously

captured images and video segments as source material. The synthesis is controlled by

the mouse and keyboard, so that a programmer can perform spontaneous testing of the

system without leaving the desk. Figure 4.15 shows and example of gesture synthesis.

For the scope of Virtuoso, it suffices to synthesise a test video which features the hand

moving across the camera’s field of vision, while allowing the hand to assume any one of

the pre-defined poses at any give time. Let there be N classes of hand gestures which are

considered for synthesis. The gesture synthesis system needs to have N source images of

the hand, one for each pose. To simulate the hand changing from one pose to another,

video segments of the hand changing poses need to be captured. Let Sab be a video

segment which captures the transition of the hand from gesture class a to b, where

1 ≤ a ≤ N and 1 ≤ b ≤ N . As a measure to save system memory and to simplify data

preparation, note that Sba is not needed as it can be obtained by playing Sab in reverse.

Therefore only the video segments Sab are needed where a < b.

Note that it is also possible to directly synthesise the gesture recognition parameters in

the testing of interaction systems. While synthesising the input video is a more indirect

approach compared to synthesising recognition parameters, some gesture recognition
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parameters are difficult to generate directly, such as the shift of the centroid when the

hand pose changes, or the aspect ratio of the bounding box of the hand.

While using synthesised test videos are by no means the way to validate Virtuoso’s gesture

recognition performance, gesture synthesis does increase the productivity of interaction

software developers.

4.7.3 Interaction Components

Interaction components encapsulate the recurring aspects of the development of gesture

interaction. A component represents an interpretation of how the movement of the

user’s hand affects the state of the system. An application using gesture as input can

be constructed by selecting the appropriate components to control the states of the

application.

In Virtuoso, the software development aspects that are encapsulated by interaction com-

ponents include:

• Interaction components accept gesture analysis parameters and can bubble the

parameters to other components.

• Interaction components provide customisation options, for example, which gesture

will activate it.

• Interaction components provide a unified way of firing events to trigger the appro-

priate application functions.

• Interaction components are capable of drawing themselves on screen, to provide

visual feedback of their internal states.

Virtuoso provides a software framework for quick implementation and experimentation

of new interaction models. The following paragraphs describe several interaction models

which were implemented and tested.

Gesture-Activated Buttons

A gesture-activated button is similar to a button found in a mouse-driven, form-based

application. A conventional mouse-activated button occupies a rectangular area on the

computer screen, and is activated by moving the mouse cursor over the rectangular area

and performing a mouse click. Similarly, a gesture-activated button takes up an area on

the interaction square. To activate it, the user moves the hand so the centroid is inside

the area. The button is activated by assuming a pre-defined gesture.
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Quadrants

The idea of this interaction component is to provide the user with the choice of 4 possible

actions. An action is chosen by moving the hand in the up, down, left or right direction.

These options are represented on screen by dividing the screen area into 4 parts using

a cross in the middle. The names of the actions are displayed in each of the quarter

screens. Therefore this interaction model is named Quadrants. Figure 4.16 shows an

example of a quadrant screen.

By using multiple quadrant screens, a hierarchy of menu options can be represented and

selected by the user.

2D Manipulators

A 2D manipulator allows the user to control two scalar values at the same time by

moving the hand within the interaction square. Figure 4.17 shows an example of a 2D

manipulator.

In a practical application, two closely related scalar values (e.g. volume and pan) are

chosen to be operated by a 2D manipulator. The manipulator display shows the original

values of the parameters being controlled, and the current values. The component is

dismissed by the user changing his hand pose.

Dynamic Gestures

This component takes up a rectangular area in the interaction square, and is activated

by a gesture symbol. In other words, the user moves his hand to a certain area in the

interaction square, then assumes a pre-defined pose to begin drawing a dynamic gesture.

 
 
 



CHAPTER 4. IMPLEMENTATION AND THE VIRTUOSO DEMO PROGRAM 100

 

Drums Volume

Drums Pan

(-0.6, 0.75)

(0.6, 0.2)

Figure 4.17: 2D Manipulators

When the component is activated, it starts capturing a gesture path. Capturing stops

when the user changes his hand pose. During gesture capturing, all gesture analysis

events are not bubbled to other components.

After the gesture path capturing is closed, the path is recognised. Then an action is

performed by calling the appropriate event handler for the recognised dynamic gesture.

Tilting

This interaction model allows the user to manipulate a scalar value by tilting the hand.

Figure 4.18 shows an example of a tilting manipulation.

The amount of tilt of the user’s hand can be detected by examining the centroid value of

the amplitude-phase plot. Since all such plots were calculated from the centroid of the

hand, most amplitude-phase plots will not have a very distinguished centroid value. In

other words, for a phase-amplitude plot with θ which sweeps from 0 to 2π, the centroid

of the plot is near π for most gestures. For tilting to work, a suitable hand pose with a

distinguished centroid value has to be used, such as the one shown in the figure.

Another way to obtain a direction vector from the hand image to detect tilting is to

calculate the principal components of the (x, y) coordinates of the white pixels in the

segmented image. The primary principal component eigenvector gives the direction of

the hand image.

The Undo Stack

While developing new forms of human-computer interaction (e.g. speech recognition),

it is inevitable that the new interaction technique will initially be characterised by high
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Figure 4.18: Tilting the Hand

error rates. A possible way to increase the usability of a new interaction scheme is to

create a simple way to undo an action resulting from a falsely recognised command.

It is also possible to have an Undo Stack in Virtuoso. To implement the stack, each

possible action in the application has to have an undo counterpart. When an action is

performed, its undo counterpart is added to the undo stack. The undo command should

be easily accessible, for example, by reaching for the far end of the interaction square.

Actions can be undone by popping entries from the undo stack. Having an undo stack

in Virtuoso helps correcting problems resulting from gesture recognition errors.

4.7.4 Mixing with Gestures

Having interaction components, gestures can be connected to system actions in a more

organised manner. The following paragraphs describe the current scheme of how inter-

action components are connected to mixing functionalities.

Groups of interaction buttons which represent the tracks, are displayed on the interaction

square. The layout of the buttons correspond to how the tracks are laid out on screen.

Each track has four click buttons. When the first button is activated, it opens up a 2D

manipulator for controlling the track’s volume and pan. The second button activates a

quadrant, where the user can choose between fine-tuning the track’s chorus, reverb, and

EQ. The third and fourth button controls the track’s mute and solo attribute.

The transport component is controlled by dynamic gestures. Simple directional stroke

actions are associated with the transport functions: Upwards for stop, downwards for

pause, right for play, right when playing for fast forward, and left for rewind.
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Figure 4.19: Virtuoso Class Diagram

The above is just one of the many ways in which gestures can be connected to system

functionality. The linking of interaction components to mixing functionality is very

open-ended. Many interaction options can be customised, for example, choosing which

gesture symbol should activate a button. The aim of Virtuoso is to provide a platform on

which gesture interaction experiments can be performed easily and quickly. The optimal

link between gesture and mixing can be discovered through time and experimentation.

This concludes the discussion of the components that Virtuoso is composed of. The final

section of this chapter presents the underlying software framework for Virtuoso.

4.8 Software Design

This section presents a framework which connects all the discussed software components

of Virtuoso in a structured manner. This framework was not purely the result of software

design, but has evolved as the complexity of Virtuoso grew. There is a need for a

framework to allow easy creation and testing of computer vision-based experiments.

Figure 4.19 is a diagram of the implemented C++ classes in Virtuoso. The following is

a detailed discussion of the individual classes.
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For the computer vision group of classes, one class is implemented for each of the com-

puter vision components discussed. All computer vision components use the Image class

for data exchange.

The Image class handles the loading and saving of bitmaps and video sequences. Image

is capable of handling the bitmap formats required for computer vision, and exposes the

raw byte streams to the computer vision algorithms when necessary.

A Pipeline object is an encapsulation of an experiment. A pipeline connects ready-to-

use computer vision components for conducting new experiments. Pipelines utilise the

input and output functionalities provided by the Virtuoso class.

In Virtuoso, PipelineImageProcessing encapsulates the vector keyer training process.

PipelineImageAnalysis encapsulates the neural network training process. A test of the

gesture driver is found in PipelineGestureAnalysis, and PipelineMixing is the mix-

ing application. Further gesture interaction experiments can be constructed by creating

subclasses of Pipeline.

Gesture interaction experiments can include an instance of GestureAnalysis which

provides ready-to-use hand input parameters. The InteractionComponent class and its

subclasses contain the implementation of interaction components. These classes accept

hand gesture parameters as input, and are capable of drawing themselves on screen.

These components can fire events when activated by the suitable hand gestures. This

encapsulation of functionality is similar to that of Control objects found in Windows

forms-based APIs.

VideoCapture interfaces with Microsoft DirectShow for obtaining live video input, and

provides device independence. It is possible to perform computer vision experiments

using multiple cameras, by instantiating multiple VideoCapture objects. Alternatively,

Virtuoso accepts input from GestureSynthesis for the development of interaction mod-

els.

ViewManager handles the multiple viewports and offers display resolution independence.

SceneGraph provides a tree structure to on-screen objects, making it easier to manage

a large number of visual entities.

Virtuoso has an emphasis on visual display, and has a large number of graphics related

classes. For example, ImageCube is a live plot of pixel colour and ImageHistogram is a

live histogram plot.

All drawing functions are implemented in GraphicsGL. This class provides the basic

functionalities for displaying experimental results, such as drawing lines, boxes, text

and live video images. In addition, GraphicsGL handles texture memory, manages non-
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power-of-two textures on older hardware, and helps in manipulating transformation

matrices.

All classes in Virtuoso use one or more of the underlying framework classes. The following

is a description of some of the framework classes:

• WindowsGL deals with Windows specific OpenGL functions, such as creating the

OpenGL window, creating 3D font models from TrueType fonts, and querying

OpenGL extensions.

• Thread and CriticalSection allows easy creation of threads for computations

which take a long time, so that visual feedback is not interrupted.

• The StreamIO classes captures all data streamed to stdout and cout to a console

or to a file, thereby unifying all textual display and debug information.

• Animation deals with issues related to timing in an interactive application, and

provides utilities for animated display elements on screen.

• Unicode conforms Virtuoso to international language support provided by the op-

erating system.

• Virtuoso is programmed on top of Win32 and OpenGL, which are C-based API’s.

Simple wrapper classes were written in C++ for the functionalities required from

the two API’s to provide a more uniform programming interface.

This concludes the discussion of Virtuoso’s implementation.

4.9 Summary

This chapter presented the design and implementation of Virtuoso, an application which

takes hand gestures as input and applies them to the music mixing task. Section 4.1

listed the required components and prerequisite knowledge for Virtuoso’s implementa-

tion. Section 4.2 listed the hardware and software platforms on which Virtuoso was

implemented. Section 4.3 presented an overview of how Virtuoso’s software components

function together as a system. Sections 4.4 and 4.5 presented implementation details

of computer vision and gesture recognition components in Virtuoso. The music engine

of Virtuoso was discussed in Section 4.6. Finally, recognised gestures are applied to the

music engine. The details of user interaction were discussed in Section 4.7. The last

section, Section 4.8, presented a software framework on which Virtuoso is based. The

framework facilitates the implementation of experiments related to vision-based gesture

interaction.

 
 
 



Chapter 5

Experimental Results

This chapter presents the experimental results of testing Virtuoso’s system components

described earlier in this thesis. Section 5.1 presents image quality and performance

tests for the three image segmentation algorithms. Section 5.2 presents the experiments

related to the gesture recognition components of Virtuoso. Section 5.3 presents experi-

mental results on user interaction.

5.1 Segmentation Algorithms

This section presents image quality tests of the three segmentation algorithms, followed

by their performance evaluation.

5.1.1 Viewports Implementation

Figure 5.1 is a screen capture of the Virtuoso demo program in execution. The demo

program features a realtime, multiple viewport display. The viewports are useful for

comparing the results of different image processing algorithms, and for examining the

correctness of image data as the data travels down the processing pipeline. In addition,

a real time colour cube and histogram provide statistical data about the video input.

The colour cube is a plot of RGB values of the captured pixels, and the histogram

displays the number of pixels captured versus intensity levels. Before operating the

demo program, it is important to adjust the camera so that the colour values captured

fall within the dynamic range of the camera.

105
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Figure 5.1: Virtuoso Viewports

5.1.2 Chroma Keying Test

Figure 5.2 shows a series of chroma keyer test images. The test input images are found

in the left column, which are made up of the user’s hand and a blue background. The

middle column shows the pixels classified as skin colour, and the right column shows a

black and white mask of the classification result.

It is fair to say that the chroma keyer has achieved sufficient image quality, since the

role of the chroma keyer in Virtuoso is to identify pixels of skin colour for constructing

a vector keyer training set.

The raw performance of the chroma keyer is 314.12 million pixels per second, or more

than 4000 standard webcam frames per second. Therefore chroma keying leaves most

of the CPU processing power for the rest of the application, and chroma keying can be

extended to stereo or multiple video streams without further optimisation.

5.1.3 Vector Keying Test

Before evaluating the image quality of the vector keyer, it is important to examine the

training data with which the keyer is calibrated. Figure 5.3 presents a vector keyer train-

ing set, which is a series of images of skin-coloured pixels extracted by the chroma keyer.
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Test Image Chroma-Keyed Image B/W Image 

Figure 5.2: Chroma Keying Results

The training set should include images of the hand in various poses and orientations,

as the vector keyer training algorithm builds a statistical model of skin colour based on

the pixels in the training set. In addition to the training images, the captured pixels are

plotted in a three dimensional RGB colour cube. The colour plots are presented in the

figure and are viewed from various angles. The plots visually confirm the assumption

that it is possible to find an ellipsoid which encapsulates skin colour values.

Figure 5.4 is the vector keyer image quality test. The keyer succeeds in learning from

the training set and automatically building a statistical model of the key colour. The

learning feature is important as in practice, the key colour may vary due to lighting

conditions (daylight versus incandescent light) and the race of the user.

It can be observed that there are some dark areas contained within the extracted hand

silhouettes. The dark areas are caused mainly by two factors. Firstly, the fingers are

casting shadows on the palm, resulting in very dark areas in the input image. Secondly,

the 3D curvature of the fingertips interact with lighting in the scene, creating highlights

and shadings. In practice, the “holes” in the keyed images do not severely affect the

feature extraction algorithms, as the feature extraction process mainly examines the

outline of the keyed images.

Lastly, the vector keyer is tested with the hand in an arbitrary background. Notice that

some pixels were falsely classified as skin colour, as objects in the scene have colours
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Pixel Colour Plots 

Vector Keyer Training Images

Figure 5.3: Vector Keyer Training Set

 

Blue Background 

Arbitrary Background 

Figure 5.4: Vector Keying Results
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Video Input Pixel Model             Movement 

Figure 5.5: Background Subtraction Experiment

similar to skin colour. With the test images, one may conclude that vector keying is

usable in a practical application, as the tracking window (as shown in the figure) and

the Fourier descriptor will further eliminate the false-positive pixels.

5.1.4 Background Subtraction Test

Figure 5.5 shows the background subtraction algorithm in execution. The background

subtraction algorithm continuously learns from the video stream of what the background

scene looks like and updates its internal memory of the background scene, and produces

a black and white image indicating change in the video stream. In the figure, the left

column shows a change in the scene, with the hand moving downwards. The middle

column of images represent the internal state of the algorithm, and the right column of

images indicate areas where movement is detected by the algorithm. The figure shows

the algorithm’s internal state for 6 consecutive frames, or about 0.2 seconds in real time.

Background subtraction was initially developed and tested in Virtuoso, as it has an

apparent advantage compared to other segmentation algorithms, in that it does not
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require a specially prepared background. In practice, the performance of background

subtraction is still affected by the contents of the background: No movement is detected

at a pixel if the moving foreground has the same colour as the background at the same

pixel. This effect can be seen in the test images. The movement images have vertical

stripes, which correspond to the placement of the books in the background. The amount

of movement detected is proportional to how different the colour of the foreground

is compared to the background. For background subtraction to work effectively the

background scene should have colour elements differing from that of the user.

Background subtraction is used in Virtuoso to activate touch buttons, before the vector

keyer is calibrated. For this purpose, the algorithm is performing sufficiently well.

5.1.5 Segmentation Algorithms’ Performance

This section discusses the performance of the segmentation algorithms. Table 5.1 shows

the performance figures of all three algorithms in parallel for better comparison.

To evaluate the algorithms’ performance, a test data set consisting of 454 images at

320× 240 RGBA 8-bit resolution was used. This data set, measuring 139.5 megabytes,

should be sufficiently large to offset the effects of any caching. All three segmentation

algorithms were tested with the same data set. Each test image consists of 2.1% to 5.6%

of pixels that yield a positive classification, and corresponds to actual usage scenarios

of the Virtuoso system.

The raw performance of each segmentation algorithm is measured in million pixels per

second (Mpixels/s). In relative terms, the chroma keying algorithm performs 27 times

faster compared to vector keying and background subtraction.

The performance figures for the segmentation algorithms were then extrapolated to three

usage scenarios. The first scenario (webcam) represents the video resolution of common

desktop webcams. The second scenario (DVD) represents the resolution of today’s

TV/DVD and professional video cameras. The third scenario (HD) is representative of

high-end video cameras, and next generation video games and television.

Notice that at HD resolution, the background subtraction and vector keying algorithms

have difficulty in achieving interactive frame rates (typically 30—60 FPS). Interactivity

is possible provided that the two segmentation algorithms are performed on sub-regions

of the video image, and that the intended application itself is not very CPU intensive.

In practice, background subtraction is only performed where movement detection needs

to be determined, at the edge regions of the video input image, where touch buttons

are located. Moreover, vector keying is only performed on the tracking window, which

is about 25% of the size of the video input image in Virtuoso’s case.
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Algorithm
Chroma
Keyer

Background
Subtraction

Vector
Keyer

Raw Performance
(Mpixels/s) 314.12 11.76 11.57

Relative Performance 27.14x 1.02x 1.00x

320 x 240 (Webcam)

Frame Time (ms) 0.24 6.53 6.64

Frames per Second 4090.09 153.17 150.68

720 x 576 (DVD)

Frame Time (ms) 1.32 35.25 35.84

Frames per Second 757.42 28.37 27.90

1280 x 720 (HD)

Frame Time (ms) 2.93 78.34 79.64

Frames per Second 340.84 12.76 12.56

Table 5.1: Segmentation Algorithms Performance

This concludes the experiments done on the segmentation algorithms. Experiments on

gesture recognition components are presented in the next section.

5.2 Gesture Recognition Experiments

5.2.1 Neural Network Classifier

This section presents two experiments which seek to find the optimal neural network

architecture for classifying the Fourier descriptor feature values.

Gradient Descent Training Parameters

The first experiment was conducted to find a suitable pair of learning rate η and mo-

mentum α values for weight updates in gradient descent training. Since weight updates

are based on the error of the output, it was suspected that the learning rate should be

adjusted to match the scale of the input patterns, or the Fourier descriptor values in

this case. Since all Fourier descriptor feature vectors are normalised with respect to the

first component, the learning rate and momentum values should be reusable for new

training data sets.

 
 
 



CHAPTER 5. EXPERIMENTAL RESULTS 112

0.00125 0.0025 0.005 0.01 0.02 0.04 0.08 0.16 0.32

0.1 0 0 0 13 14 13 0 0 0

0.2 0 0 0 15 28 17 0 0 0

0.3 0 0 0 16 28 11 1 0 0

0.4 0 0 0 17 28 26 5 0 0

0.5 0 0 0 23 28 26 11 0 0

0.6 0 0 0 24 29 27 17 0 0

0.7 0 0 0 24 29 27 21 0 0

0.8 0 0 0 24 29 27 27 0 0

0.9 0 0 0 25 29 27 27 0 0

Learning Rate

M
om

en
tu

m

Number of converged networks

Table 5.2: Gradient Descent Training Parameters

Number of converged networks under 5000 epochs and MSE 0.005

The data set used for this experiment consisted of 220 patterns, made up of 20 example

images for each of the 11 gesture classes. The experiment ran the gradient descent

training algorithm on neural networks with various combinations of learning rate and

momentum values. The learning rate values range from 0.00125 to 0.32 in 9 steps, and

the momentum ranged from 0.2 to 0.9 in 9 steps, as it was known that the learning rate

should be relatively small compared to the momentum [56].

For each (η, α) pair, gradient descent was run on 31 neural networks with 4 to 34 hidden

units, as the optimal number of hidden units was also unknown for the nature of the

gesture recognition problem. The combination of the three, free variables yielded a total

number of 9 × 9 × 31 = 2551 training runs, which should provide a rough indication

of suitable training parameters. Table 5.2 shows the number of networks that have

converged within 5000 epochs to a sufficiently small MSE value (0.005). The results

provide a rough “region” of values where training should produce good results.

Hidden Units

The second experiment was conducted to find the number of hidden units needed for

the gesture recognition problem. The same data set of 11 target classes was used for

this experiment.

Training was done on 22 groups of networks, with each group consisting of 20 networks
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Figure 5.6: Network Architecture and MSE Convergence

3 4 5 6 7 8 10
0.023293 0.005223 0.003318 0.001128 0.000628 0.000299 0.000297

12 14 16 18 20 22 24
0.000412 0.000392 0.000253 0.000448 0.000907 0.000563 0.000455

Table 5.3: Network Size vs Training MSE at 15000 Epochs

of identical architecture (i.e. number of hidden units) but differing initial conditions

(random weight values). Networks ranging from 3 to 24 hidden units were tested, giving

a total number of 22× 20 = 220 training runs.

Figure 5.6 shows the MSE convergence graphs of random candidate networks taken from

each group. It is obvious that when the number of hidden units is below 6, there are

not enough hidden units to learn the nature of the classification problem. The networks

converge faster when the number of hidden units increases.

When the number of hidden units exceed 16, the networks take longer to converge. The

convergence graphs fluctuate more with the initial conditions, rather than the number

of hidden units. Table 5.3 shows the training error versus network size at 15,000 epochs.

From the above two experiments, it was chosen for Virtuoso to have a default neural

network of 12 hidden neurons, with 0.02 as learning rate and 0.9 momentum for train-
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      Zero           One          Two         Three         Four 

        Five           Six          Seven       Eight      Thumb 

         Palm   PalmThumb

Figure 5.7: Recognisable Static Gestures

ing. In actual system usage, the above results do not limit gesture recognition training

to having only one instance of a neural network. Multiple networks may be trained

simultaneously, as the network’s initial conditions still have an effect on the results.

5.2.2 Static Gesture Recognition

Figure 5.7 shows a list of hand gestures that were tested in Virtuoso during the course

of its development. The experiments presented here focused on testing a small set of

4 gestures, namely, Zero, One, Two and Five. The experiments were conducted to

determine the following:

• whether the Fourier descriptor is invariant to translation, rotation and scaling;

• whether the output of the neural network leads to a correct classification of an

input gesture;

• and whether the gesture recognition mechanism has a degree of user independence,

which means that the user who trained the system and the runtime phase user

can be different persons.

The video captures of the experiments can be found in the accompanying DVD.
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The experiments began by collecting 40 example images of each of the 4 gesture classes

from a user. Then the Fourier descriptor values of the images, as well as the associated

classification, were used to construct a neural network training set. The neural network

was then trained, and new instances of known gestures were used as input for the gesture

recognition mechanism. Typically, there were 30 to 50 new instances for each gesture

class presented for testing. The output values of the Fourier descriptor and neural

network were recorded. The averages of the observed values as well as the standard

deviations are shown below.

Fourier Descriptor and Neural Network Performance

Figure 5.8 shows the output values of the Fourier descriptor and the neural network

after training, when new instances of known gestures were presented for recognition.

The graph on top shows the Fourier descriptor output when each of the 4 classes of

gestures were presented to the system for recognition. Only the first 4 Fourier harmonic

component outputs are shown here. The purple bars show the averages of the output

values recorded. The extra bits on top of each bar are the standard deviations of the

output values.

The test input gestures were chosen such that was some amount of rotation and vari-

ation, e.g. spreading the fingers further apart with the Five gesture. The amount of

variation can be seen from the accompanying test video. It is fair to say that, the Fourier

descriptor has achieved translation invariance and rotation invariance. The deviations

can be attributed to video noise, and the discrete nature of captured images.

The graph at the bottom shows the output of the neural network. Only the first 4

components of the neural network’s output vector are shown, as the system was tested

to classify 4 classes of gestures. The dominant component in the output vector leads to

a gesture classification. It may be said that, for the neural network, there is a dominant

output component for each gesture class, and the dominant component corresponds to

the desired classification.

The same experiment was repeated by another user. Figure 5.9 shows the measured

output values. The experiment was also recorded on video and can be found in the

accompanying DVD.

User Independence

Figure 5.10 presents test results for user independence. An experiment was conducted

in which the data set used to train the neural network and the live video were from
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Figure 5.8: Fourier Descriptor and NN Recognition Performance: James
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Figure 5.9: Fourier Descriptor and NN Recognition Performance: William
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Figure 5.10: Fourier Descriptor and NN Recognition Performance: User Independence

different users. Only the neural network outputs are presented here, as the Fourier

descriptor is user independent. The experiment can be found in video format on the

accompanying DVD.

The results were slightly worse. The dominant output vector is not as close to 1 as in

the previous experiments. The observed standard deviations were larger, and there were

other competing component output values against the dominant component. Neverthe-

less, none of the gestures presented lead to an incorrect classification.

Note that gesture recognition always produces a classification result for each video frame,

even when the hand is not assuming any of the listed gestures, or when the hand is in

a resting position. It is possible to extend gesture recognition to produce a “null” clas-

sification, by comparing the output vector to its corresponding uniform binary vector,

and only produce a positive result if the output vector’s component values are within a

threshold from the binary vector [45].

In a practical application, the interface designer may choose a subset of the listed ges-

tures for system operation. If one equates the number of recognisable hand gesture

classes to the number of mouse buttons (typically 2 to 6) in mouse-driven programs,

one may conclude that there are enough hand poses for use in a wide range of applica-

tions.

The experiments presented so far were conducted with the back of the hand facing the
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camera. An interesting observation is that recognition performance is the same, when

the system is trained to recognise the same gestures, but with the face of the palm

facing the camera. This can be attributed to the fact that the silhouettes segmented are

similar, whether the palm is facing the camera or not. The significance of this result will

be seen in the discussions to follow. In an informal experiment, all the gestures listed in

Figure 5.7 were successfully classified, given the current state of the gesture recognition

mechanism.

5.2.3 Dynamic Gesture Recognition

Table 5.4 shows a number of simple dynamic gestures that can be recognised by Virtuoso.

The gesture paths can be distinguished from one another by the recognition criteria listed

next to each path.

The diagram only shows example gesture paths with up to two turning points. The

list is far from complete, as variations of gesture paths may be defined, by rotating an

existing path (e.g. the “UpDown” gesture) by 90 degrees. It is obvious that the number

of gesture paths that can be recognised exceeds what is required for most applications,

or the number of gestures that can be memorised by a casual user.

Notice that dynamic gesture recognition is not training-based, but that the shapes of

gesture paths are pre-defined. It is the users’ responsibility to learn to draw the gesture

paths properly. In practice, dynamic gesture recognition works effectively if the user

observes the following when drawing gestures:

• The hand should move at a steady pace, so that gesture path sample points are

evenly spaced.

• Most importantly, a user should mark the end of a gesture path as soon as gesture

drawing finishes, as extra captured points at the end of the path may be recognised

as extra turning points.

• The user should make use of the available space on the interaction square (i.e.

making full use of the video camera’s resolution) to improve the accuracy of cap-

turing gesture points, but at the same time not move the hand outside of the

interaction square.

• The user should have an understanding of the underlying recognition mechanism,

so he can avoid some of the recognition pitfalls, e.g. drawing a curved straight

line leads to a turning point, and leads to an incorrect gesture classification.
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‘Right’ 
StartX < EndX 

Turning Points: 0 
Bounding Box: Wide 

‘Left’ 
StartX > EndX 

Turning Points: 0 
Bounding Box: Wide 

‘Up’ 
StartY < EndY 

Turning Points: 0 
Bounding Box: Tall 

‘Down’ 
StartY > EndY 

Turning Points: 0 
Bounding Box: Tall 

X 

Y 

‘UpRight’ 
StartX < EndX 
StartY < EndY 

Turning Points: 0 
Bounding Box: Square 

‘DownRight’ 
StartX < EndX 
StartY > EndY 

Turning Points: 0 
Bounding Box: Square 

‘DownLeft’ 
StartX > EndX 
StartY > EndY 

Turning Points: 0 
Bounding Box: Square 

‘UpLeft’ 
StartX > EndX 
StartY < EndY 

Turning Points: 0 
Bounding Box: Square 

‘Inverted U’ 
StartY ~ EndY ~ BoxBottom 
Turning Points: 1 
Bounding Box: Square 

‘U’ 
StartY ~ EndY ~ BoxTop 
Turning Points: 1 
Bounding Box: Square 

 

‘UpDown’ 
Turning Points: 2 
Eccentricities: 
(positive) (negative) 

‘DownUp’ 
Turning Points: 2 
Eccentricities: 
(negative) (positive) 

‘M’ 
Turning Points: 2 
Eccentricities: 
(positive) (positive) 

‘Circle’ 
Turning Points: 1 
Eccentricity: Large 

Table 5.4: Example Gesture Paths
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Novice users were invited to test the dynamic gestures. It was observed that, the users

found it easy to understand the shape of the gesture paths, but found it difficult to

learn the method of drawing a path, which involved guiding the path segmentation by

marking a path with static gestures. This difficulty is understandable as marking a

gesture path is not part of natural communication.

This concludes experiments done on Virtuoso’s gesture recognition performance. The

following section presents usability discussions regarding the gesture-based music mixing

system.

5.3 Interaction Experiments

This section presents observations regarding the music arrangement ability of Virtuoso.

A video of a demonstration session of Virtuoso can be found in the accompanying DVD.

Computation Performance

In short, the computation performance of Virtuoso exceeded expectations. The system

features visual feedback of the state of gesture recognition as well as the state of the

mixing desk, with up to 10 waveform and spectrum displays. An ideal frame rate

was maintained at all times, i.e. 75 frames per second with VSync (monitor vertical

synchronisation) enabled.

Besides visual feedback, the mixer path has up to 20 stereo DSPs running simultaneously.

Changes made to the mixer graph are reflected audibly with no apparent latency. The

performance of the mixing engine is attributed to the fact that FMod is a mature API

employed in a large number of computer games.

Virtuoso is a proof-of-concept that today’s hardware has enough processing power to

house a real time gesture recognition engine as well as an equally demanding application.

Precision and Expression

Mixing performance is also evaluated in terms of precision and musical freedom of ex-

pression. It is fair to say that the gesture input mechanism offered an adequate level of

precision control, due to the fact that most of the parameters being tweaked in mixing

are subtle in nature. For example, a 2D manipulator has more than 100 levels of inten-

sity on each axis, and when used to adjust the chorus amount, the precision achieved

can satisfy the most discerning ear.
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It was also found that concrete commands are favoured over abstract commands in the

field of mixing. Abstract musical expressions (e.g. vigorous) are more important in a

live performance, or in the creation of the individual musical tracks. In the mixing stage

of music production, well-defined and concrete commands (such as increasing volume

levels) are more suitable for the task. In fact, Virtuoso was not able to understand

abstract musical commands yet. New interaction components need to be developed to

understand abstract musical expression. For example, a tempo component which tracks

the swinging of the user’s arm in time, to extract the tempo (measured in beats per

minute) desired by the user.

Freedom of expression can be related to the number of degrees of freedom the gesture

input offers. At this stage the degrees of freedom offered can be equated to that of a

mouse, as the x and y coordinates and changes in the user’s hand pose are detected.

The degrees of freedom does not pose a significant limitation on the user, as mixing is

often an iterative process—a song is played back as many times as required by the music

director, while mixing parameters are tweaked one at a time.

Having said that, the degrees of freedom can be extended in Virtuoso by extending

gesture recognition to 3D, or the simultaneous tracking of both hands.

Ergonomics and Posture

The application was tested initially with the user in a standing position. The motivation

for choosing this body configuration was that it was similar to how a conductor would

direct music during a performance. It was intended that a user with knowledge in

conducting may use his previous training to operate a mixing system.

While the camera placement is made such that any uncomfortable stretching of the

limbs was avoided, the posture required the arm to be “hanging in midair” for most of

the time during a working session, and quickly leads to fatigue. It was concluded that

such a posture is useful if the body expression is required to be seen from a distance

(as in the case of music conducting or traffic regulation), but loses relevance in human

machine interactions.

Moreover a standing posture puts the user further away from the typical desktop com-

puter screen, which requires display elements on screen to become larger so they remain

legible. Therefore this kind of posture is more suitable to casual usage scenarios when

the user is further away from the machine being operated, such as flipping a light switch

or changing a TV channel.
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Alternative Postures

The strength of Virtuoso’s software framework is that it facilitates further gesture recog-

nition experiments to be performed. An alternative posture which seeks to address to

above mentioned issues can be intuitively described as a “hardware-less” mouse—the

user rests his hand on the desk as if he is holding a mouse. The camera is placed directly

above the hand to capture the hand’s movements. The mouse pad is replaced by a blue

mat which helps image segmentation. In this setup, the camera is “seeing” the back of

the palm.

In the early stages of gesture recognition development, gesture input mechanisms will

no doubt co-exist with traditional input devices such as the mouse and the keyboard.

A device-less mouse setup will allow a gradual introduction of gesture interaction into

the everyday workflow.

Operating Environment

While in this work a device-free gesture input mechanism is constructed, it imposes

extra restrictions on the operating environment, including the background, objects that

can be contained in the scene, clothing, and adequate lighting. Any potential user of

the system has to adopt and adjust to these requirements. The same can be said with

other new input mechanisms like voice recognition—while it is a device-free input, the

operating environment should ideally be noise-free.

In the long run, some rethinking is needed with the interior design of offices and labo-

ratories, taking vision-based gesture recognition into account.

This ends the discussion of experiments conducted on the Virtuoso system. The next

chapter draws some final conclusions on the entire work.

5.4 Summary

This chapter presented the experimental results of testing Virtuoso’s system compo-

nents. Section 5.1 presented image quality and performance tests for the three image

segmentation algorithms. Section 5.2 presented the experiments related to the gesture

recognition components of Virtuoso. Section 5.3 presented experimental results on user

interaction.

 
 
 



Chapter 6

Conclusions and Future Work

This chapter briefly summarises this research work in Section 6.1 and provides some

ideas for future research in Section 6.2.

6.1 Summary and Conclusions

This thesis set out to apply computer vision and computation intelligence techniques,

to create a real-time music arrangement system using only gestures as input.

• Chapter 2 introduced the concept of device-free human computer interaction, pre-

sented a literature study on vision-based hand gesture recognition systems, and

previous work done on nouveau input devices for music making.

• Chapter 3 presented the theoretical aspects of the components involved in a hand

gesture recognition system. These components include the chroma keyer, the

vector keyer, the background subtraction algorithm, the Fourier descriptor, the

feed-forward neural network, and dynamic gesture path recognition. Finally, the

application area of music arrangement is also described.

• Chapter 4 presented Virtuoso, a gesture-based music mixing demonstration pro-

gram. The chapter provided implementation details and source code listings of

the gesture recognition and music mixing components in Virtuoso. This chap-

ter investigated the development of Virtuoso as a software engineering problem,

and presented a software framework for structured programming. A discussion of

recurring aspects that were discovered during extensive gesture interaction pro-

gramming was presented.
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• Chapter 5 presented experimental results on the various gesture recognition com-

ponents of Virtuoso, as well as an evaluation on the user interface of the music

mixing system.

This research work seeks to take gesture recognition out of pure academic research and

apply it to the music arrangement task. The result is a workable, music arrangement

system that can be operated by a single user, and capable of taking hand gestures alone

as input. Virtuoso runs on typical computer hardware with conventional desktop cameras

(webcams). The demo program has proved that it is possible to build a real-time gesture

recognition system and use it on an equally computationally intensive task.

Virtuoso is a highly visual demonstration program. A goal of this research work is to

promote general knowledge and awareness of gesture recognition systems to a wider

audience, by showcasing the demo program. Finally, it is hoped that Virtuoso, as a

structured piece of software, has captured some of the experiential knowledge regarding

gesture interaction programming.

6.2 Future Work

The following is a list of possible future research directions, inspired by this research

work and by other research efforts done in the gesture recognition field.

Extension to 3D: It is straightforward to extend Virtuoso to determine the position of

the user’s hand in 3D coordinates using stereo vision. Stereo vision can be achieved

by running two live camera streams, or by combining a camera with mirrors, as

mentioned in Section 2.1.3. Gesture recognition is performed on each of the stereo

images, resulting in two sets of hand coordinate values. The actual depth of the

user’s hand can then be calculated using depth estimation techniques [45].

Ergonomics: Gesture recognition applications introduce new postures and body con-

figurations for interacting with a computer. A new posture has to be carefully

designed and tested so that it maximises comfort, safety and productivity. Sec-

tion 3.4.2 proposed a camera placement which matches the range of the user’s arm

movement with minimal physical strain. It needs to be tested on a wider audience,

operating the system for prolonged periods of time.

It remains to be investigated whether device-free interaction methods will reduce

RSI (repetitive strain injury) issues related to traditional computer input devices.

Image Based Recognition: A large volume of traditional gesture recognition research

work employs segmentation techniques to identify the objects being recognised,
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then calculates feature values, such as outline, from the segmented image. How-

ever, results in the field of object recognition from images suggest that this inter-

mediate segmentation step is not necessary and even hindering, as segmentation

is never perfect [19]. Segmentation also has its inherent issues such as occlusion,

lighting and clothing constraints.

In image based recognition, input images are compared directly to images represen-

tative of each gesture class, therefore skipping the segmentation step altogether.

A special distance measure, invariant to affine transformations, is used to com-

pare input images to images of known objects, and makes it possible to perform

recognition without segmentation.

It remains to be seen whether recognition accuracy can be improved by employing

multiple recognition approaches to the same input image, and then combining

their collective output to produce the final result.

Specialised Cameras: Modern day cameras are mainly used for photography, commu-

nication, and surveillance. A computer vision system based on these cameras will

no doubt gain a wider acceptance due to the availability of conventional cameras.

However, many existing vision systems use specialised cameras in their implemen-

tation [22]. For example, cameras with high frame rate and high resolution, that

matches the speed and precision of human movement. Another example is infrared

cameras which facilitate hand segmentation, by detecting heat radiated from the

skin. It will be interesting to see whether gesture recognition performance can be

improved in Virtuoso by testing the system with one of the specialised cameras.

Computer Vision Software Framework: There are numerous benefits in having a

common software framework for computer vision and gesture recognition.

For researchers, the quality of their work is improved by a software framework

which facilitates collaboration and peer review. Unit testing ensures the correct-

ness and reliability of individual components. Experiential knowledge is captured

within the framework as reusable patterns. Several implementation issues related

to vision-based gesture recognition can be abstracted and delegated to a software

framework to reduce duplicate effort. These issues include the hardware accelera-

tion of computer vision algorithms, platform independence, camera independence,

and stereo depth estimation [21].

For the application developer, having a common framework means various research

efforts on gesture recognition can be combined. For example, by integrating hand

pose recognition, head tracking, eye tracking, facial expression recognition, and
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limb recognition, an application developer can provide a full body interaction

experience.

Alternative Applications: The computer vision and gesture recognition mechanisms

explored in this thesis can be used in a wide variety of applications. Due to

the device-free nature of the input mechanism implemented, it is best used in

public access applications, such as information booths and interactive games in

theme parks. Device-free interaction offers a solution to unhygienic equipment

and accidental damage.

Understanding Abstract Musical Expressions: This is the ultimate question which

future research efforts should answer. Imagine an orchestra conductor directing a

performance with his body movements. After applying gesture recognition tech-

niques to determine the exact configuration of his body, it remains to determine the

relationship between movement and musical meaning. Being able to understand

abstract musical expressions will enable a computer musician to play alongside

with a traditional orchestra. The computerised instrument player understands the

performance of fellow musicians in the orchestra, as well as gesture expressions

given by the conductor.

Understanding abstract forms of musical expression is an essential step in inte-

grating classical music into the electronic medium. In this elusive space where

classical music and computer science meet, there is fertile ground and much work

to be done.
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