Laboratory Detection and Gene Cassette Stability of the Novel Extended-Spectrum Beta-Lactamase, GES-2 from *Pseudomonas aeruginosa*.

By

Gerhard Frederick Weldhagen.

Submitted in fulfilment of the requirements for the degree Doctor of Philosophy

Department of Medical Microbiology

Faculty of Health Sciences

University of Pretoria

December 2004
THIS THESIS IS DEDICATED TO A CLOSER UNDERSTANDING OF OUR NATURAL WORLD.

A SPECIAL WORD OF GRATITUDE GOES OUT TO MY WIFE Marli Weldhagen, FOR HER ENDURING SUPPORT AND UNDERSTANDING DURING THE TIME IT TOOK TO CONDUCT THIS STUDY.
DECLARATION:

To my knowledge the work contained in this thesis is original, was undertaken by myself with assistance as indicated in the acknowledgements. The interpretation and analysis of data were my primary responsibilities.

It is being submitted for the degree Doctor of Philosophy (Medical Microbiology) at the University of Pretoria. It has not been submitted before for any degree or examination at any other university.

Signed: __________________________

Date: __________________________
CONTENTS

SUMMARY

8

SAMEVATTING

10

ACKNOWLEDGEMENTS

12

LIST OF FIGURES

13

LIST OF TABLES

14

LIST OF ABBREVIATIONS

16

CHAPTER 1: INTRODUCTION.

1.1 General introduction 20

1.2 Objectives 22

1.3 Hypothesis 22

1.4 References 23

CHAPTER 2: AMBLER CLASS A EXTENDED-SPECTRUM BETA-LACTAMASES IN PSEUDOMONAS AERUGINOSA - NOVEL DEVELOPMENTS AND CLINICAL IMPACT.

2.1 Introduction and epidemiology 26

2.2 Substrate profile 32

2.3 Genetic determinants 38

2.4 Current detection methods 39

2.5 Clinical consequences 42

2.6 Conclusion 44

2.7 References 46
CHAPTER 3: INTEGRONS AND BETA-LACTAMASES – A NOVEL PERSPECTIVE ON RESISTANCE.

3.1 Introduction 56
3.2 Epidemiology 59
3.3 Genetic determinants 63
3.4 Expression of co-resistance 65
3.5 Detection 69
3.6 Conclusion 70
3.7 References 71

CHAPTER 4: SEQUENCE-SELECTIVE RECOGNITION OF EXTENDED-SPECTRUM BETA-LACTAMASE GES-2, BY A COMPETITIVE, PEPTIDE NUCLEIC ACID BASED, MULTIPLEX-PCR ASSAY.

4.1 Introduction 80
4.2 Materials and methods 81
 4.2.1 Isolate collection and storage.
 4.2.2 Susceptibility testing.
 4.2.3 DNA extraction.
 4.2.4 Standard PCR amplification.
 4.2.5 Competitive PNA-based multiplex PCR.
 4.2.6 DNA sequencing analysis.
4.3 Results 86
4.4 Discussion 88
4.5 References 93
CHAPTER 5: RAPID DETECTION AND SEQUENCE SPECIFIC DIFFERENTIATION OF EXTENDED-SPECTRUM BETA-LACTAMASE GES-2 FROM PSEUDOMONAS AERUGINOSA, WITH A REAL-TIME PCR ASSAY.

5.1 Introduction 97
5.2 Materials and methods 97
5.2.1 Bacterial strains
5.2.2 Susceptibility testing
5.2.3 DNA extraction
5.2.4 LightCycler mediated mutation assay
5.2.5 Nested-PCR amplification
5.2.6 DNA sequencing analysis

5.3 Results 105
5.4 Discussion 108
5.5 References 112

CHAPTER 6: GENETIC STABILITY OF CLASS 1 INTEGRON-BORNE BLAGES—TYPE GENES UNDER SHORT TERM, SELECTIVE, IN-VITRO ANTIBIOTIC PRESSURE.

6.1 Introduction 116
6.2 Materials and methods 117
6.2.1 Bacterial strains
6.2.2 Antibiotic challenge assay
6.2.3 DNA extraction
6.2.4 PCR amplification and detection
6.2.5 Restriction enzyme analysis
6.2.6 DNA sequencing

6.3 Results 121
6.4 Discussion 124
6.5 References 127

CHAPTER 7: GENERAL DISCUSSION AND FINAL CONCLUSIONS

7.1 References 135

APPENDIX A: WHOLE-CELL DNA EXTRACTION METHOD. 138

APPENDIX B: PUBLICATIONS FROM THIS THESIS. 139
SUMMARY:

Extended-spectrum beta-lactamases (ESBLs) in *Pseudomonas aeruginosa* tend to be geographically scattered, such as GES-2, which partially compromises the efficacy of imipenem. The G170N mutation, ascribed to a CC to AA base pair substitution on positions 493-494 of the *bla*_{GES-2} coding region, distinguishes this ESBL from *bla*_{GES-1} and the *bla*_{IBC}-type genes, making it an ideal target for developing a novel sequence-specific, peptide nucleic acid (PNA)-based, multiplex-PCR detection method. Utilizing two primer pairs in conjunction with a PNA probe, this novel method delivered accurate identification of *bla*_{GES-2} compared to standard PCR and gene sequencing techniques, when tested against one hundred (*n* = 100) *P. aeruginosa* clinical isolates as well as previously published, well-described control strains. This method has the potential to be used in large-scale, cost-effective screening programmes for specific or geographically restricted ESBLs.

To date, in addition to being only described in South Africa, GES-2 is notoriously difficult to identify in *P. aeruginosa*, using standard methodology. A real-time PCR method using the LightCycler™ was compared to a two-step nested-PCR assay for the detection of *bla*_{GES} and *bla*_{IBC} genes from one hundred *P. aeruginosa* clinical isolates collected over a four-year period from two teaching hospitals in Pretoria, South Africa. Real-time PCR amplification was monitored through hybridisation of fluorescently labelled probes followed by melting curve analysis to detect the relevant G170N mutation occurring in the omega loop region of *bla*_{GES-2}. Nested-PCR products were subjected to automated DNA sequencing and compared to melting point (*Tm*) analyses results obtained from the LightCycler assay. Real time and nested-PCR assays detected a *bla*_{GESIBC} gene product from 83 and 88 clinical isolates respectively, with the LightCycler thus exhibiting a sensitivity of 94.3% compared to the nested-PCR assay. Comparison of *Tm* and gene sequencing data however revealed 100% specificity for sequence
specific detection of blaGES-2 with the LightCycler. One clinical isolate was found to harbour a
blaGES-1 gene, making this the first report of this specific ESBL from South Africa.

Selective antibiotic pressure has recently been implicated as a possible driving force behind point
mutations observed in blaGES-type genes. This part of the study subjected two well-characterized
clinical isolates with class 1 integron-borne blaGES-type genes to five days incubation in the
presence of sub-inhibitory concentrations of 15 different antibiotics, including beta-lactams,
aminoglycosides and quinolones. Restriction enzyme analysis and DNA sequencing of blaGES-1,
blaGES-2 and their immediate upstream genetic environments failed to demonstrate any changes
compared to non-exposed controls. Short-term exposure to a sub-inhibitory level of a single
antimicrobial agent is thus unlikely to select significant mutations in these beta-lactamase genes
or their regulatory mechanisms.

Word count = 426.

Keywords: Pseudomonas aeruginosa, blaGES, peptide nucleic acid, LightCycler, genetic stability,
antibiotic selective pressure.
SAMEVATTING:
Uitgebreide-spektrum beta-laktamases (ESBLs) in *Pseudomonas aeruginosa* neig om geografies versprei te wees, soos GES-2 wat die doeltreffendheid van imipenem benadeel. Die G170N mutasie, toegeskryf aan `n CC na AA basis paar verandering op posisies 493-494 van *bla*GES-2, onderskei hierdie ESBL van *bla*GES-1 en die *bla*IBC-tipe gene. Die mutasie is dan ook `n ideale teiken vir die ontwikkeling van `n nuwe, volgorde-spesifieke, peptied-nukleiënsuur (PNA) gebasseerde, multiplex-PKR diagnostiese metode. Deur die gebruik van twee pare oligonukleotied voorlopers in samewerking met `n PNA merker, het hierdie metode *bla*GES-2 akkuraat geidentificeer vanuit 100 *P. aeruginosa* kliniese isolate, asook vanuit goed-beskryfde verwysings isolate. Die metode het verder die potensiaal om in grootskaalse, koste-effektiewe, siftings programme gebruik te word vir die opsporing van spesifieke of geografies beperkte ESBLs.

GES-2, wat huidiglik slegs in Suid Afrika beskryf is, is ook besonder moeilik om te diagnoseer vanuit *P. aeruginosa* met standaard metodologie. Die LightCycler was vergelyk met `n dubbel-stap PKR metode, vir die identifikasie van *bla*GES en *bla*IBC-tipe gene vanuit 100 *P. aeruginosa* kliniese isolate versamel vanaf twee akademiese hospitale in Pretoria, Suid Afrika, oor `n vier jaar periode. PKR amplifikasie met die LightCycler was gemoniteer dmv hibridisasie van fluoreserende merkers en smeltpunt analysé (*Tm*), om sodoende die G170N mutasie in die omegalus area van *bla*GES-2 op te spoor. Produkte verkry vanaf die dubbel-stap PKR metode is onderwerp aan automatiëse DNS volgorde bepaling asook vergelyk met *Tm* resultate verkry vanaf die LightCycler metode. Die LightCycler en dubbel-stap PKR metodes het *bla*GES/IBC-tipe gene geidentificeer vanuit 83 en 88 kliniese isolate onderskeidelik. Vir die identifisering van *bla*GES-2 het die LightCycler metode dus `n sensitiwiteit van 94.3% en `n spesifisiteit van 100% behaal, vergeleke met die dubbel-stap PKR en DNS volgorde bepaling metodes onderskeidelik. Die eerste *bla*GES-1 geen in Suid Afrika is in een kliniese isolaat aangetoon.
Selektiewe antibiotiese druk is onlangs geimpliseer om `n rol te speel in die formasie van punt mutasies wat in \({bla_{GES}} \)-tipe gene waargeneem word. Hierdie deel van die studie het twee goed beskryfde kliniese isolate met klas 1 integron gedraagde \({bla_{GES}} \)-tipe gene, onderwerp aan sub-inhibitoriese antibiotika konsentrasies vir `n tydperk van vyf dae. Vyftien verskillende antibiotika is gebruik, insluitende beta-laktams, aminoglikosiede en kinolone. Restriksie ensiem analise en DNS volgorde bepaling van \({bla_{GES}-1} \), \({bla_{GES}-2} \) en hul direkte stroomop genetiese omgewing, kon geen genetiese veranderinge aantoon nie. Kort-termyn blootstelling van hierdie genetiese strukture aan sub-inhibitoriese vlakke van enkel antimikrobiese middels is dus onwaarskynlik om enige noemenswaardige mutasies te veroorsaak.

Aantal woorde = 402.

Sleutel woorde: \({Pseudomonas aeruginosa} \), \({bla_{GES}} \), peptied nukleiënsuur, LightCycler, genetiese stabiliteit, selektiewe antibiotiese druk.
ACKNOWLEDGEMENTS:

This project was made possible by a research grant obtained from the Research Development Program (RDP) of the University of Pretoria.

The following persons contributed to and ensured the success of this project:

Professor Patrice Nordmann (Paris – France): Critical review and collaboration on several publications as well as kindly providing the reference strains *Pseudomonas aeruginosa* PU21 and *Klebsiella pneumoniae* ORI-1.

Professor Leonidas Tzouvelekis and Doctor Eva Tzelepi (Athens – Greece): Provision of bacterial strains *E. cloacae* HT-9 and IBC-2 transconjugant *E. coli*.

Professors Maureen B. Taylor and Michael G. Dove: Facilitating and promoting the project, providing inspiration and guidance.

Staff of the Department of Medical Microbiology: Routine identification and collection of study isolates.

Doctor Oliver Preizig, Doctor Alexander Myburgh, Austen Cohen, Kathy Lindeque and Andrea Prinsloo has each made significant contributions in terms of logistics and facilitation of the project.

I am indebted to them all.
LIST OF FIGURES

Chapter 4:

Figure 4-1: Gel electrophoresis depicting PNA-based, sequence-specific PCR amplification products obtained from well-characterised bacterial isolates. (p. 88)

Figure 4-2: Schematic diagram depicting the placement of amplification primers and the competitive PNA probe relative to the gene sequence of blaGES-2. (p. 91)

Chapter 5:

Figure 5-1: Alignment of real-time PCR primer and fluorogenic probe sequences with blaGES-2. (p. 103)

Figure 5-2: Melting peaks of blaGES-1, blaGES-2 and E. coli ATCC 25922, amplification products plotted as the negative derivative of fluorescence F2 [-d(F2)/dt)] versus temperature [T]. (p. 110)

Chapter 6:

Figure 6-1: Electrophoresis depicting Int-EF PCR products and AvaI restriction of Int-EF PCR products. (p. 122)

Figure 6-2: Schematic representation of AvaI restriction of PCR products obtained with primers Int-E and Int-F. (p. 123)
LIST OF TABLES

Chapter 1:
Table 1-1: Beta-lactamase classification schemes referred to in this study. (p. 21)

Chapter 2:
Table 2-1: Ambler Class A extended-spectrum beta-lactamases occurring in P. aeruginosa. (p. 27)
Table 2-2: Comparative kinetic parameters for extended-spectrum beta-lactamases found in P. aeruginosa. (p. 33)
Table 2-3: MICs (μg/ml) of beta-lactams for several non-isogenic representative class A extended-spectrum beta-lactamase producing P. aeruginosa isolates. (p. 35)
Table 2-4: Oligonucleotide primers used for detection of genes encoding class A ESBLs in P. aeruginosa. (p. 41)

Chapter 3:
Table 3-1: Ambler class A, integron-located beta-lactamases reported from various Gram-negative bacterial species. (p. 57)
Table 3-2: Ambler class B, integron-located beta-lactamases reported from various Gram-negative bacterial species. (p. 58)
Table 3-3: Ambler class D, class 1 integron-located beta-lactamases reported from various Gram-negative bacterial species. (p. 59)
Table 3-4: Integron-borne co-resistance genes reported to occur with class A, beta-lactamase genes. (p. 66)
Table 3-5: Integron-borne co-resistance genes reported to occur with class B, beta-lactamases. (p. 67)
Chapter 4:
Table 4-1: Well-characterized bacterial strains used in this study. (p. 82)
Table 4-2: Oligonucleotide sequences used in this study. (p. 84)

Chapter 5:
Table 5-1: Oligonucleotide sequences used for PCR analysis in this study. (p. 99)
Table 5-2: LightCycler amplification and melting curve protocol followed in this study. (p. 100)
Table 5-3: Results obtained with nested-PCR, real-time PCR and DNA sequencing methods. (p. 107)

Chapter 6:
Table 6-1: Antibiotics and antibiotic concentrations used in this study. (p. 118)
Table 6-2: Oligonucleotide sequences used in this study. (p. 120)
LIST OF ABBREVIATIONS

ABI Applied Biosystems Inc.
AIDS acquired immunodeficiency syndrome
AMK amikacin
AMP ampicillin
AmpC chromosomal located cephalosporinase
API analytical profile index
ATCC American Type Culture Collection
be base element
Bla beta-lactamase
BLAST basic local alignment search tool
Bp base pair(s)
C centigrade
ca circa
CARB carbenicillinase
CDC Centers for Disease Control (and Prevention) (USA)
CFZ cefazolin
CAZ ceftazidime
CXM cefuroxime
CIP ciprofloxacin
Co company
COL colistin sulphate
Corp corporation
CSF cerebrospinal fluid
CTX-M cefotaximase
DNA deoxyribonucleic acid, complementary DNA
DNTP deoxynucleotide triphosphate
EDTA ethylenediaminetetraacetic acid
ESBL extended-spectrum beta-lactamase
F fluorescence
FIGE field inversion gel electrophoresis
FITC fluorescein isothiocyanate
FL fluorescein
FRET fluorescence resonance energy transfer

GEN gentamicin

GES Guiana extended spectrum beta-lactamase

h hour(s)

HIV human immunodeficiency virus

IBC integron-borne cephalosporinase

IC₅₀ 50% inhibitory concentration

ICU intensive care unit

IEF iso-electric focussing

IMP beta-lactamase named after preferred substrate (imipenem)

ln integron

IPM imipenem

IS insertion sequence

IU international unit(s)

Kcat catalytic kinetic constant

Kg kilogram(s)

KLUA beta-lactamase named after *Kluyvera ascorbata*

Km Michaelis-Menten kinetic constant

L litre(s)

LC LightCycler

LCR LightCycler red

Ltd limited

M molecular weight

MBC minimum bactericidal concentration

MEM meropenem

MIC minimum inhibitory concentration

Min minute(s)

MW molecular weight

NAL nalidixic acid

NCCLS National Committee for Clinical Laboratory Standards

NE non-enteric

NIT nitrofurantoin
NMR nuclear magnetic resonance
Nt nucleotide(s)
OFX ofloxacin
OprD operon D / porin D
ORF open reading frame
OXA oxacillinase
PAGE polyacrylamide gel electrophoresis
PAH Pretoria Academic Hospital
PCR polymerase chain reaction
PER beta-lactamase named after original authors (P. Nordmann, E. Ronco R. Labia)
PFGE pulsed-field gel electrophoresis
PH phosphorylation
pI iso-electric point
PNA peptide nucleic acid
PSE beta-lactamase specifically named after P. aeruginosa
Pty property
R purine (A or G)
RNA ribonucleic acid
Rpm revolutions per min
s second(s)
SD standard deviation
SDS sodium dodecyl sulphate
SET Salt-EDTA-Tris buffer
SHV sulphydryl variable beta-lactamase
sp. species (singular)
spp. species (plural)
SXT trimethoprim/sulfamethoxazole
T temperature
\(t_{1/2} \) half-life
\(Taq \) polymerase named after Thermus aquaticus
TBE tris – borate - EDTA buffer
TE tris-EDTA buffer
TEM beta-lactamase named after first patient isolated from (Temarina)
Tm melting point
Tn transposon
Tris 2-amino-2-hydroxymethylpropane-1,3-diol
TZP piperacillin/tazobactam
U unit(s)
UK United Kingdom
URL unique resource location
UV ultraviolet
VEB Vietnamese extended spectrum beta-lactamase
VIM Veronese integron-borne metallo beta-lactamase
V_{\text{max}} maximum rate of metabolism
WHO World Health Organization
Wt wild type
Y pyrimidine (C or T)