THE DESIGN OF A DIFFERENTIAL SELECTION MODEL
FOR SPECIFIC STUDY DISCIPLINES AT A TECHNIKON

By

SONIA SWANEPOEL

submitted in fulfilment of the requirements for the degree

DOCTOR COMMERCI (HUMAN RESOURCES MANAGEMENT)

in the

FACULTY OF ECONOMIC AND MANAGEMENT SCIENCES

at the

UNIVERSITY OF PRETORIA

PRETORIA

FEBRUARY 2002

© University of Pretoria
I would like to thank the following people for their help, support, encouragement, and interest:

- Prof SW Theron, my supervisor, mentor and friend who has instilled in me the passion for research;
- My husband, Fanie and children, Christél, Zander, Divan and Sonika for their patience;
- My parents and in-laws;
- Peggy Ahrense for the professional language editing;
- Petrus Nel for the statistical calculations;
- My colleagues at the Department of People Management and Development;
- My dean, Prof Maynard van der Merwe for continuous pressure;
- My colleagues in the Faculty of Economic Sciences; and
- The NRF for financial support.
THE DESIGN OF A DIFFERENTIAL SELECTION MODEL

FOR SPECIFIC STUDY DISCIPLINES AT A TECHNIKON

INDEX

| LIST OF TABLES | VIII |
| LIST OF FIGURES | XII |

CHAPTER 1 INTRODUCTION AND AIM

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Aim of Study</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>Methodology</td>
<td>3</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Theoretical research</td>
<td>3</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Empirical research</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Chapter Outline</td>
<td>4</td>
</tr>
</tbody>
</table>

CHAPTER 2 SELECTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Definition and Description</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Rationale of selection</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Value of selection</td>
<td>9</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Organisation</td>
<td>9</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Employee</td>
<td>10</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Society</td>
<td>10</td>
</tr>
<tr>
<td>2.4.3.1</td>
<td>Micro-level</td>
<td>11</td>
</tr>
<tr>
<td>2.4.3.2</td>
<td>Macro-level</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Scientific selection</td>
<td>11</td>
</tr>
<tr>
<td>2.6</td>
<td>Designing a selection model</td>
<td>13</td>
</tr>
<tr>
<td>2.7</td>
<td>Selection decisions</td>
<td>21</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Selection strategies</td>
<td>24</td>
</tr>
<tr>
<td>2.7.1.1</td>
<td>Traditional approach to selection</td>
<td>24</td>
</tr>
</tbody>
</table>
6.8.3 The summary profile
6.8.3.1 D for Dominance
6.8.3.2 I for Influence
6.8.3.3 S for Steadiness
6.8.3.4 C for Compliance

6.9 Stress

6.10 Validity and Reliability

6.11 Conclusion

CHAPTER 7 SELECTION TECHNIQUE: NOWICKI-STRICKLAND & LEFCOURT I/E SCALES

7.1 Introduction

7.2 Definition and Description

7.3 Locus of Control and Influence

7.4 Locus of Control and Stress

7.5 Locus of Control as an Enduring Attitude

7.6 Locus of Control and the Process of Modernisation

7.7 Locus of Control and Culture

7.8 Locus of Control and Intelligence

7.9 Locus of Control and Academic Success

7.10 Locus of Control and Motivation

7.11 Locus of Control, Performance Incentives and Participation

7.12 Locus of Control and Job Complexity

7.13 Locus of Control and Job Satisfaction

7.14 Locus of Control and Job Performance

7.15 Locus of Control and Management Style

7.16 Skill-Utilisation, Alienation and Locus of Control

7.17 Locus of Control and Leadership

7.18 Locus of Control and Entrepreneurship

7.19 Top Executive Locus of Control and Its Relationship to Strategy-Making, Structure and Environment

7.20 Critique on Locus of Control

7.21 Conclusions
CHAPTER 8 SELECTION TECHNIQUE: MYERS-BRIGGS TYPE INDICATOR

8.1 INTRODUCTION
8.2 BACKGROUND
8.3 PERCEPTION AND JUDGEMENT
8.4 SENSING AND INTUITION.
8.5 THINKING AND FEELING
8.6 COMBINATIONS OF PERCEPTION AND JUDGEMENT
8.6.1 Sensing plus thinking
8.6.2 Sensing plus feeling
8.6.3 Intuition plus feeling
8.6.4 Intuition plus thinking
8.7 SUMMARY OF THE FOUR PREFERENCES
8.7.1 Extroverted thinking types - ESTJ & ENTJ
8.7.2 Introverted thinking types - ISTP & INTP
8.7.3 Extroverted Feeling Types - ESFJ & ENFJ
8.7.4 Introverted Feeling Types - ISFP & INFP
8.7.5 Extroverted Sensing Types - ESTP & ESFP
8.7.6 Introverted Sensing Types - ISTJ & ISFJ
8.7.7 Extroverted Intuitive Types - ENTP & ENFP
8.7.8 Introverted Intuitive Types - INTJ & INFJ
8.8 RELIABILITY AND VALIDITY
8.9 CONCLUSION

CHAPTER 9 METHOD OF INVESTIGATION

9.1 DATA GATHERING METHOD
9.2 PARTICIPANTS
9.3 INSTRUMENTS
9.4 STATISTIC ANALYSIS
9.4.1 Descriptive Statistics
9.4.2 Correlations
9.4.3 Predictions
9.4.4 Reliability
9.5 SUMMARY
CHAPTER 10 RESULTS

10.1 DESCRIPTIVE STATISTICS
10.1.1 Comparative descriptives between Industrial Engineering and Personnel Management Students

10.2 MULTIPLE REGRESSION ANALYSIS
10.2.1 Matric Subjects
10.2.2 Major Subjects of Personnel Management as a Dependent Variable
10.2.2.1 DISCUSS
10.2.2.2 Myers-Briggs
10.2.2.3 Nowicki-Strickland & Lefcourt I/E Scales
10.2.3 DISCUSS
10.2.3.1 Matric subjects
10.2.3.2 Matric subjects and Technikon subjects
10.2.3.2.1 Personnel Management
10.2.3.2.2 Industrial Engineering
10.2.3.3 Nowicki-Strickland & Lefcourt I/E Scales

CHAPTER 11 DIFFERENTIAL SELECTION MODEL

11.1 INTRODUCTION
11.2 MODEL
11.3 CONCLUSIONS
11.3.1 Matric subjects
11.3.2 Matric subjects and Technikon subjects
11.3.2.1 Personnel Management
11.3.2.2 Industrial Engineering
11.4 MEASURING INSTRUMENTS
11.5 RECOMMENDATIONS

BIBLIOGRAPHY
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>Conversion table 1 for the Swedish formula – Technikon Pretoria</td>
<td>66</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Conversion Table 2 for the Swedish formula – Technikon Pretoria</td>
<td>66</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Conversion Table 3 for the Swedish formula – Technikon Pretoria</td>
<td>67</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Conversion Table for the Swedish formula – Natal University</td>
<td>68</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Conversion Table for the Swedish formula – Randse Afrikaanse University</td>
<td>69</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Conversion Table for the Swedish formula – University of Witwatersrand</td>
<td>70</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Conversion Table for the Swedish formula – University of Durban-Westville</td>
<td>70</td>
</tr>
<tr>
<td>Table 8.2</td>
<td>Combination of type</td>
<td>123</td>
</tr>
<tr>
<td>Table 8.3</td>
<td>Type Table</td>
<td>127</td>
</tr>
<tr>
<td>Table 10.1</td>
<td>Descriptive statistics of matric subjects</td>
<td>134</td>
</tr>
<tr>
<td>Table 10.2</td>
<td>Descriptive statistics of Discuss</td>
<td>136</td>
</tr>
<tr>
<td>Table 10.3</td>
<td>Descriptive statistics of the Myers-Briggs and Nowicki Strickland & Lefcourt I/E Scales</td>
<td>136</td>
</tr>
<tr>
<td>Table 10.4</td>
<td>Descriptive statistics of the Technikon major subjects</td>
<td>137</td>
</tr>
<tr>
<td>Table 10.5</td>
<td>Frequency distribution of the Industrial Engineering students</td>
<td>137</td>
</tr>
<tr>
<td>Table 10.6</td>
<td>Frequency distribution of the Personnel Management students</td>
<td>138</td>
</tr>
<tr>
<td>Table 10.7</td>
<td>Comparative descriptives between industrial Engineering and Personnel Management students</td>
<td>138</td>
</tr>
<tr>
<td>Table 10.8</td>
<td>Comparative Afrikaans matric marks for Industrial Engineering and Personnel Management students</td>
<td>139</td>
</tr>
</tbody>
</table>
Table 10.9: Comparative English matric marks for Industrial Engineering and Personnel Management students 140

Table 10.10: Comparative Mathematics matric marks for Industrial Engineering and Personnel Management students 140

Table 10.11: Comparative Economics matric marks for Industrial Engineering and Personnel Management students 141

Table 10.12: Comparative Business Economics matric marks for Industrial Engineering and Personnel Management students 141

Table 10.13: Comparative Typing matric marks for Industrial Engineering and Personnel Management students 142

Table 10.14: Comparative Biology matric marks for Industrial Engineering and Personnel Management students 142

Table 10.15: Comparative Science matric marks for Industrial Engineering and Personnel Management students 143

Table 10.16: Comparative Home Economics matric marks for Industrial Engineering and Personnel Management students 143

Table 10.17: Comparative Art matric marks for Industrial Engineering and Personnel Management students 144

Table 10.18: Comparative Computer Science matric marks for Industrial Engineering and Personnel Management students 144

Table 10.19: Comparative Geography matric marks for Industrial Engineering and Personnel Management students 144

Table 10.20: Comparative History matric marks for Industrial Engineering and Personnel Management students 145

Table 10.21: Comparative Industrial Arts matric marks for Industrial Engineering and Personnel Management students 145

Table 10.22: Comparative Southern Sotho matric marks for Industrial Engineering and Personnel Management students 146

Table 10.23: Comparative Swazi matric marks for Industrial Engineering and Personnel Management students 146

Table 10.24: Comparative Agriculture matric marks for Industrial Engineering and Personnel Management students 146

Table 10.25: Comparative North Sotho matric marks for Industrial Engineering and Personnel Management students 147
Table 10.26: Comparative Accounting matric marks for Industrial Engineering and Personnel Management students

Table 10.27: Comparative Technology matric marks for Industrial Engineering and Personnel Management students

Table 10.28: Comparative Tswana matric marks for Industrial Engineering and Personnel Management students

Table 10.29: Comparative Biblical Studies matric marks for Industrial Engineering and Personnel Management students

Table 10.30 Comparative German matric marks for Industrial Engineering and Personnel Management students

Table 10.31 Comparative Computer Science matric marks for Industrial Engineering and Personnel Management students

Table 10.32 Comparative Woodwork matric marks for Industrial Engineering and Personnel Management students

Table 10.33 Comparative Fitting and Turning matric marks for Industrial Engineering and Personnel Management students

Table 10.34 Comparative Engineering Sciences matric marks for Industrial Engineering and Personnel Management students

Table 10.35 Comparative Motor engineering matric marks for Industrial Engineering and Personnel Management students

Table 10.36 Comparative Zulu matric marks for Industrial Engineering and Personnel Management students

Table 10.37 Comparative Xhosa matric marks for Industrial Engineering and Personnel Management students

Table 10.38 Comparative Electrical Work matric marks for Industrial Engineering and Personnel Management students

Table 10.39 Comparative Industrial Electricity matric marks for Industrial Engineering and Personnel Management students

Table 10.40 Comparative Electrical Technology matric marks for Industrial Engineering and Personnel Management students

Table 10.41 Comparative Tsonga matric marks for Industrial Engineering and Personnel Management students

Table 10.42: Comparative descriptive statistics of Industrial Engineering and Personnel Management students
Table 10.43: Correlations between matric subjects

Table 10.44: Correlations between matric subjects and major Technikon subjects

Table 10.45: Residual statistics

Table 10.46: Coefficients of the model tested

Table 10.47: Coefficients of the model tested

Table 10.48: Coefficients of the model tested

Table 10.49: Correlations between Discuss and Myers-Briggs

Table 10.50: Correlations between Discuss and Nowicki-Strickland & Lefcourt I/E scales

Table 10.51: Residual statistics

Table 10.52: Coefficients of the model tested

Table 10.53: Coefficients of the model tested

Table 10.54: Coefficients of the model tested

Table 10.55: T-test of Discuss, Myers-Briggs and Nowicki-Strickland & Lefcourt I/E scales
Figure 2.1:	Basic elements in the selection process.	14
Figure 2.2:	Typical selection process	16
Figure 2.3:	Validating the selection process and decision	20
Figure 2.4:	Assessing the usefulness of a predictor	22
Figure 2.5:	Major evaluative standards for personnel selection procedures	23
Figure 2.6:	Traditional model of the personnel selection process	25
Figure 2.7:	Scatterplots illustrating the effect of gender as a moderator variable.	26
Figure 2.8:	Operation of a suppressor variable	27
Figure 2.9:	Scatter plot of IQ against school achievement	28
Figure 2.10:	Schematic representation of a correlation between two variables	29
Figure 3.1:	Criterion deficiency, relevance and contamination	46
Figure 3.2:	The temporal dimension of criterion measurement	51
Figure 3.3:	A modified framework that identifies the inferences for criterion development.	54
Figure 6.1:	An illustration of the Discuss continuum	87
Figure 6.2:	The biaxial model of the Discuss	90
Figure 6.3:	Discuss factors	90
Figure 7.1:	The perceived determinants of success and failure	109
Figure 7.2:	Reciprocal relationship between skill-utilisation, influence, income, and locus of control	113
Figure 8.1:	Type preferences worksheet	119
Figure 11.1:	Selection model for Personnel Management students	188
Figure 11.2:	Selection model for Industrial Engineering students	189
SYNOPSIS

THE DESIGN OF A DIFFERENTIAL SELECTION MODEL FOR SPECIFIC STUDY DISCIPLINES AT A TECHNIKON

"It is in fact nothing short of a miracle that the modern methods of instruction have not yet entirely strangled the holy curiosity of inquiry; for this delicate little plant, aside from stimulation, stands mainly in need of freedom; without this it goes to wrack and ruin without fail." Albert Einstein

by

SONIA SWANEPOEL

Study leader: Prof SW Theron
Department: Human Resources Management
Degree: D Com (Human Resources Management)

In 1999 the Department Human Resources Management received 1 625 applications for admission to the National Diploma course in Human Resources Management and in 2000, 1 750. Only 70 students could be admitted. By comparison the Industrial Engineering Department received only 331 applications in 1999 and 430 in 2000 of which only admit 100 students could be admitted. To date senior certificate results are weighted (Swedish formula) and used as the only method of selection. Given the current problems in education and the environmental constraints of the majority of applicants, the Swedish formula can no longer be used as the sole selection mechanism.

The purpose of this research, therefore, is to design a selection model which can be utilised to select students for the abovementioned courses.
During the theoretical investigation the concept of selection and the compilation of selection models was emphasised in all the forms, as well as validity strategies to determine validity. The problems relevant to the criteria for success were also researched.

Three main categories of predictors were scrutinised, viz. —

- matric subjects,
- Swedish formula,
- traditional psychometric tests, and
- popular tests such as Discuss, Myers-Briggs and the Nowicki-Strickland & Lefcourt I/E scales.

Calculations of the relations between Technikon major subjects and these predictors were done.

A multiple hurdle model for selection is presented (refer to Figures 11.1 and 11.2) for the Human Resources Management and Industrial Engineering programmes.

The first hurdle in the both the selection models is the Swedish formula based on matric subjects.

The second hurdle is internal locus of control, which relates to both Personnel Management and Industrial Engineering subjects.

The third hurdle for Personnel Management applicants is the Discuss while for the Industrial Engineering applicants the Myers-Briggs is used to correlate results.

The aim of the study which has been achieved and has culminated in the presentation of two selection models for the different disciplines. These findings can be fine-tuned in the quest for an ultimate selection model.