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ABSTRACT 

DESIGN AND OPTIMUM OPERATION OF A RE­
CONFIGURABLE PLANAR GOUGH-STEWART 

MACH~GPLATFORM 

by 

Lukas Johannes du Plessis 

Promoter: Professor J.A. Snyman 


Department of Mechanical and Aeronautical Engineering 


Degree: Philosophiae Doctor (Mechanical Engineering) 

Keywords: Gough-Stewart platform, re-configurable machine tool, adjustable geometry, inverse 

kinematics, inverse dynamic analysis, trajectory-planning, cubic spline interpolation, mathematical 

optimization, constrained optimization problem. 

This study presents a computer operating system for a novel re-configurable planar Gough-Stewart 

machining platform. The operating system is tested on a physically constructed test-model of the 

proposed re-configurable platform. In doing so, the proposed concept of a re-configurable planar 

machine tool, consisting of a moving platform connected to a fixed base via three linear actuators is 

validated, both from a theoretical and practical point ofview. 

The computer operating system consists of four sections: 

1. 	 Simulation: A computer program for simulating the motion of a planar Gough-Stewart platform 

was developed. This was done by applying the basic principles of Newton-Euler dynamics to a 

mechanical model of the platform. In particular, this special purpose simulation program allows for 

the inverse dynamic analysis of a planar Gough-Stewart platform so as to give closed-form 

expressions for the required actuator forces necessary for the execution of a specified trajectory. As 

a prerequisite for the inverse dynamic analysis, the special purpose program that was developed, also 

performs the inverse kinematic analysis of the mechanism by solving closed-form expressions for 

the positions, velocities and accelerations of the individual bodies comprising the machine. 

2. 	 Trajectory-planning: A new path-planning interpolation algorithm has been developed with which 

a user may specify the desired path to be followed by any planar industrial robot, and therefore in 

particular also the planar Gough-Stewart platform. Given prescribed kinematical requirements and 
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specified points along the path, a cubic spline interpolation curve is fitted in the time-domain, and 

further user-specified information is used to determine how the end-effector orientation angle should 

vary along the specified curve. This trajectory-planning algorithm is combined with the above­

mentioned inverse dynamic simulation program to determine and monitor the required actuator 

forces as the planar Gough-Stewart platform traces the prescribed trajectory. 

3. 	 Optimization: With the ability to determine the required actuator forces at any instant along any 

prescribed path, an adjustable geometry planar Gough-Stewart machining platform becomes a viable 

option. The rationale is that the simulation of the mechanism allows for the off-line optimization of 

the operational geometry of the mechanism for the prescribed path. The single criterion objective 

function used is the minimization of the "maximum magnitude actuator force" identified via the 

above-mentioned dynamic simulation. The minimization of this objective function with respect to 

the variable geometry, ensures that singular configurations are avoided as the specified path is 

traced. The minimization of the objective function is further subjected to compliance with 

formulated inequality constraints that ensures mechanical feasibility as the constrained optimization 

problem is solved. 

Once the optimum operational geometry is determined, the physical re-configurable planar Gough­

Stewart platform can be adjusted accordingly to ensure the successful execution of the desired 

trajectory. If it is not possible to trace the prescribed path, then user intervention is required. This 

may be done in a rational manner since the specific numerical optimization algorithm used here 

(LFOPC), gives a best compromised solution if no feasible design exists for the specified trajectory. 

The importance of this compromised solution is that it points out which constraints are violated and 

to what extent. This provides information for determining a piece-wise execution strategy by means 

of which the complete task may be performed, both feasibly and optimally. 

4. 	 Control: Apart from optimizing the Gough-Stewart platform configuration for a given task, the 

computer operating system also generates the necessary commands for controlling the required 

variation of the actuator leg lengths. This allowed for the physical execution of a number of 

representative prescribed machining paths. 
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SAMEVATTING 

ONTWERP EN OPTIMALE WERKING V AN 'n 

HERKONFIGUREERBARE VLAK GOUGH-STEW ART­


MASJINERlNGSPLA TFORM 


deur 


Lukas Johannes du Plessis 

Promotor: Professor J.A. Snyman 

Department Meganiese and Lugvaartkundige Ingenieurswese 

Graadbenaming: Philosophiae Doctor (Meganiese Ingenieurswese) 

S1eutelwoorde: Gough-Stewart platform, herkonfigureerbare masjienwerktuig, verstelbare geometrie, 

terugwaartse kinematika, terugwaartse dinamiese analise, kubiese lat-interpolasie, wiskundige 

optimering, begrensde optimeringsprobleem. 

Hierdie studie handel oor 'n rekenaarbedryfstelsel vir die inwerkingstelling van 'n unieke 

herkonfigureerbare vlak Gough-Stewart-masjineringsplatJorm. Die bedryfstelsel is getoets met behulp 

van 'n toetsmodel van die voorgestelde herkonfigureerbare platform, wat spesiaal vir die doel ontwerp 

en gebou is. Sodoende is die uitvoerbaarheid van die voorgestelde konsep van 'n herkonfigureerbare 

vlak masjienwerktuig bevestig, beide vanuit 'n teoretiese en praktiese oogpunt. Die herkonfigureerbare 

vlak Gough-Stewart-masjineringsplatform waama verwys word, bestaan uit 'n bewegende platform wat 

deur middel van drie line ere aktueerders aan 'n vaste basis gekoppel is. 

Die rekenaarbedryfstelsel bestaan uit vier dele: 

1. 	 Simulasie: 'n Rekenaarprogram is geskryf om die beweging van 'n vlak, Gough-Stewart-platform 

na te boots. Dit is gedoen deur die basiese beginsels van Newton-Euler-dinamika toe te pas op 'n 

meganiese model van die platform. Hierdie doe1gerigte en toegewyde simulasieprogram stel 'n 

mens in staat om die terugwaartse dinamiese analise van 'n vlak Goug-Stewart-platform ekonomies 

te doen. Dit behels die gebruik van geslote-vorm wiskundige uitdrukkings waardeur die onbekende 

aktueerderkragte tydens die uitvoering van die voorgeskrewe baan bereken kan word. As dee1 van 

die terugwaarste dinamiese analise voer hierdie spesiale rekenaarprogram ook die terugwaartse 

kinematiese analise uit deur gebruik te maak van geslote-vorm uitdrukkings vir die posisies, 

snelhede en versnellings van die individuele liggame waaruit die masjien bestaan. 
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2. 	 Trajekbeplanning: 'n Nuwe intepolerende trqjekbeplannings-algoritme is ontwikkel waarmee die 

gebruiker die verlangde baan, wat deur enige vlak industrieele robot en gevolglik ook die vlak 

Gough-Stewart-platform gevolg moet word, analities kan spesifiseer. Met sekere voorgeskrewe 

kinematiese vereistes bekend, asook die gespesifiseerde node-punte langs die baan, pas die 

trajekbeplannings-algoritme interpolerende kubiese latfunksies in die tyddomein. Verdere insette 

van die gebruiker is egter nodig om te bepaal hoe die orientasie-hoek van die meganisme se 

beheerde eindwerktuig moet varieer langs die voorgeskrewe baan. Ten einde die aktueerderkragte 

langs verskillende voorgeskrewe bane te bereken, is die trajekbeplannings-algoritme gekombineer 

met bogenoemde terugwaartse dinamiese analise van die vlak Gough-Stewart-masjineringsplatform. 

3. 	 Optimering: Die lewensvatbaarheid van 'n vlak Gough-Stewart-platform met 'n verstelbare 

geometrie, Ie daarin opgesluit dat dit moontlik is om die onbekende aktueerderkragte langs enige 

voorgeskrewe baan en op enige gegewe tydstip te bereken. Die rekenaarsimulasie van die 

meganisme stel 'n mens in staat stel om die werkingsgeometrie van die meganisme te optimeer na 

gelang van die voorgeskrewe baan. Die enkelmaatstafdoelfunksie wat hiervoor gebruik word, is die 

mimimering van die "maksimum-grootte-aktueerderkrag" wat via bogenoemde dinamiese 

rekenaarsimulasie geYdentifiseer word. Die minimering van hierdie doelfunksie, met betrekking tot 

die verstelbare geometrie, waarborg dat singuliere konfigurasies geassosieer met oneindige groot 

aktueerderkragte tydens die uitvoering van die voorgeskrewe baan, vermy word. Verder moet die 

minimering van hierdie doelfunksie uitgevoer word met inagneming van geformuleerde 

ongelykheidsbegrensings. Sodoende word die meganiese uitvoerbaarheid van die berekende 

oplossing tot die begrensde optimeringsprobleem, verseker. 

Sodra die optimale werkingsgeometrie bepaal is, word die fisiese herkonfigureerbare vlak Gough­

Stewart-platform dienooreenkomstig verstel, ten einde die voorgeskrewe baan suksesvol uit te voer. 

Indien dit onmoontlik is om die voorgeskrewe baan te volg, moet die gebruiker 'n beredeneerde 

besluit maak. Die spesifieke numeriese optimerings-algoritme wat in hierdie studie gebruik word 

(LFOPC), bereken die beste moontlike kompromie-oplossing indien daar geen lewensvatbare 

ontwerp vir 'n voorgeskrewe baan bestaan nie. Die beste kornpromie-oplossing dui aan watter 

ongelykheidsbegrensings oorskry is, en tot watter mate. Hierdie kompromie-oplossing is 

noodsaaklik om 'n beredeneerde besluit te maak aangaande die stuksgewyse uitvoering van die 

voorgeskrewe baan op 'n lewensvatbare en optimale wyse. 

4. 	 Beheer: Afgesien van die konfigurasie-optimering van die Gough-Stewart-platform na gelang van 

'n gegewe taak, genereer die rekenaarbedryfstelsel ook die beheerkode wat nodig is vir die 

verlangde variasie in aktueerderbeenlengtes. Gevolglik IS 'n paar verteenwoordigende 

masjineringsbane fisies uitgevoer met behulp van die toetsmodel. 

-----------~---------------------------
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1 INTRODUCTION: OVERVIEW OF GOUGH-STEWART 

PLATFORMS USED MACHINING CENTERS 

1.1 Introduction 

The main this study is to the L"-"CHUIUL both and point 

view, of a novel proposed of a r"u~rW',T1 platfonn. 

The literature presented in this a overview of the history 

Po'''''''''_''' on the limited industrial application of technology to machine tools. 

potential of is put into the 

'''''UT'''''''' platform machine tools are In the 

concept orc;po:sea in this is motivated based on the literature survey 

1.2 History of Gough-Stewart platforms 

A robotic manipulator is a mechanical for remote or materials. of 

or"fJ....uru"ES' vuc.... ESv'industrial may be as 

manipulators. 

A serial manipulator of a number links connected one the other in series. The most 

known serial IS In the human ann since it fulfills requirement. Most industrial 

robotic manipulators in use today are serial manipulators [1, 2]. An explanation this is 

In "As the science and technology of with the spirit 

mechanical cu"'''""" which would carry out 

chains as robot manipulators. robotthat was towards 

manipulators the r;.;:>~'av'_0 and like the 

arm, ... ". 
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INTRODUCTION: OVERVIEW OF PLATFORMS USED AS MACHINING CENTERS' 

In spite of many applications where manipulators are great success, agree 

that these manipulators are not 

a cantilever structure, whichperformance or positioning [1, 2]. 

[2]. Totends to bend heavy load 

but this a negative onproblem, bulky links are for 

the of to mass [1]. 

rrrc>'''",,.. rigidity positional '-"UJUU'H is to the 

to parallel-actuated as illustrated two very m 

• hwnan 

• 

[2]: 

arms cooperation to handle heavy 

such as utrlTm,a three fingers actuated in parallel are used . 

a generalized nIU-IJJJ.VI manipulator as a closed-loop Vi,...P,..,'" 

whose by 

More formally, Merlet [1] 

and Ml1lthyunjaya [2] between two of manipulators vs. 

parallel) and (open-loop vs. closed-loop) and that although open-loop manipulators are 

serial parallel ones are always loop(s), it is possible to manipulators 

which are serial in nature. As an example, mention that a robot manipulator having single rlPClTP,'_ 

of-freedom (DOF) closed-loop a manipulator. further 

out some robot 

of 

can hybrid in the sense 

kinematic loops and lor series­

manipulators,are called 

A particularly important and famous subclass [2, 3] of parallel manipulators is so-called 

platforms. For purposes of IS as a 

parallel platforms: a 

movmg to the by six in parallel to control the 6-DOF 

of movmg platform. Furthermore, all the joints moving support 

lie in same base and platform planes. 

first working prototype a parallel manipulator is test of 

Whitehall shown in 1.1, and which was operational in 1954-1955 

Chapter 1 2 
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INTRODUCTION: OVERVIEW OF PLATFORMS USED AS MACHINING CENTERS 

Figure 1.1: The tire test machine of Gough and Whitehall (after 

It is however the that research attention to the field parallel 

manipulators The mechanism proposed as a flight simulator is shovvn in 1.2. It 

consists a 

angular 

platform supported by ball 

two-axis [2]). 

1.2: Stewart's proposed flight simulator (after 

as a platform in Note that this cannot be strictly 

sense the above, leg aITam~en1en ("polar coordinate leg 

1 3 




INTRODUCTION: OVERVIEW OF PLATFORMS USED AS MACHINING CENTERS 

in his paper [5] points out the moving -"TPnJ<lH"system") depicted in 

abutment". As a result may controlled in any combination by six each having a 

this, he 15 and 20 in 

ma consistent the 

x 

Axis of ~ 

Foundation 

One-axis joint 

Figure Stewart's original "polar coordinate control leg system" (after [5]). 

Stewart [5] comments that fitted with linear control leg systems is very similar to 

and therefore the current usage the name 

Gough-Stewart platform to such a manipulator. 

Researchers agree that parallel manipulators in evolved into a popular research topic in the 

1980's 6]. This Hunt [7] realized the stiffness positioning capabilities 

parallel are distinct over serial and as such, potential 

should be studied in more detail [2]. 

The ,vHUH.'" study of parallel manipulators in general, platforms in particular, 

revealed that many that are serial manipulators are much more 

difficult to solve vIce versa. and Mruthyunjaya 

[2], the generalized 6-DOF Gough-Stewart platform is in which the contrast 

n,1",'ct"'ti in the most manner,with to selia1 it the most 

manipulator in the entire 
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INTRODUCTION : OVERVIEW OF GOUGH-STEWART PLATFORMS USED AS MACHINING CENTERS 

One specific contrast is the limited workspace of a 6-DOF Gough-Stewart platform compared to the 

sweeping workspace and dextrous maneuverability of a 6-DOF serial manipulator. The Gough-Stewart 

platform designs of the 1980's made use of pair wise meeting of the legs on either or both the moving 

platform and the fixed base. However, researchers of this era soon realized that the coalescence of 

spherical joints severely restricts the mobility of the manipulator [2]. 

Based on the definition of Gough-Stewart platforms, the most general 6-DOF Gough-Stewart platform 

would have six distinct leg support joints on both the moving platform and fixed base planes (see Figure 

1.4). 

Ball joint 

Extensible leg 

Ball joint 

Figure 1.4: Schematic representations of a general 6-DOF Gough-Stewart platform (after [2]). 

Over the past two decades, there has been an ever-increasing research interest in the field of parallel 

manipulators [1,2]. In their recent review article, with an extensive list of more than 200 references, 

Dasgupta and Mruthyunjaya [2] present a state-of-the-art review of the literature on Gough-Stewart 

platforms with critical examination of solved and unsolved problems in various aspects of kinematics, 

dynamics and design. According to them, and with regard to Gough-Stewart platforms in particular, 

three of the main areas in which open problems exists are: 

• dynamics and control, 

• workspace and singularity analysis , and 

• design. 
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More specifically, Dasgupta and Mruthyunjaya [2] state that there are very few works on the systematic 

design of Gough-Stewart platforms and emphasize the importance of further research in this direction for 

the enhancement and realization of the mechanism' s potential. 

With reference to parallel manipulators in general , one of the concluding remarks in the Gough-Stewart 

platform review [2] is that the different nature of parallel manipulators, compared to their conventional 

serial counterparts, calls for unconventional strategies and novel concepts for analysis and design . This 

is in agreement with one of the main conclusions reached by Merlet [I] in his recent comprehensive 

book on parallel robots and in which more than 600 literature references are cited. He states that: 

"Among the open research fields are synthesis, design and optimal design". 

1.3 Gough-Stewart platforms as machining centers 

1.3.1 6-DOF Gough-Stewart machining platforms 

In reaction to Stewart's paper [5], researchers immediately realized the potential application of Gough­

Stewart platforms as machine tools. For instance, in the communications on Stewart's article [5] , 

Tindale presents an artistic impression of a "universal mill" based on the platform Stewart proposed as a 

flight simulator. In his accompanying description, Tindale explains that such a milling machine could be 

used to machine complicated shapes (such as propellers) with simple cutters. He adds that the 

economically viability of such a machine tool would require a period of expensive study and 

development. 

In 1966 Lewis [8] also gave a very detailed description of how such a machine tool could be applied in 

practice. In spite of this, it was only 28 years later that" ... two American machine tool companies, 

Giddings & Lewis and Ingersoll, surprised the world with the presentation of a new type ofmachine tool 

at the 1994 International Manufacturing Technology Show (IMTS) in Chicago". This quotation is taken 

from Pritschow's [9] presentation on "Research and development in the field of parallel kinematic 

systems in Europe" at the first "European-American Forum on Parallel Kinematic Machines: Theoretical 

Aspects and Industrial Requirements" that was held in Milan, Italy in 1998 [10]. 

The machine tools that were presented in Chicago in 1994 were the "Variax Hexacenter" by Giddings 

and Lewis [11] shown in Figure 1.5, and the "Octahedral Hexapod" machine tool from the Ingersoll 

Milling Machine Company [12] shown in Figure 1.6. 
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Figure 1.5: The "Variax Hexacenter". 

Gindy et al. [13] explain that the "Variax" structure consists of a triangulated arrangement of three pairs 

of crossed legs. The prismatic legs of the "Variax" are all based on a "simple ball screw design, each 

powered by a separate servomotor". By inspection of the left hand photograph in Figure 1.5, the fixed 

base joints and the moving platform support joints all lie in the same base and moving platform planes. 

The additional cylinders that can be seen in the right hand photograph in Figure 1.5, are the three 

"counterbalance cylinders" that "support the weight of the upper platform so that the ball screws can 

perform the singular task of moving the machine" [13]. In spite of these additional cylinders, the 

"Variax Hexacenter" is categorized as a general Gough-Stewart platform. 

Figure 1.6: The "Octahedral Hexapod" (after [12]). 
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1.6 

INTRODUCTION: OVERVIEW OF GOUGH-STEWART PLATFORMS USED AS MACHINING CENTERS 

From 1.6 it is that base joints pair consisting three the 

"Octahedral Hexapod" in two separate planes. between the two parallel 

appears to very small compared to the overall size which is rpnArt,>rI 

approximately 5 m tall [12]. Visual inspection the enlarged view on the right 

the moving platfonn support joints all for the purposes this 

overVIew, "Octahedral may be a 

according to the given in Section 1.2. 

Interestingl y, these Gough-Stewart machine were installed at rp",,~<>r('" institutions 

introduction. Department 

of Nottingham 

initiative, and in so, was the first in Europe to a parallel 

[11 ]. 

rnpr1f'~1n Department National for and 

(NIST) in [12]. 

rp".~"r{'" institutions 

(parallel manipulator machine tools) is in and 

much work is required in and control" [11], and 

.. "Parallel kinematic machine continue to look and some very 

diffkult [12]. 

from less than promising conclusions, the unveiling these 

tools in 1994 the new kinematic structures for machine [9}. 

Conventional machine constructed as workpiece 

to tool. far majority of machine tools are of the with two or three linear 

ma perpendicular fashion [14] axis carries one above it 

[15]. et al. comment that basic type machine tool has been m widespread 

use nearly 200 years. time, this machine become 

well now a very mature technology. improvements in 

and manufacturing methods have led to the high levels machine 

tools. 

In the success this with to 

productivity, economy flexibility In increasingly the 

conventional tools: 

'-' ",e., fttA 1 8 
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• the machine structure is subject to bending loads, causing defonnations, 

• the structure of the machine requires large masses to be moved, and 

• there is an accumulation of errors due to the in series arrangement of the axes [15]. 

Consequently, after the "surprise" unveiling in 1994, many joint research efforts and consortiums were 

fonned by industry and universities worldwide, which were aimed specifically at applying parallel 

manipulators as machine tools [1, 9, 11 , 12, 16]. In order to further stimulate the exchange of ideas and 

findings in this regard, a biannual international conference is organized for this research community. 

The first gathering was at the 1998 "European-American Forum on Parallel Kinematic Machines" 

mentioned earlier, and the second was the "Year 2000 Parallel Kinematic Machines International 

Conference", held in Ann Arbor, Michigan USA [17]. 

With reference to 6-00F Gough-Stewart p1atfonns, the conclusive outcome of this intensified research 

effort is that there are limitations prohibiting their application as production machine tools [16]: 

• the unfavorable ratio of manipulator size to manipulator workspace, 

• limited dexterity and tilting angles (15° - 30° ), 

• inherent danger of strut collision, and 

• singularities inside the workspace. 

It is therefore no surprise that one of the more successful parallel manipulator type machine tools used by 

industry is not a Gough-Stewart platfonn. Instead it is a 3-00F parallel manipulator with fixed leg 

lengths, and actuated base joints. The patented" Z3 -head", developed by OS Technologie Gmbh (OST), 

is shown in Figure 1.7. It has two rotational OOF with tilting angles of ± 40· within a 370 mm stroke 

length of the translational OOF. The maximum stroke length of the translational OOF is 670 mm [18]. 

Figure 1.7: The" Z3 -head" (after [18]). 

The" Z3 -head" accommodates a motorized spindle that holds the cutting tool. It fonns part of a five­

axis hybrid machine tool [19], with the parallel manipulator head mounted on a two-axis Cartesian base. 
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This tool is tYl.,,..lt"ptpn in the aerospace industry through the alUUlll..,\.c fonned Cincinnati 

lVH',",Ulll\.c and [18], 

1.3.2 Planar Gough-Stewart machining platforms 

IvllvlVU<t. paralleland Mruthyunjaya 

withplatfonn, in that they are also structures" that are similar to 6-DOF 

In3-DOFactuators. One manipulator" Cf'nprn',",nC' 

.8. 

y 

y 

Base 

Frame 


X 

Figure 1.8: Planar 3-DOF parallel manipulator (after [2]). 

The research relevance this is evident from overviews In and [2]. 

specifically, the the kinematic of planar parallel 

mechanisms. in a context of robotics. 

instants, the Inverse and problems have dynamic 

models [26], have studied and the 

[28,29,30]. 


For purposes study a Gough-Stewart platform is considered a subclass of the 

(general) parallel manipulator In More specifically In 

In 1.2), the revolute joints 

linear actuator platform to the moving the planar 3-DOF t1(}UVJ'I-.)I~l1vU 

platfonn and in the in same platfonn 

10 
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Of particular importance with reference to this study, is that Satya et al. [31] have proposed a planar 3­

DOF Gough-Stewart platform as an alternative to the "6-DOF Gough-Stewart platform" type machine 

tool in 1995. They also constructed a prototype 3-DOF platform as part of the "Smartcuts" research 

project of the University of lllinois at Urbana-Champaign [32]. A schematic representation of the 

"Smartcuts" planar manipulator, showing its three DOF, is given in Figure 1.9. 

Figure 1.9: Schematic of the "Smartcuts" planar Gough-Stewart platform (after [31]). 

Satya et al. [31] acknowledge that in order for a machine tool to perform any task, it should have five 

DOF (three orthogonal translations with rotations about two of these axes), and hence propose a hybrid 

serial-parallel scheme with two of the "Smartcuts" planar platforms (see Figure 1.10). The simultaneous 

control of both mechanisms shown in Figure 1.10 is required for five axis machining. In particular, if the 

spindle carrying the cutting tool is attached to one of the planar platforms, and the workpiece to the 

other, the two rotational DOF of the hybrid machine are about two orthogonal translational axes, both of 

which are also 0!1hogonal to the third translational axis. 
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Figure 1.10: Schematic of two "Smartcuts" mechanisms in a series-parallel hybrid 5-axis 
machine tool (after 331). 

a to analyze than the verSIOn, 

noteworthy hybrid over parallel 

is that systems obviously results in mechanical construction. 

In of its promising the planar Gough-Stewart platform is inhibited 

by two potential nr".u!t~"'(, YJlT.nnf'O and insufficient lateral XI/flr/V" as \.I!".~u"",",u 

• In related paper, EI-Khasawneh and Ferreira determine the reachable workspace a 

U\J'U,,".ll-;J"Smartcuts" planar mechanism has the 

"moving Although it is not explicitly 

from the results it is clear that 

to physical size the 

the disadvantages 6-DOF Gough-Stewart platform (Section 1.3.l), an unfavorable 

manipulator workspace is considered a severe limitation for the practical 

tool. 

• Although a as an inherent 

plane (perpendicular to the 

on the bending of 

cantilever in genera I shows deflections under a 

insufficient lateral stiffness moving platform can expected. 

a 

of the moving 

The 

moment load 

in the 

IS 

is that a 

hence 

1 12 

m 



INTRODUCTION: OVERVIEW OF PLATFORMS USED AS MACHINING CENTERS 

Both the above drawbacks associated with the "',m<>,rtl"l platfonn have been in the similarly 

designed "Dyna-M" and "Honda HVS-SOOO" planar parallel manipulator type tools. 

machines are hybrid tools with three orthogonal translations of a Cartesian 

coordinate as the axes of motion. More the "ram" [36] or "head" [37] the 

machine tool is positioned in the xy -plane by a planar 2-DOF parallel manipulator consisting two 

linear actuators, the r",c",,,,,'rn,C'> stationary ends of which are connected to base via two joints, 

and the ends which are connected to other and to the ram i head via 

type revolute joint. The ram / head is a mechanism which moves in the z-direction, carries the 

tool. 

""'.rl/",...o('-" of the "Dyna-M" is r",,....vrh,rl to be 630 nun x 630 mm x 500 mm 

the projected area 

"Dyna-M", and 

3 m x 6 m A rnr,pp_,f11n,pn 

is shown on 

the 

right-hand 

of tool. 

1.11: The "Dyna-M" (after [36]). 

The shows a slight improvement in tenns the workspace to "projected area" 

relation over 6-DOF platfonn type machine tools. For to 

and Grendel [16], 6-DOF has a 111 

space 600 mm x 600 mm x 800 mm, with a projected area 6.7mxS.6m. 

Chapter 1 
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Furthermore, once an angular tilt is 	 platform, the aSSOCllate:d workspace volume 

the significantly. at of 

Nottingham in terms of cone where 

the nprnprlrl platform is tilted vertical by a fixed many 

direction [3 The "Variax Hexacenter" rpnr.rt,,1i a 630 mm work 

cube ,,,\lP \I,>r the UH,;Ul,,,, tilt changes def)endm on position 

hence Whittingham et analysis tools to what 

[40] a new 	 and 

both planar 	 confirm statement about the 

orientation specifications. 

Evidently, and the "Honda HVS-5000" tools are not this orientation 

since they only have three translational DOE Furthermore, Moriwaki [37] the 

HVS-5000" has a more compact structure compared to the , which would 

workspace to "projected machine area" ratio. 

of tools, ram! head is connected to the frame two 

chain links. Each consist of two pivoting bodies connected to 

both the revolute joints. 1.12 (a) an view of 

the "Dyna-M" tooL Two isolated views "Dyna-M" ram as by the two linear 

actuators, and supported by the are shown m 

1.12 (b) and (c). The middle cylinder ULLO'vH\~U to the ram and shovvn in 1.12 (b) and IS 

a 

(c) 

Figure (a) The "Dyna-M". (b) and (c) The "Dyna-M" ram as positioned by the two linear 
actuators and supported by two stabilizing chain links (after [36]). 
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lateral stiffness "Dyna-M" prototype is 60 , which compares well with 

minimum stiffuess of N/).im (2.25 xl lb/in) reported by and FelTeira for the 

spatial Gough-Stewart platform they studied. Note that a mechanism, 

in average is about 175 N/f.tm (1.0 x 106 Ib/in). The minimum in the x- and y-

of the is 30 N /).im , which is course dependent on linear the two 

linear actuators. 

It is of interest the is a prototype 3-axis machine tool intended for application in 

automotive industry. It IS reported to have a maxImum of 90 m/min a maximum 

15 In axes [36]. 

The "Honda HVS-5000" is presumably a prototype, it is intended to 

machines in automotive industry for machining of cylinder heads and cylinder blocks. 

The stabilizing links are made of aluminum, it is equipped an automatic tool changer that 

0.5 s a The positional accuracy of the is 0.0 I nun (10).im), 

and "accuracy of drilling is ± 0.05 nun (± 50).im [37]. 

1.4 The re..configurable concept 

LVVl\..I.H",- at tools from a rhttp,'p"nt the recent in manufacturing """,fpn,,,, IS re-

machine tools 

to be easily re­modules such as spindles, and worktables 

to accommodate new ''''''L/UIU stating that these systems 

are t"P{"!nlr,>r1 in order to quickly r"''''nrwlr1 to changes in market demand and product 

are listed in [1 asthe characteristics of 

modularity, flexibility, convertibility and cost Finally, uvvala,-,-, et state that "the 

systems, of tools and other 

of is to exactly the capacity and functionality, . According to 

Koren a recent report the National Research Council (Visionary 2020) mentioned that 

re-configurable manufacturing IS as first priority for future (manufactunng) 

As a result 200 I saw the 1st International TPr,F'nr'p on Agrle, 

Manufacturing" [42] as a communication forum for 

have unique Researchers have come to realize 

thus as re­
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have been proposed machine 1:\'10 

-,rPU1<lrrpJatfonns are modular and a variable geometry. 

1.4.1 Modular Gough-Stewart platforms 

6-DOF Gough-Stewart platfonn, of Department Mechanicalprototype 

Institute Technology 44], is discussed as an illustrativeat 

that any of leg modules can is achieved through modularexample. Its 

be replaced with a rhttpr,pnt of motion, and can on mobile platfonn and base at 

any location and "r"",..,r·o:".r"", 

A study by Ji [45J shown that moving range of the legs the placement the legs 

Ji [44] further comment that since have a on the and size of 

a and usually a 

of taskto allow the 

the requirement. 


a set of the Ji [43,44] 
 to re-,::;OD:Ilgur involves the the position 

and orientation ofjoints on the mobile a of 

ranges are available, the re-configuration must also what of to use. 

Ji and Leu [43] they use a foot-placement 

space for a workspace the mobile The space is a set of all base 

the of can be placed to ensure havmg 

the position of the Jegjoint on moving platfonn, motion limits the upper and the 

minimum and maximum leg limits are also taken consideration. If 

placerneIlt space is null space, desired caImot be obtained no matter the 

foot is to choose a location the j oint on or 

use another of rh+t"r.~r\t same process to applied to all six to obtain six 

placement spaces, one for 

In essence, IS a nr!_p,n">r methodology to Ji and [44] conclude by 

that the is to develop an inventory of standardized leg and customized mobile 

platfonns, so that modular can be 

easy to 
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1.4.2 Variable geometry Gough-Stewart platforms 

In their 1993 layman evaluation of (Gough)-Stewart platforms for manufacturing, Fitzgerald and Lewis 

[46] recognized that a variable geometry base would improve the practical working volume of the 

manipulator "so singularities can be moved relative to the workpiece". They explain that one of the 

problems with a Gough-Stewart platform is that it can collapse and may not be able to recover under its 

own power when it loses control near singularities. Correspondingly, a "straight forward" solution is 

proposed: "Stay away from singularities, which effectively are regions of non-performance in the robot's 

space. Predict where they will be and plan paths around them; many applications do not require 

operating near singularities, and more flexible applications will depend on routine generation of large 

path sequences that will require new, more intelligent path-planning methods." 

At the time, Fitzgerald was the Program Coordinator, and Lewis the Technical Leader of the Advanced 

Controls and Sensors Group, Automation and Robotics Research Institute (ARRI). This research 

institute, which is affiliated with the University of Texas at Arlington, built a prototype Gough-Stewart 

platform with a variable base geometry. Figure 1.13 shows a photograph of this manipulator, fTom 

which it is clear that each of the three pairs of base joints are individually adjustable. 

Figure 1.13: Photograph of the ARRI-(variable geometry base) Gough-Stewart platform. 

The specially designed moving platform joints (gimbals) of the ARRl-Gough-Stewart platform are 

however not adjustable (see Figure 1.14). 
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Figure 1.14: Photograph of the moving platform gimbals of the ARRI- Gough-Stewart 
platform. 

Machine are continually reprogrammed to move along 

machine tool is also 

a 1S 

via a variable O""f'.n'>".i-r<, may potentially overcome workspace that 

hindering its application as a machine tool. such adjustable tools also contribute to 

the important field of re-configurable manufacturing systems. 

potential rnnrn'lPITlPnT that could on working 

of '''',>;"rr platform tools can, however, only be U'U,vUIWv 

capability is combined with an efficient methodology determining the optimum for the 

machining task at hand. This observation simply from fact that, if each 

adjusted and in a continuous manner, then many possible combinations exist. 

a """'IUl)'HlL be found it be to trail-and-errorif 

situations where the task vanes. 

The optimum design of Gough-Stewart platforms 

""H'''lrt platforms have not received much attention 

and ",vIT",r.,..,'"I important of the optimum of (fixed 

parallel has indeed been a very important issue. 
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Merlet [1] explains that the (optimal) design of a general parallel manipulator essentially is "the 

determination of the dimensions of the manipulator so that it complies as closely as possible with the 

performance needed for the task at hand". 

Speaking in very broad terms, parallel manipulator research is conducted via two fundamentally different 

(but complementary) approaches, namely the analytical approach, and the numerical approach. 

1.5.1 The analytical approach 

In his review paper ofthe optimization ofmulti-DOF mechanisms, Chedmail [47], distinguishes between 

the analysis phase ("given a set of design variables of a mechanism, which is its mechanical behavior?"), 

and the synthesis phase of a mechanism ("given an expected mechanical behavior of a mechanism, 

define its design variables"). 

By far the most popular choice when it comes to the analysis of parallel manipulators, the analytical 

approach would be to find an analytical relationship between any given set of design parameters, and the 

mechanical behavior of the manipulator. The two very recent reviews by Merlet [1] and Dasgupta and 

Mruthyunjaya [2] respectively, give comprehensive and detailed accounts of the work done to date in 

this regard. 

Some of the very successful analytical results that were obtained are based on the "monumental theory of 

screws of Ball" [2] that was developed over a century ago. Dasgupta and Mruthyunjaya [2], explain that 

Ball's theory of screws provides an elegant framework for the analytical representation and analysis of 

mechanical systems. 

Merlet [1] should be credited, not only for presenting an extensive overview of the research done on 

parallel manipulators, but also for contributing towards the analytical approach for the analysis of these 

mechanisms. 

The inverse of the analysis process is the synthesis (design) process, and indeed, if an analytical 

relationship between any required performance criterion / criteria and the chosen design parameter(s) 

- exists, such that analytical closed-form mathematical equations may be formulated, then the optimum 

values of the design parameter(s) may be determined exactly and very efficiently, using algebraic 

methods. Unfortunately, it is a very challenging task in general to formulate such closed-form 

mathematical solutions. This may explain why the leading authority, Merlet [1], states that in spite of all 

the research that has been published in this field, there is still no answer to the question of determining 

the best parallel manipulator for realizing a given task. 
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1.5.2 The numerical approach 

The use of (numerical) optimization techniques in mechanical engineering is becoming increasingly 

more popular, due to the sustained increase ofcomputer power [47]. 

As far as the optimum design of structures is concerned, numerical techniques are currently in 

widespread use [48]. Chedmail [47] mentions, for example, that it is now possible to (numerically) 

optimize subsets of complex products such as the wings of an airplane, and hence conclude that 

(numerical) optimization is one of the possible approaches to mechanism synthesis. 

Following the explanation given in [1], the typical layout of the numerical approach to the design and 

optimum design ofparallel manipulators involves 

• 	 the selection of a specific mechanical architecture for the parallel manipulator (Gough-Stewart 

platform or any other type ofgeneral parallel manipulator), and 

• 	 the computer simulation of the specific architecture for determining the physical and geometrical 

characteristics (values of the design variables or parameters) of the mechanism that are best suited 

for the prescribed task. Two general techniques are listed for utilizing the simulation output: 

• 	 the simulation output may be used directly by the user to select values of the design parameters 

via trial-and-error, or 

• 	 the simulation output can be used to construct a cost-function, and one of several available 

numerical optimization techniques may be applied to determine the optimum values of the 

design variables through the minimization ofthe cost-function. 

1.5.2.1 Genetic Algorithms 

Due to the inherent characteristics (such as non-linearity, discontinuity and the presence oflocal minima) 

of typical cost-functions formulated for parallel manipulators, it is no surprise that numerical 

optimization using genetic algorithms is preferred by most researchers attempting to optimize a parallel 

manipulator design through the minimizing of a cost-function. Genetic algorithms are easy to program, 

and are able to take into account any type of variable (discrete or continuous) [47]. 

Typical of work done using a genetic algorithm in the optimal design of parallel manipulator machine 

tools is that of Zhang and Gosselin [49]. They optimized the "Tricept" machine tool with respect to its 

global stiffness, using a genetic algorithm, and explain that genetic algorithms are powerful and broadly 

applicable stochastic search and optimization techniques based on the evolutionary principle of natural 

chromosomes. The evolution of chromosomes due to the operation of crossover, mutation and natural 
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selection, is based on Darwin's survival-of-the-fittest principles, and is artificially simulated to constitute 

a robust search and optimization procedure. 

The "Tricept" machine tool is a special type of parallel manipulator, although it has similarities to the 

Gough-Stewart platform, with prismatic actuators connecting the moving platform to the base. It is also 

equipped with a passive constraining leg between the moving platform and the base. The specific 

degrees of freedom of this type ofparallel manipulator are determined by the specific degrees of freedom 

of the passive leg. In particular, the "Tricept" machine tool has three DOF (one translational and two 

rotational). The respective leg joints on the moving platform and the base coincide with the vertices of 

two respective equilateral triangles, one on the moving platform and one on the base. The radii of the 

respective circles circumscribing the respective equilateral triangles are referred to as the radius of the 

base platform (R b ), and the radius ofthe moving platform (R p ). 

In order to obtain the maximum global stiffness of the "Tricept" machine tool, three architectural 

parameters are considered as optimization variables. They are R b , Rp and the height of the moving 

platform relative to the base (z). Zhang and Gosselin [49] comment that using these three parameters, it 

is very difficult obtain the analytical expressions for each of the six stiffness elements of the moving 

platform (also see Section 1.5.1). The six stiffness elements are related to the 6-DOF of a rigid body in 

three-dimensional space. They further comment that traditional numerical optimization methods can be 

expected to experience convergence problems when faced with these types of cost-functions they 

consider. 

In searching for an optimal design, the feasible ranges of the three architectural parameters of the 

"Tricept" machine tool may be expressed as inequality constraints: 200 S Rp S 300, 400 S Rb S 600 

and 900 S z S 1500, where all extreme values are given in mm . 

Fixing the two rotational DOF of the moving platform, Zhang and Gosselin [49] maximize the sum of 

the six stiffness elements, starting with an initial design given by: Rp 225 mm, Rb =500 mm and 

z =1300 mm. The sum of the six stiffness elements for the initial design is 0.0078189. The optimal 

design found after 100 generations of the genetic algorithm, is given by Rp =300 mm (maximum 

allowable), Rb =600 mm (maximum allowable) and z =900 mm (minimum allowable). The sum of 

the six stiffness elements of the optimal design is 0.0153369. 

Zhang and Gosselin [49] thus improved the sum of the stiffness elements by a factor of 1.96 using a 

genetic algorithm. In practical terms their approach may be used not only for the optimal design of a 
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machine tool, but also for the optimum placement of the workpiece relative to the base. This placement 

is an important issue as explained by Chrisp and Gindy [38], who studied the component (workpiece) 

positioning for the "Variax Hexacenter", mentioned in Section 1.3. Another recent paper on this subject 

is the one by Wang et a1. [50]. 

Although the solution of the problem posed by Zhang and Gosselin [49] is an important achievement, the 

particular design optimization problem they considered is incomplete. In their problem the stiffness of 

the moving platform is optimized for a single position inside the workspace of the manipulator, and with 

the moving platform fixed at a specific orientation. Machine tools are, however, normally required to 

have good stiffness characteristics over the complete workspace. 

Kirchner and Neugebauer [51] emphasize that a parallel manipulator machine tool cannot be optimized 

by considering a single performance criterion. Also using a genetic algorithm, they consider multiple 

design criteria, such as the "velocity relationship" between the moving platform and the actuator legs, the 

influence of actuator leg errors on the accuracy of the moving platform, actuator forces, stiffness as well 

as a singularity-free workspace. These specified design criteria are summarized into three discrete 

objectives (cost-functions) related to the Jacobian matrix of the manipulator: 

• maximize the minimum singular value of the Jacobian matrix over the workspace, 

• minimize the maximum singular value of the Jacobian matrix over the workspace, and 

• maximize the inverse condition number over the workspace. 

The size of the workspace, and the rotational capability of the moving platform inside the workspace are 

additional design criteria, i.e. the rectangular shaped workspace should be as large as possible, with a 

maximum rotational capability of the moving platform inside the workspace [51]. 

Kirchner and Neugebauer [51] use 13 architectural design parameters in the simulation of their six-DOF 

Gough-Stewart platform machine tool. 

As an alternative to solving the optimization problem by formulating a weighted multi-criteria objective 

function, the so-called "Pareto optimal-region" is determined. The number of criteria in the multi­

criteria objective function determines the dimension of the Pareto optimal region. If only two criteria are 

optimized for, the associated Pareto-optimal region should be a curve representing all the optimum 

designs, and showing how the respective criteria weigh up with one another [52]. Once the Pareto 

optimal region is determined, the user evaluates the individual criteria against each other, and selects a 

design based on the compromise reached between the different criteria [51]. 

Some specific disadvantages associated with the use of genetic algorithms are [47]: 
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• 	 the stochastic exploration ofthe space of design variables is very expensive in terms of CPU time, 

• 	 it is necessary to experimentally predetermine the mutation and cross over parameters, 

• 	 there is no proofofconvergence, and 

• 	 compared with a pure random approach, the gain is rarely greater than a factor of 5. 

1.5.2.2 The "Democrat" design methodology 

Merlet [1, 53] lists some disadvantages of the classical approach to optimizing a parallel manipulator 

design through the minimization ofa cost-function: 

• 	 the weights given to the various criteria of a multi~riteria cost-function strongly influences the 

results that are obtained by numerical optimization procedure, 

• 	 a single criterion objective function, such as for example maximizing the workspace, does not 

always account for "hidden criteria" such as singularity considerations throughout the workspace, 

• 	 non~ontinuous cost-functions are difficult to handle for most numerical optimization techniques. In 

addition to this difficulty, the cost-function may have numerous local minima and consequently the 

minimization procedure may have difficulty to locate the global minima, and 

• 	 the computational time may be excessive if the evaluation of the cost-function requires computer 

simulations of the performance of the manipulator over the whole workspace. This is considered a 

serious drawback for most numerical optimization methods requiring frequent evaluations of the 

cost-function. 

As an alternative to the cost-function approach, Merlet [1, 53] proposes the so-called "Democrat" design 

methodology for the optimum design of parallel manipulators, where a specified set ofperformance 

requirements are considered to determine the optimum design. 

This design methodology is based on the concept of the parameter space, where each dimension of this 

space represents a design parameter of the parallel manipulator. It works in two phases: during the 

cutting phase different analytical design criteria are mapped as criterion regions in the parameter space. 

The subset of all the criterion regions in the parameter space where all specified criteria are satisfied, is 

isolated and referred to as the search region. Finally, during the refining phase, the search space is 

sampled at regular intervals for evaluation against the specified set of performance requirements, to 

obtain the optimum parallel manipulator design(s). 

1.5.2.2.1 Democrat: the cutting phase 

For a general parallel manipulator with six in-parallel links, and under the assumptions made in [1] and 

[53], six architectural parameters represent the positions of the respective six leg joints on the base, 

relative to the base coordinate frame. An additional six architectural parameters represent the respective 
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positions of the six leg joints on the moving platform, relative to the moving platform coordinate frame. 

These twelve parameters are in fact radii of twelve circles, six of which are centered at the base 

coordinate frame, and six of which are centered at the moving platform coordinate frame. The respective 

heights, and respective orientation angles of the moving platform and base joints are assumed to be 

known relative to the respective coordinate frames. The twelve architectural parameters specified result 

in a twelve-dimensional parameter space. 

The following two criterion regions are considered in [1]: 

• 	 The prescribed workspace criterion is associated with known minimum and maximum values of the 

respective actuator legs. The user defines line segments inside the prescribed workspace for the 

moving platform to trace with a specified fixed orientation. The "workspace criterion region" in the 

twelve dimensional parameter space indicates all the allowable designs of the parallel manipulator, 

i.e. all the designs that would allow the parallel manipulator to follow the prescribed line segments 

without violating the extreme leg lengths. 

At any time instant, each of the six leg lengths only depend on the position and orientation of the 

moving platform along the specified line segment, and the respective positions of the two leg joints 

(moving platform and base) of that specific leg. Hence, the twelve dimensional parameter space is 

decomposed into six different parameter planes. For a "circular" 6-DOF Gough-Stewart platform 

with the respective moving platform and base joints spaced at known angular intervals on two 

circles, the twelve dimensional parameter space reduces to a single parameter plane, since the 

respective radii of the two circles are the only two architectural parameters needed to describe the 

design of the manipulator. 

The analytical workspace criterion that Merlet [1] formulates, allows him to trace the "workspace 

criterion region" in the parameter plane in approximately 500 ms. Furthermore, for the 6-DOF 

"circular" Gough-Stewart platform described above, Merlet [54] shows that interferences between 

the actuator links may easily be included in the analytical workspace criterion. 

• 	 The second criterion considered by Merlet [1] deals with constraints on articular velocities of the in­

parallel links of the parallel manipulator. Here, the requirement is that a specified point on the 

moving platform be able to reach a specified velocity (speed and direction), at all locations in the 

desired workspace, without the articular velocities violating the allowable extreme values. The 

desired workspace is again approximated by a set of line segments, and the parameter space is again 

decomposed into parameter planes. 

Chapter 1 24 

, 'I 



INTRODUCTION: OVERVIEW OF GOUGH-STEWART PLATFORMS USED AS MACHINING CENTERS 

The analytical "articular velocities criterion" is used to trace the "articular velocities criterion 

region" in the parameter plane in typically 2.5 s . Merlet [1] points out that this region is not 

necessarily closed. Hence mapping the "articular velocities criterion region" requires the 

specification of the maximum values on both parameters of each parameter plane. 

In [53] Merlet reports that the mapping of each criterion region can be as quick as 100 ms , or can take a 

few minutes, depending on the number of line segments analyzed inside the workspace. 

In each parameter plane, the two-dimensional search region is then isolated as the intersection of the 

"workspace criterion region" and the "articular velocities criterion region". For the general parallel 

manipulator considered by Merlet [1, 53], the six two-dimensional search regions constitute the twelve 

dimensional search region. Six points, one in each two-dimensional search region, are required to define 

a unique geometry. For the 6-DOF "circular" Gough-Stewart platform, there is only a single two­

dimensional search region, and any point in this search region defines a unique geometry that satisfies 

both the workspace and articular velocities design criteria. Some user interaction is required to isolate 

the search region [53]. 

1.5.2.2.2 Democrat: the refining phase 

Once all the feasible geometrical designs are isolated, the fully automated [53] refining phase discretizes 

the search region, and compares each feasible design based on a set of performance criteria deemed 

necessary for that application, in search for the optimal design. 

A high-level computer language was developed for the evaluation of specific parallel manipulator 

performance criteria in a modular fashion. As an example, Merlet [1] shows that the absence of 

singularities inside the prescribed workspace, monitoring of positioning errors, as well as stiffness 

consideration may readily be incorporated as performance criteria. The high-level computer language 

also allows for the evaluation of any cost-function that would normally be defined for a numerical 

optimization procedure. 

Note that the performance criteria are evaluated for all positions of the moving platform in the specified 

volume - the "translation workspace" [53]. The evaluation is done without discretizing the translational 

workspace because of the ability of the high-level computer language to treat specific types of 

"translational workspaces". In particular, the translational workspace can be a normal cube, or it can 

have a complex shape (see Figure 1.15), in which case it will be defined by a set of two-dimensional 

cross-sections in three-dimensional Cartesian space. 
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Figure 1.15: An example of a translational workspace volume that can be treated by the 
algorithms in Democrat (after [53]). 

The volume can also be specified in the high-level computer language as a prescribed "hypercube" in the 

"articular space". The number of articulated in-parallel links of a parallel manipulator determines the 

number of dimensions of the articular space. For a 6-DOF Gough-Stewart platform with six arbitrary 

spaced actuator legs, a six dimensional "articular space" is required to define the "hypercube" 

R';"" ~ R; ~ R';'" , i =1,2,...,6; with R';"" and R';'" respectively the minimum and maximum allowable leg 

lengths oflegs i 1,2,... ,6 . 

Merlet [53J distinguishes between a translation workspace as described above, and a general workspace 

which, apart from the specified Cartesian volume, also includes specified ranges for the three orientation 

angles of the moving platform. In the latter case, the high-level computer language "continuously" 

evaluates the performance criteria for the specified three-dimensional displacement volume, but the 

"three-dimensional orientation volume" is discretized during the evaluation process. 

As a specific example of how the high-level computer language works, Merlet [53] explains the 

instruction: 

%VO =minimalstiffness in cube center 0 0 30, 0 10 10 10 

This instruction commands the computation of the "minimal values of the diagonal of the stiffness 

matrix of the parallel manipulator" for all positions of the moving platform in the specified cubic volume 

(10 x 10 x 10), centered at (x, y, z) (0,0,30). The returned minimal values are stored in the array 

VO. 

The user specifies allowable minimal values as the "stiffness performance requirement", which is then 

used in the evaluation of the different feasible designs given by the discretized search region. In 

particular, the high-level computer language returns "0" if the feasible design does not fulfill the user's 
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requirement, "1" if it fulfills the requirement and "2" if it fulfills the requirement and is better than the 

previous solution [53]. 

It is reported that the computational time of this final stage of the proposed design methodology is 

dependent on the size (and dimension) of the search region, and the efficiency with which the 

performance criteria is evaluated [1]. 

1.5.2.2.3 Democrat: Optimizing the "HFM2" 6-DOF Gough-Stewart platform design 

The "HFM2" 6-DOF "circular" Gough-Stewart platform "meant to be used for fine motions of heavy 

loads (850 kg) in a relatively small workspace", is presented in [I] and [53] as a case study for the 

"Democrat" design methodology. 
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Figure 1.16: Rectangle (scale 1:1) showing the x and z workspace constraints of the "HFM2" [1] 
6-DOF "circular" Gough-Stewart platform. 

Figure 1.16 shows a rectangle in the x - z plane, where the position of the coordinate system is chosen 

to represent the x and z workspace "constraints" as given Merlet [I, 53] for the HFM2 manipulator: 

I x (mm) y (mm) z (mm) ! 

! ±30 ±20 I 

The remaining workspace constraints listed for the HFM2 platform are 

ex (mrad) e y (mrad) e z (mrad) 

±5 ±5 0 10 

which may be interpreted as follows: 

The three respective orientation angles of the moving platform, ex' ey and ez ' are required to assume all 

values in the respective ranges [(-0.2865°) (0.2865°)], [(-0.2865°)-(0.2865°)] and 
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[(0°)-(0.573°)], at any point inside the rectangle shown in Figure 1.16. Such a workspace, where 

positional and rotational requirements are specified, is formally known as a dextrous workspace [40]. 

Other than the workspace constraints, Merlet [l, 53] specifies positional and accuracy requirements, the 

most stringent of which are ±0.01 mm positioning accuracy in the x-direction, and ±0.05 mrad 

(± 0.00286Y) rotation accuracy about the z-axis (6z ). Optimization of the manipulator should be done 

firstly with regard to maximizing the "rotational stiffness" about the z-axis, and secondly with regard to 

maximizing the "positional stiffness" in the x-direction. 

One of the issues in determining the optimum design of the manipulator is, of course to determine the 

position of the prescribed dextrous workspace and manipulator base relative to each other. This "base / 

required workspace"-position introduces additional parameters to the two "leg joint position" 

parameters that are required for describing the design of the 6-DOF "circular" Gough-Stewart platform. 

They should also be considered during the optimization procedure. 

Merlet [1, 53] does not mention this "base I required workspace" position as such, but in requiring the 

use of linear actuators with known and fixed stroke lengths, he indirectly addresses the positioning 

problem by determining a minimum actuator leg length for all six actuator legs. In essence, for any 

specified "base I required workspace"-position, the "base I actual workspace"-position may be adjusted, 

until it coincides with the "base I required workspace" -position. In practice this adjustment is made 

possible in one of two ways: 

• 	 extensions may be added to the lower ends of all six actuators to lengthen the minimum actuator leg 

length of all six actuators, and hence lifting the "base I actual workspace" (see the illustrative 2-DOF 

example in Figure 1.17), or 

Figure 1.17: The adjustment of the base I actual workspace position by lengthening the 
minimum actuator lengths. 
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• 	 shortening the minimum actuator leg length of all six actuators by mounting the actuator leg base 

joint at the required location along the casing of, for example, a hydraulic actuator (see the 

illustrative 2-DOF example in Figure 1.18). 

Actual 

Figure 1.18: The adjustment of the base / actual workspace position by shortening the minimum 
actuator lengths. 

For the "HFM2" manipulator, Merlet [1, 53] defines 19 line segments to analytically represent the 

prescribed dextrous workspace, and then calculates the "area of the search region" as a function of the 

"minimum actuator leg length". This is presumably done by choosing different "minimum actuator leg 

length" values, and calculating the corresponding "area of the search region" value. This being the case, 

the discrete data points could be represented on a graph, either by connecting them using straight-lines, 

or by fitting an approximation polynomial through them [55]. 

With the best value of the "minimum actuator leg length" (750 mm) determined through a "systematic 

search" involving "various trials" in the domain plotted (590 mm - 835 mm), Merlet [1, 53] finally 

shows the associated search plane from which the optimum HFM2 "circular" Gough-Stewart platform is 

to be determined, using the high-level computer language algorithm. Merlet [1, 53] comments that the 

optimum manipulator geometry in terms of the "rotational stiffness" about the z-axis, is to be fitted with 

sensors capable of a ± 2 ~ accuracy in order to comply with the specified manipulator accuracy. 

Without giving specific parameter values or reporting on the computational effort, a photograph of the 

prototype "HFM2" manipulator that was built according to the optimum design parameters, is shown in 

[53]. Merlet [53] reports that the repeatability of the prototype under a load of 230 kg is estimated to be 

better than 0.1 Jlm, and that 10 other prototypes have subsequently been built. 
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1.5.2.2.4 Democrat: Optimizing the "HDM1" 6-DOF Gough-Stewart platform design 

In a second example, which has a similarly small dextrous workspace requirement (see Figure 1.19), and 

exactly the same accuracy requirements as before, Merlet [1] attempts to optimize another "circular" 

Gough-Stewart platform ("HDMl "), firstly in terms of the "rotational stiffness" about the z-axis, and 

secondly in terms of the positional stiffness in the x-direction. As additional constraints, the respective 

radii of the base and moving platforms are also limited. 

z 
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Figure 1.19: Rectangle (scale 1:1) showing the x and z workspace constraints of the "HDMl" (IJ 
6-DOF "circular" Gough-Stewart platform. 

For this case study, Merlet [1, 53] considers the "rotational stiffness" about the z-axis, as a function of 

two additional design parameters: the angle between two adjacent joint centers on the moving platform, 

and the angle between two adjacent joint centers on the base. Note that for the 6-DOF "circular" Gough­

Stewart platform, the three pairs of adjacent joints on the moving platform, as well as the three pairs of 

adjacent joints on the base, are equally spaced at 120' angular intervals. The minimum limits imposed 

on the respective angles are 10" for the angle between two adjacent joint centers on the base, and 20· 

for the angle between two adjacent joint centers on the moving platform. 

Subject to the above constraints, different values of the two angles are iteratively chosen [53]. For each 

choice of angles, Merlet [1]: 

• 	 determines a best value for the minimum actuator leg length, which is associated with a maximal 

possible "rotational stiffness" in the z-direction for the manipulator in its nominal position (the six 

linear actuator legs in the middle of their respective ranges), 

• 	 calculates the associated search plane, and 
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• 	 utilizes a special "procedure" in the high-level computer language, to discretize and analyze the 

search plane, in search of a manipulator design with which the required specified accuracies may be 

obtained with the least stringent sensor accuracy. 

No infonnation is given regarding the number of different choices of angle-pairs evaluated. 

Furthermore, without giving any specific parameter values or reporting on the computational effort, 

Merlet [1] comments that the two best solutions, in terms of least stringent sensor accuracies, are 204Ilm 

and 2.791lm respectively. 

As a conclusion to the discussion of the Democrat design methodology, some of its reported advantages 

and disadvantages are listed here. Merlet [1, 53] points to the advantageous modularity and versatility 

with which the high-level computer language can evaluate almost any type of performance requirement. 

Furthermore, although the reduction of the parameter space into a search region is considered as an 

advantage in limiting the required computational time, the constraints imposed on the criterion regions 

(Section 1.5.2.2.1) and consequently also on search region, admittedly, limit the number of feasible 

designs when searching for an optimum parallel manipulator design. 

1.6 	 Motivation for the present study 

In conclusion to, and as part of the literature review presented here, the concept of a novel re­

configurable planar Gough-Stewart machining platform will now be motivated. In doing so the scope of 

the present study will also be outlined. 

1.6.1 	 The concept ofa re-configurable planar Gough-Stewart machining 

platform 

1.6.1.1 Mechanical feasibility 

Although to date the concept of a re-configurable planar Gough-Stewart machine has not been 

satisfactorily demonstrated, researchers have recently shown an increased interest in such re­

configurable platforms. This renewed interest is stimulated by the desire to overcome the workspace and 

singularity limitations (see Section 104), which have been inhibiting the practical application of 

conventional Gough-Stewart platforms as machine tools. The case studies presented by Merlet [1, 53] 

reconfirm the fact that the conventional 6-DOF Gough-Stewart platforms have very small usable 

workspaces (see Figure 1.16 and Figure 1.19). 
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The simplified mechanical construction of the planar 3-DOF Gough-Stewart platfonn (see Figure 1.9) to 

be studied here, makes it well suited for the implementation of re-configuration. This is so because its 

variable geometry allows for the easy adjustment of the relative positions of the base and moving 

platfonn revolute joints as shown in Appendix D. 

Furthennore, the existing "Dyna-M" and "Honda HVS-5000" machine tools (Section 1.3.2) prove that a 

planar parallel manipulator can be constructed in such a way that sufficient lateral stiffuess is provided 

for hybrid serial-parallel machining operations. 

The above indicates that the successful implementation of a planar re-configurable platfonn as a machine 

tool is not so much limited by its mechanical design, but rather by the availability of a suitable operating 

system. Here the operating system should ensure that any reasonably specified trajectory is feasible and 

can accurately be followed. In particular, the operating system should be able to a priori simulate the 

motion of the mechanism along the prescribed trajectory. Based on the simulation the system should be 

capable of deciding on the necessary adjustments of the variable geometry so that the prescribed 

trajectory can accurately and optimally be followed. The first part of the current study is therefore the 

deVelopment of a reliable and efficient dynamic simulation module for the "overall operating system". 

1.6.1.2 Simulation of a planar Gough-Stewart platform 

1.6.1.2.1 Inverse Dynamic simulation 

Shamblin and Wiens [56] characterize the dynamics of two 6-DOF Gough-Stewart machining platfonns 

for which they derive the equations of motion with inclusion of the strut masses. They state that in order 

to capture dynamics (i.e. detennine the actuator forces), a motion trajectory must be specified, along 

which the mechanism's dynamical behavior is simulated. Accordingly Chapter 2 of this study shows 

how the inverse dynamic analysis of a planar Gough-Stewart platfonn may be perfonned so as to give 

closed-form expressions for the required actuator forces necessary for the execution of a specified 

trajectory. This inverse dynamic analysis is specifically developed for implementation on a computer in 

near real time, hence the need for closed-fonn mathematical solutions to the forces at discrete and 

appropriately chosen time instants along the path. 

The advantage of the inverse dynamic analysis is that for different adjustable parameter values, which 

give rise to different mechanism geometries and different relative positions of the prescribed trajectory, 

the corresponding motions may be analyzed and compared with each other. 

The output of the inverse dynamic analysis is a set of actuator forces at discrete time instants. The 

usefulness of this infonnation lies in the fact that if the prescribed trajectory is positioned such that the 
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simulation shows that the Gough-Stewart platform will move through or near a singular configuration 

in tracing the trajectory, then this will be evident from the near infinitely large actuator forces in the 

simulation output at certain time instants. By comparing the discrete computed actuator forces at the 

discrete time instants for any specific prescribed trajectory, the computer simulation can be utilized to 

isolate the "maximum magnitude actuator force" for the specific positioning of the prescribed trajectory 

and the given mechanism geometry. This information can in turn be utilized to determine an appropriate 

relative positioning for the prescribed trajectory, as well as an appropriate mechanism geometry, such 

that a large "maximum magnitude actuator force" resulting from passing through or near a singular 

configuration, may be avoided. 

In their related investigation, Shamblin and Wiens [56] specify a trajectory to "simulate a chamfering 

and deburring operation along the edge of a workpiece as well as to show the dominant forces under a 

variety of conditions". It follows that a further function to be performed by the operating system being 

developed here, is that of kinematic trajectory-planning. This subject will be dealt with in the next sub 

section. 

1.6.1.2.2 Trajectory-planning 

Many researchers have studied trajectory-planning from the point of view that, given an initial and final 

pose of the manipulator end-effector, it is required to determine how the manipulator should be actuated 

in between these two poses (see for instance [57]). With specific reference to Gough-Stewart platforms, 

this approach is popular, since it allows for the avoidance ofsingularities inside the workspace of the 

manipulator [58]. To avoid singularities, Merlet [59] proposes a trajectory verifier and indicates 

analytically which part of the specified trajectory is outside the reachable workspace of the parallel 

manipulator, and whether the specified trajectory will lead to a singular configuration. The application 

of this trajectory verifier is limited to a 6-DOF Gough-Stewart platform, although it is claimed to be 

easily extendable to general parallel manipulators. 

Trajectory-planning as defined by Wolovich [60] is the specification of desired time-dependent paths in 

either Cartesian or link space. In terms of performing the inverse dynamic analysis of a planar 

machining platform, the tool trajectory must be specified in Cartesian space. The inertia forces in the 

dynamic analysis of the motion of a machine are of course dependent on the manner in which the 

Cartesian path is specified in the time domain [56]. If the trajectory is specified in such a way that the 

resulting accelerations are discontinuous, then the inertia forces will also be discontinuous. 

With specific reference to trajectory-planning for existing Computer Numerical Control (CNC) machine 

tools, Zhang and Greenway [61] state that CNC systems typically only support motion along straight­

line and circular paths. However,free-form design and machining have become important in a variety of 
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applications in the automotive-, aerospace-, and ship building industries. Specific examples are the 

design and machining of dies and molds, as well as propeller and impeller blades [62]. The consensus 

seems to be that free-form surfaces can easily be modeled in 3-D space, but that the manufacturing of 

free-form surfaces has been a difficulty up to now. 

The difference between various representation schemes with which free-form surfaces are modeled in 3­

D space, lies in the utilization of different geometrical and polynomial properties required to control and 

modify the desired geometrical shapes [62]. More specifically, Non-Uniform Rational B-Splines 

(NURBS) have long been favored in Computer-Aided Design (CAD) systems, since "they offer exact 

uniform representation ofboth analytical and free-form parametric curves" [61]. 

Bahr et al. [62] explain that a typical way to machine parts with spline surfaces (including NURBS) on a 

CNC machine tool is converting or transforming the surfaces to linear or circular segments according to 

a prescribed error tolerance, so that the CNC machines can reproduce the parts. For many applications, 

these conversions or transformations will produce a large amount of data. Furthermore, with the path 

divided into straight-line segments, in current five-axis machining with off-line programming, the tool 

orientation is maintained constant during each segment. This implies that the orientation of the tool 

must be changed abruptly between two segments, which according to Kim et al. [63] can produce an 

unpredictable reaction at the point of contact with the surface and prevent a smooth finish. 

Kim et al. [63] acknowledge the value of a real-time NURBS curve interpolator for a 6-axis robot 

developed by Zhang and Greenway [61]. They state that real-time parametric interpolators reduce the 

memory requirement and communication load in guaranteeing continuity in the first-order and second­

order properties of the tool position. They emphasize however, that the most significant problem in the 

generation and control ofa five-axis NC trajectory is a continuous and smooth description of the tool 

orientation that will change smoothly along the contour suiface. Therefore, an important area of 

research is to generate a control algorithm that will accommodate a continuous and sufficiently smooth 

description of the orientation of the tool. 

Kim et al. [63] focus on the fact that the tool tip and a unit line vector attached to the tool generate a 

ruled surface. The curvature theory of a ruled surface, which is a study of the differential motion of the 

ruled surface, is then used to provide the properties of the tool motion in a strictly mathematical manner. 

When the surface to be machined is a free-formed surface and cannot be represented by an analytical 

closed-form equation, Kim et al. [63] use the Ferguson curve model to geometrically represent the ruled 

surfaces for the tool trajectory. 
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In Chapter 3, an alternative trajectory-planning interpolation algorithm is proposed and developed with 

which a user may specify the desired path to be followed by any planar industrial robot, and therefore in 

particular also by a planar Gough-Stewart platform. Given specified points along the path, an 

interpolation curve is fitted in such a way that continuous displacement, velocity and acceleration curves 

are generated in the time-domain. The user-specified information is also used to determine how the end­

effector orientation angle should vary along the specified curve, and in particular, generates continuous 

orientation angle, orientation angular velocity and orientation angular acceleration time curves. 

In terms of the current research, which is focused on a planar Gough-Stewart machining platform, the 

relevance of the proposed free-form trajectory-planning algorithm lies in the fact this machine tool is 

ideally suited to machine along non-linear curves. Powell et al. [11] explain that for a conventional 

machine tool, based on serial kinematic chains, the simplest movements are linear motions along the 

orthogonal axes (x, y and z). To provide more complex motion requires the synchronized movement of 

all three of the axes. With the Gough-Stewart platform type machine tools, all motion is derived from 

the simultaneous motion of all the actuator legs, hence the moving platform orientation can also be 

varied in a continuous manner. 

Of particular importance here, with reference to the machining problems previously experienced and 

outlined above, is that the algorithm proposed in this study allows for the generation of a kinematically 

smooth trajectory. The resulting beneficial effect is that the inertia forces in the actuators, as well as the 

orientation of the tool will vary in a continuous manner. This should ensure smooth finishing during the 

machining operation. 

It should be noted here that for the actual motion of the physical machine tool to correspond with its 

simulated motion, the proposed trajectory-planning algorithm can not simply be loaded on a 

conventional CNC controller. In fact, Kim et al. [63] explain that the implementation of any extended 

algorithm that allows for interpolated motion beyond straight lines and circles, requires an open 

architecture controller, which is considered a new concept in CNC machining. Although this practical 

aspect is very important, it falls beyond the scope of this study. However, the ability to accurately 

simulate the continuous kinematics and associated dynamical behavior of the motion of the planar 

Gough-Stewart platform along non-trivial prescribed paths, is imperative in determining the optimum 

mechanism geometry for any prescribed path. 

1.6.1.3 Optimal adjustment of the variable geometry 

With reference to Sections 1.5.2.1 and 1.5.2.2, Merlet [1, 53] and Kirchner and Neugebauer [51] agree 

that a single performance objective criterion cannot be used to optimize a Gough-Stewart machining 
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platform. In particular, Merlet [1, 53] points out that there are "hidden criteria" such as singularity 

considerations that are not considered when, for example, the workspace is maximized. 

In spite of the above reservations, a single criterion cost-function will nevertheless be used in this study 

to determine an appropriate relative positioning for the prescribed trajectory, as well as an appropriate 

planar Gough-Stewart platform geometry for different machining tasks. In particular, the cost-function 

to be minimized here will be the "maximum magnitude actuator force" mentioned in Section 1.6.1.2.1. 

The rationale is that if the "maximum magnitude actuator force" is as small as possible, the 

corresponding relative positioning for the prescribed trajectory and the particular mechanism geometry 

will be such that the prescribed trajectory will successfully be traced. This will be so since the planar 

manipulator will be "as Jar as possible" from any singular configurations. 

Many numerical optimization techniques also allow for non-trivial inequality and equality constraints to 

be specified. The careful formulation of such constraints extends the value of the solutions to the 

corresponding constrained optimization problems, beyond that where only simple limitations are 

imposed on the minimum and maximum allowable design variable (parameter) values. For example, the 

minimum and maximum allowable actuator leg lengths of a planar Gough-Stewart platform may be 

incorporated as inequality constraints, to ensure that the design parameters are adjusted so that the 

prescribed trajectory lies inside the mechanism's workspace. 

In Chapter 4 it will be shown that, in spite of the non-smooth nature of the "maximum magnitude 

actuator force" cost-function and "actuator leg length" inequality constraints, the gradient-based 

mathematical programming LFOPC optimization algorithm [64] used in this study, successfully solves 

the comprehensively constrained optimization problem. Indeed, LFOPC has in the past been 

successfully applied to many engineering optimization problems where noise and discontinuities were 

present in the objective and constraint functions [64]. 

1.6.2 	 The concept verification: a re-configurable planar Gough-Stewart 

platform test-model 

In Chapter 5 the ultimate task of designing, constructing and putting into operation a re-configurable 

planar Gough-Stewart platform test-model is tackled. The chapter shows in particular how the 

simulation and optimization processes are integrated in an operating system, that allows for the set-up of 

the machine and the execution of the prescribed tasks. 

The constructed test-model may be seen as a technology demonstrator rather than a prototype. The value 

of this demonstrator lies in the fact that it enables a practical assessment of the feasibility and potential of 
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the re-configurable device, and associated operating system, as a practical machining center. This 

evaluation is presented in the concluding Chapter 6, in which suggestions for future research are also 

made. 
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Chapter 2 


2 KINEMATIC AND KINETIC MODELING OF A PLANAR 

MACHINING CENTER 

2.1 Introduction 

The books by Nikravesh [65] and Haug [66] emphasize the importance of the application of computer­

aided analysis techniques to multi-body mechanical systems. This section gives a brief overview of the 

more important aspects of computer-aided analysis of mechanical systems as highlighted in the 

introductory chapter of the book by Nikravesh [65]. 

A mechanical system is defined as a collection of bodies (or links) in which some or all of the bodies can 

move relative to each other. Furthermore, mechanical systems may range from the very simple to the 

very complex, and a specific mechanical system may experience either planar (two-dimensional) or 

spatial (three-dimensional) motion. 

Any mechanical system can be represented schematically as a multi-body system where the actual shape 

or outline of a body may not be of immediate concern in the process of analysis. Of primary importance 

though, are the connectivity of the joints and the physical characteristics of the elements in the system. 

The analysis of a mechanical system is an important tool in the design process, i.e. the process of 

determining which physical characteristics are necessary for a mechanical system to perform a 

prescribed task. Figure 2.1 shows a block diagram of the "analysis branch" called mechanics, which is 

the study of motion, time and forces. 
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Mechanics 

Study of motion, time and forces 

DynamicsI Statics 

Study of non-stationary systems I Study of stationary systems 

Kinematics 

Study of motion (displacement, 

velocity & acceleration) 

regardless of the forces that 

produce the motion 

I 

Kinetics 

Study of motion and its 

relationship with the forces that 

produce the motion 

Figure 2.1: Mechanics and its sub-disciplines. 

There are two approaches to mechanics: the graphical approach and the analytical approach. Many 

classical methods of analysis in mechanics have relied upon graphical and often quite complicated 

techniques. These techniques are based on geometrical interpretations of the system under consideration. 

Contrary, the method of solution by vector algebra is an analytical approach, and is more systematic 

when compared to the graphical approach. A problem formulated analytically can be solved repeatedly 

for different parameter values, a task that is ideally suited to a computer program. The usefulness of 

writing a computer program becomes even more apparent when the mechanical system under 

consideration is complex to the extent that, if the system is considered for kinematic analysis, a graphical 

approach would be very tedious as well as inaccurate. 

The purpose ofcomputer-aided analysis of mechanical systems is to develop basic methods for computer 

formulation and solution of the equations of motion. This requires systematic techniques for formulating 

the equations and numerical methods for solving them. A computer program for the analysis of 

mechanical systems can either be a special-purpose program or a general-purpose program. 

A special-purpose program is a rigidly structured computer code that deals with only one type of 

application. The equations of motion for that particular application are derived a priori and then 

formulated into the program. As input to the program, the user can provide information such as the 

dimensions and physical characteristics of each part. Such a program can be made computationally 

efficient and its storage requirement can be minimized, with the result that it will be suitable for 

implementation on small personal computers. The major drawback of a special-purpose program is its 

lack of flexibility for handling other types of applications. 
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Since the primary interest here is the dynamic analysis of a specific machining center, a special-purpose 

program is required. The systematic formulation of the relevant equations as applied to the planar 

machining center, is dealt with in Sections 2.2 2.6. The special-purpose computer program that 

resulted, is tested in Section 2.7. 

2.2 Rigid body model 

Machining centers are used to control the relative motion between a workpiece and a cutting tool such 

that the workpiece is shaped into a desired component. The planar machining center under 

consideration consists of a planar Gough-Stewart platform with which either the tool or the workpiece 

can be moved and orientated in the plane. 

More specifically, the planar Gough-Stewart platform consists of a moving platform connected to a fixed 

base via three linear actuators as shown in Figure 2.2. Changes in the actuator lengths result in changes 

in the position and orientation of the moving platform. This planar Gough-Stewart platform corresponds 

exactly to the simplified planar Stewart platform studied by Haug et al. [67]. 

moving platfonn 

fixed base 

Figure 2.2: Planar Gough-Stewart platform. 

A rigid body model is used for analysis purposes of the planar Gough-Stewart platform. Per definition a 

rigid body is a system of particles for which the distances between particles remain unchanged. Since all 

solid materials change shape to some extent when forces are applied to them, the concept of rigidity is 

only acceptable if the movement associated with the changes in shape is small compared with the overall 

movement of the body. In general this requirement is more than satisfied for most machining centers. 

In order to specify the state of the planar Gough-Stewart platform, it is first necessary to define 

coordinates that specify the location and orientation of each body in the mechanism. Consider the 

illustrative example shown in Figure 2.3. The Oxy -coordinate system shown in Figure 2.3 is the global 
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reference frame, and a body-fixed O;~/ll; -coordinate system is embedded in body i. This implies that 

the position and orientation of body i can be specified in the plane by the position vector ri , and the 

angle of rotation $; of the body-fixed 0 i ~/ll; -coordinate system relative to the global coordinate system. 

The angle $; is considered positive if the rotation from positive x-axis to positive ~i -axis is 

counterclockwise (CCW). 

Figure 2.3: Locating point P relative to the body-fixed and global coordinate systems (after 
[65]). 

A fixed point Pi on body i can be located from the origin of the 0; ~i11; -axes by the vector st. The 

body-fixed point Pi can also be located from the origin of the global Oxy -reference frame by vector r/ . 

In general body i is not fixed, and therefore the physical vectors if, it and SiP are time varying vectors. 

Hence, the vector representations ri and rt of vectors i; and iiP have components that vary with time t 

when represented in the global Oxy -reference frame, i.e. 

X(t)] d-P, p=[xP(t)]an r.. r.[ y(t) ill YP(t) i 

Vector -st has fixed components when represented in the local 0i~i11i -reference frame, since point Pi is 

fixed in body i : 

The superscript prime f indicates that the relevant vector is represented in the local coordinate system. It 

follows that vector sr represented in the global Oxy -reference frame has time varying components 

indicated by s~. Figure 2.4 shows the geometrical relationship that exists between the global 

representation s~ ,and the local representation s;P ofvector st. 
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y 

Figure 2.4: Translation between the local and global vector representations. 

It follows directly from Figure 2.4 that 

or more concisely 

Sin$i] 
COS$i 

(2.1) 


Furthermore, with reference to Figure 2.3: 

In summary, it is noted that the position and orientation of body i may be represented in the x-y plane 

by the three-vector representation qi consisting of the global components of vector and the r i 

orientation angle $1' i.e. 

(2.2) 


The three components of qi are called the planar coordinates ofbody i. It follows that for a system ofb 

bodies situated in the x-y plane, the vector ofcoordinates for the b bodies is a 3b-vector given by 

(2.3) 


Since the planar Gough-Stewart platform consists of eight bodies (see Figure 2.5), the coordinate vector 

of the entire mechanical system is a 24-vector, i.e. 

T T T]T (2.4) 

where corresponding to Nikravesh [65], q without a subscript denotes the vector of coordinates for the 

entire system. 

q = [ ql ,Q2 ,···,q8 

43Chapter 2 



KINEMATIC AND KINETIC MODELING OF A PLANAR MACHINING CENTER 

y 

Figure 2.5: Planar Gough-Stewart platform, schematically represented as a mechanical system 
of eight bodies. 

2.3 Kinematic constraint equations 

In accordance with the definition of Nikravesh [65], the eight individual bodies that collectively fonn the 

planar Gough-Stewart platfonn shown in Figure 2.5, are called links. The combination of two links in 

contact constitutes a kinematic pair, or joint. An assemblage of interconnected links is called a kinematic 

chain. A mechanism is fonned when at least one of the links of the kinematic chain is held fixed and 

any of its other links can move. The fixed link of the planar Gough-Stewart platfonn (link 8 in Figure 

2.5) is the ground or frame. Note that the origin of link 8 is chosen to coincide with the origin of the 

global Oxy -reference frame, and that the local 08 ~8118 -coordinate system, and the global Oxy -reference 

frame are identically orientated. Furthennore, the origin of each local 0 j ~il1i -coordinate system, 

i =1,2,... ,7 , is chosen to coincide with the center of mass of respective bodies 1,2,... ,7 , and these local 

coordinate systems are orientated as shown in Figure 2.5. 

The primary purpose of the above schematic representation of the planar Gough-Stewart platfonn is to 

identifY the connectivity of the bodies or links, i.e. to identifY the kinematic pairs or joints. A kinematic 

pair imposes certain conditions on the relative motion between the two bodies it comprises. When these 

conditions are expressed in analytical fonn, they are called equations ofconstraint. Constraint equations 
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are denoted by <1> with a superscript indicating the constraint type and the number of algebraic equations, 

and a subscript indicating the joined bodies, Thus <1>;~j2) denotes the revolute (r) joint constraint of 

joined bodies i andj, which consists of two equations, Similarly <1>;~j2) denotes the translational joint (t) 

constraint ofjoined bodies i and j, which also contains two equations, 

2.3.1 Revolute joints 

With reference to Figure 2,5, the connections between the moving platform (link 1) and the upper 

portions of the actuator legs (links 2, 3 and 4) are revolute joints. This is also the case for the 

connections between ground (link 8) and the lower portions of the actuator legs (links 5, 6 and 7). 

In order to find the two algebraic equations of <1>;~j2) , consider the schematic representation of a revolute 

joint connecting bodies i and j as shown in Figure 2.6, Point P denotes the center of the joint and can be 

considered to be two coincident points; i.e. point Pi on body i and point Pj on body j. 

Figure 2.6: Revolute joint P connecting bodies i and j (after [65]). 


The vectors SiP and st respectively describe the location of point P on body i and body j. Taken 


together with vectors i j and ij' the constraint equations for the revolute joint are obtained from the 


closed vector loop expression: 


or in terms of global positional two-vectors: 

which is equivalent to 

<1>(r,2) == r + A.s~P - r. As'P =0 (2.5)
1-) 1 1 1 J ) J 

Expression (2.5) consists of two algebraic equations, i.e. 
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(2.6) 

These two constraint equations reduce the number of degrees of freedom (DOF) of the system of bodies 

shown in Figure 2.6, by two. Consequently, if the two bodies of Figure 2.6 are not connected to any 

other bodies, then the system has four DOF. 

In particular, the constraint equations of the six revolute joints of the planar Gough-Stewart platform 

shown in Figure 2.5 are: 

<D(r,2) = [Xl + ~~ COS$I 11~ sin$1 x 2 - ~~ C~S$2 + 11f Sin$2] =[0] (2.7)
1-2 - YI +~~ sin$1 +11~ COS$I Y2 -~2 s1O$2 -112 COS$2 0 

<D(r.2) XI +~~cOS$,-11~sin$, -X3 
(2.8) 

YI +~~sin$1 + 11t COS$I -Y3 
1-3 [ 

(2.9) 

<D(r,2) 
5-8 (2.10) 


(2.11 ) 


(2.12) 


The simplification in expressions (2.10), (2.11) and (2.12) follow from the particular choice of position 

and orientation of the chosen local 08~8118 -coordinate system. 

2.3.2 Translational joints 

The three actuator legs shown in Figure 2.2, each consists of two links that translate with respect to each 

other parallel to an axis known as the line oftranslation. In particular, and with reference to Figure 2.5, 

the left actuator leg is a translational joint between links 2 and 5, the middle actuator leg is a translational 

joint between links 3 and 6 and the right actuator leg is a translational joint between links 4 and 7. 

Figure 2.7 shows a schematic representation of a translational joint between links i and j, from which the 

two algebraic equations of <D;~j2) may be derived. 
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Figure 2.7: A translational joint between bodies i and j (after [65]). 

A constraint is required to eliminate the relative motion between the two bodies In a direction 

perpendicular to the line of translation. In order to satisfy this constraint, the two vectors s; and d 

shown in Figure 2.7 must remain parallel. These vectors are defined by locating three points on the line 

of translation - points Q; and P; on body i, and point Pj on body j. The first algebraic equation of 

<1>;:f) follows from the fact that the vector product of two parallel vectors is zero, i.e. 

s; x d:::: ij 

h ' h C I b I f ~. - [(x: -X~)l d h I b I fw IC , lor the goa components 0 vector Sl' I.e. Si: s; :::: P Q an t ego a components 0 
(Yi y;) 

~ ~ [(X P XP
)]

vector d , i.e. d: d = ~ ~, is equivalent to (see [65]): 
(Yj - YI ) 

(2.13) 


The second constraint of <1>~~j2) eliminates the relative rotation between bodies i and j, through the 

condition that 

(2.14) 


where 4>~ and 4>r are the initial orientation angles. 

The two constraint equations for a translational joint are therefore given by 

(x; -x~)(Yr Y;) (~r -:;)(y~ -Y~)l:::: [0]<1>(t,2) (2.15)I-J [ 4>;-4>j-(4); -4>j) ° 
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As in the case of the revolute joint, the translational joint reduces the number of degrees of freedom of a 

system by two. 

Expression (2.13) may be expanded to give 

(2.16) 


with 

p ):p • '" p '"Yi =Yi+'-;)i SIn"'i+l1 i COS"'i 

Q - ):Q' '" Q '"Yi - Yi + '-;)i SIn"'i + l1 i COS"'i 

Constraint (2.16) may therefore explicitly be stated in terms of the planar coordinates of two bodies. 

With reference to Figure 2.5 the relevant vectors of translational joint 2 5 are defined using points A 

and O2 in link 2, and point 05 in link 5. This implies that general constraint (2.16) corresponding to 

translational joint 2 5, is: 

xO'yO, _xAyo, +XAyO,
2 5 2 5 2 2 

with 

XO, =X 
2 2 

By substitution and simplification, the two constraint equations of the translational joint 2 - 5 of the 

planar Gough-Stewart platform shown in Figure 2.5 are: 

x2s~sin~2 +Y2S~COS~2 +x5s~sin~2 -Y2S~COS~2",,(t,2) 
-
"" (2.17)'V 2_5 

~2 -~s 

Note that since the S2 and Ss axes coincide with the line of translation of translational joint 2 - 5 , the 

initial rotational angles ~~ and ~~ (see expressions (2.14) and (2.15» fall away from the second 

constraint equation of <1>~~;) . 

Similarly the constraint equations of translational joints 3 6 and 4 7 are respectively found to be 

<1>(t,2) == [- x3S: sin~3 + y l,~ COS~3 + x 6S: sin~3 - y 6S~ COS~3l= [0] (2.18)
~6 ~3 ~6 ° 

<1>(t,2) 
4-7 (2.19) 
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2.3.3 Simplified constraints 

The remaining constraints are related to the fixed ground-link, i.e. link 8 of the planar Gough-Stewart 

platform (see Figure 2.5). In order to constrain the translation of the origin and angular motion of a fixed 

rigid body, the following three equations may be used as the necessary simplified constraints [65]: 

<1> Xi -C 1 0 (2.20) 

<1>=Yi -c2 =0 (2.21) 

(2.22) 

where c 1 , and c 3 are constant quantities. c 2 

Since the origin of the local OS ~811S -coordinate system coincides with the origin of the global Oxy­

reference frame, and the two coordinate systems are identically orientated (see Figure 2.5), expressions 

(2.20), (2.21) and (2.22) for link 8 of the planar Gough-Stewart platform, reduces to: 

<1> = Xs 0 (2.23) 

<1>=Y8=O (2.24) 

<1> = ~8 =0 (2.25) 

For the eight-link kinematic model of the planar Gough-Stewart platform, the 21 independent kinematic 

constraint equations given by expressions (2.7) - (2.12), (2.17) - (2.19) and (2.23) - (2.25) apply. For a 

system having m independent kinematic constraint equations and n coordinates, the number of degrees 

offreedom (DOF) is given by: 

k =n - m (2.26) 

Hence, the eight-link model of the planar Gough-Stewart platform has 24 coordinates, and consequently 

24-21 =3 DOF. 

2.4 Driving constraints 

Any set of k coordinates that are independent and are equal in number to the number of DOF of the 

system, determines the values of the remaining m dependent coordinates through the solution of the m 

independent kinematic constraint equations. Thus for the planar Gough-Stewart platform with three 

DOF, the values of three independent coordinates must be known to completely describe the system. 

In particular, the three planar coordinates describing the position and orientation of link 1, i.e. XI' YI 

and ~I are the three independent coordinates of the planar Gough-Stewart platform shown in Figure 2.5. 
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The applicable driving constraints are equations expressing each independent coordinate as a function of 

time, i.e.: 

(2.27) 


<I>(d-2,1) Yl -d (t)::::0 (2.28)2 

<I>(d-3,1) == ~l - d
3 
(t) 0 (2.29) 

Each driving constraint is denoted by <I> with the superscript indicating the driving constraint number, 

and the number of algebraic equations, e.g. <I>(HI) is driving constraint number I, which involves I 

equation. 

Expressions (2.27), (2.28) and (2.29) uniquely define the motion of link 1. With reference to Figure 2.2, 

link 1 is the moving platform of the planar Gough-Stewart platform and, with the planar machining 

center in mind, it is clear that in controlling the relative motion between the workpiece and cutting tool, 

either one can be attached to the moving platform with the other fixed in the plane. 

These two possible scenarios are separately dealt with in the next two sub-sections, with specific 

reference to obtaining for a given tool path, expressions giving the required values of the three 

independent coordinates Xl' Yl and ~l at any given time instant. The details of deriving the analytical 

functions dl(t), d 2 (t) and d 3 (t) that appear in driving constraints (2.27) - (2.29) are explained in 

Chapter 3. 

2.4.1 Fixed workpiece 

Consider the scenario of the cutting tool mounted on the moving platform with an externally fixed 

workpiece as shown in Figure 2.8. In this case it is required that the cutting tool be moved along a 

prescribed tool path specified in the global Oxy -coordinate system. 
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/ 

Figure 2.8: Fixed workpiece scenario. 

At any given time instant it is assumed that the following are known: 

1. 	 the global position of the cutting tool tip (P in Figure 2.8) on the prescribed tool path, and 

2. 	 the angle f3 between the platform-mounted tool and the normal to the tool path at the point of contact 

(see Figure 2.8) and measured positive in the CCW direction. 

Assumption I implIes thatthe global represen1ahon of the time varying vector r,' ,i.e. r,' :r,' [::1 is 

known at every instant as the prescribed tool path is traced. The tool tip P can also be located relative to 

the origin of the local 0 1SITJ I-axes by the time varying vector it. The corresponding fixed components 

of vector it, when represented in the local 0 1SITJ! -reference frame, is it :s;p =[TJOP 1, where for any 

given tool length, the local TJ ~ -component is a known constant. 

The following vector loop equation may then be used to find the sought-after global position oflink I: 

or in global vector representation: 

In terms of components this vector equation may be written as 
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(2.30) 


Expression (2.30) contains two scalar equations, i.e. 

p p. '" 
Xl Xl 	+ TJ I Stn't'l (2.31 ) 

and 

(2.32) 


In order to compute Xl and YI , the orientation angle of link 1, ¢l' must also be known. At every time 

instant, as the cutting tool progresses along the prescribed tool path, the orientation angle ¢l is directly 

related to the known prescribed angle f3 (see assumption 2 in Section 2.4.1). To find this relationship, 

consider the simplified fixed workpiece situation depicted in Figure 2.9, where the mounted cutting tool 

is collinear with the normal to the tool path at the point ofcontact. 

~l 

Figure 2.9: Simplified fixed workpiece situation. 

For this situation, it is clear that f3 =0 and the orientation angle ¢l is equal to the gradient angle e of the 

tool path, where 

tane =	dy (2.33)
dx 

and dy represents the (known) gradient of the prescribed tool path y(x) at the point of contact. 
dx 

With the proposed convention that f3 be measured positive CCW from the normal to the tool path at the 

point of contact, the orientation angle for the fixed workpiece situation depicted in Figure 2.8 is 

(remembering that for CW rotations e and ¢l take on negative values): 
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.pI 9+ ~ (2.34) 

with .pI and 9 measured positive CCW from the horizontal, and ~ measured as defined above. 

Substituting expression (2.34) into expressions (2.31) and (2.32) gives: 

XI =x~ +11;sin(9+~) (2.35) 

and 

YI y; -11; cos(9 +~) (2.36) 

In summary, for the fixed tool scenario it follows that with x P, yP and ~ known at a specific time 

instant or point along the tool path, the corresponding independent coordinates of the planar Gough­

Stewart platform, x I' YI and .pI are respectively obtained by substituting the tool path gradient angle 9 

(see expression (2.33» into expressions (2.35), (2.36) and (2.34). 

2.4.2 Fixed cutting tool 

The second planar machining center scenario is where the workpiece is mounted to the moving platform, 

and the cutting tool is externally fixed. This case is depicted in Figure 2.10, and since the tool path is 

now prescribed in terms of the local 01~1111 -coordinate system, it is required that the workpiece be 

moved such that the fixed cutting tool traces the prescribed tool path. 

Figure 2.10: Fixed cutting tool scenario. 
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As in Section 2.4.1, it is also assumed here that at any time instant the following are known: 

1. 	 the local position of the cutting tool tip (P in Figure 2.10) on the prescribed tool path, and 

2. 	 the angle f3 (measured positive CCW), from the normal to the tool path at the point of contact, to the 

vertical axis of the fixed cutting tool (see Figure 2.10). 

Assumption 1 implies that the local representation of the time varying vector ,; , i.e. ,; :s;' = [ ~ :1is 

known at every instant as the fixed cutting tool traces the prescribed tool path. The origin of the global 

reference frame is chosen to coincide with the tool tip P. Hence, vector fj locating the moving platform 

(link 1 in Figure 2.5) has the same magnitude as vector st, but is directed in the exact opposite direction. 

To find the global components of vector fj' first consider the simplified fixed cutting tool situation 

shown in Figure 2.11. 

\9'«0)

\ 

~j 

Figure 2.11: Simplified fixed cutting tool situation. 

Clearly f3 =0 in this case, which implies that the tangent to the prescribed tool path at the point of 

contact P is perpendicular to the vertical axis of the fixed cutting tool. The gradient angle of the 

prescribed tool path in the local coordinate system is a' ,where 

tane' dYJI (2.37)
dS I 

and dYJ I (SI) represents the gradient of the prescribed tool path YJ I (S I) at the point of contact. 
dS I 
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The superscript prime indicates that the gradient angle is determined relative to the local 01~1111-

coordinate system. 

For the simplified situation shown in Figure 2.11, the orientation angle $1 is equal in magnitude but 

oppositely orientated to the gradient angle 0' , i.e. $1 =-0' . 

With $1 known, the global components ofvector fl are obtained using a translation that is similar to the 

one given by expression (2.1). In particular, the global components of vector fl shown in Figure 2.11 

are given by the following two scalar equations: 

(2.38) 

and 

(2.39)YI= 

However, for the non-zero angle p shown in Figure 2.10, the orientation angle $1 of the moving 

platform is: 

$1 =-0' - ~ (2.40) 

using the CCW sign convention previously defmed for all three angles. 

Substituting expression (2.40) respectively into expressions (2.38) and (2.39) gives: 

XI == -~~ cos(O' + P) 11~ sin(O' + P) (2.41) 

and 

YI ~; sin(O' + ~) -11~ cos(O' + P) (2.42) 

Consequently, for the fixed cutting tool scenario with ~;, 11; and Pknown at any specific time instant, 

the corresponding independent coordinates of the planar Gough-Stewart platform XI' Yl and $1 are 

respectively obtained by substituting the tool path gradient angle 0' (see expression (2.37)) into 

expressions (2.41), (2.42) and (2.40). 

2.5 Inverse kinematic analysis 

In the kinematic analysis of the planar Gough-Stewart platform, the kinematic constraint equations 

derived in Section 2.3, and the driving constraints derived in Section 2.4 are used. The first and second 

time derivatives of these constraint equations yield the velocity and acceleration equations. 
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The method of appended driving constraints [65], is used here for the kinematic analysis of the planar 

Gough-Stewart platform. This method is presented below in its most general form. 

Suppose that the vector of coordinates describing the configuration of a system is given by 

q [qpq2,... ,qnf where n is the total number of coordinates. If there are m kinematic constraints 

expressed in vector form by <1>(q) =0, then k driving constraints can be appended to the kinematic 

constraints to obtain n = m + k equations: 

<I> == <1>( q) =0 (2.43) 

<I>(d) == <1>(q, t) =0 (2.44) 

where the superscript (d) denotes the driving constraints. Expressions (2.43) and (2.44) represents n 

equations in n unknowns q which can be solved for any specific time t. 

The velocity equations are obtained by taking the time derivative ofexpressions (2.43) and (2.44): 

(2.45) 


<I>(d)q' + <I>(d) =0 
q t (2.46) 

where <I> q represents the Jacobian of the vector function <I> with respect to q and <I> t the partial 

derivative of the function with respect to t. 

Expression (2.45) follows from the fact that in general: 

<I>(q) (2.47) 

and therefore the time derivative of the i-th entry <Pi (q) in expression (2.47) is: 

(2.48) 


Similarly, expression (2.46) follows from the fact that in general the driving constraints are also explicit 

functions of time: 
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<I>;d) (q,t) 

el>(d)(q,t)= <I>~d)~q,t) (2.49) 

and therefore the corresponding time derivative of the i-th entry <I>~d) (q, t) in expression (2.49) is given 

by 

(2.50) 

The velocity equations (2.45) and (2.46) may also be written as 

(2.51) 


which represents n algebraic equations, linear in terms of q . 

The time derivative of expressions (2.45) and (2.46) yields the acceleration equations: 

el> qij + (el> qq)q q = 0 (2.52) 

el>(d)q" + (el>(d)q') q' + 2el>(d)q' + el>(d) = 0 (2.53)q q q qt tt 

These expressions are obtained through the following argument. Considering the more general 

expression (2.46), which also contains t explicitly, it is clear that the left hand side is a vector function F 

ofq, q and t: 

F(q, q, t) el> q ( q, t)q + el> t (t, q) (2.54) 

where for convenience the superscript has been dropped. The time derivative of (2.54) may therefore be 

written as 

(2.55) 


where Fq = [ el> qq]q + el> tq , 

Fq = [ el> qq]q + el> t<i =el> q and 

Substituting the above into (2.55) and then in (2.46) gives 

dF =[el>qqLq+el>tqq+el>qij+el>qtq+el>tt 0 
dt 

from which (2.53) [and also (2.52)] follows directly. 
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Accelerations equations (2.52) and (2.53) may also be written as 

(2.56) 


which represents n algebraic equations linear in terms of q . 

For the planar Gough-Stewart platform under consideration, expreSSIon (2.43) represents the 21 

equations given by expressions (2.7) - (2.12), (2.17) - (2.19) and (2.23) - (2.25), and expression (2.44) 

represents the three driving constraints given by expressions (2.27) - (2.29). These 24 nonlinear 

equations in 24 unknowns q [x"YI ,<PI ,x2,y2,<P2, ... ,xg,yg,<pgf (see expression (2.4» may therefore be 

solved for any specified time t. 

More specifically, at any specified time t, expressions (2.27) (2.29) provide the Xl' YI and <PI values. 

With reference to Figure 2.5, the global coordinates of points A and Bare 

(2.57) 
B ):oB ' '"Y = YI + ':>1 sm"'l 

Note that for the specific choice of the local coordinate system of body 1 coinciding with the center of 

mass of body 1 (see Section 2.3), ~~ < 0 . 

The global positions of points C, D and E are also known for any specific design of the planar Gough­

Stewart platform. 

The orientation angles of links 2 - 7 may be determined using the "two-argument arc tangent function" 

a tan 211'.). In particular, a tan 2l(1'.1 denotes the angle whose tangent is y divided by x. Moreover, 
\x X; 

both the magnitudes and signs of x and yare used in the definition, so that angles are uniquely defined in 

all four quadrants. For example: atan2(~j\ =-135 0 
, and atan2(.!..:Q1 45° (see [60]). 

-1.0 1.0; 

For the specific choice oflocal axes shown in Figure 2.5, the respective orientation angles of links 2 and 

5, links 3 and 6 as well as links 4 and 7 are equal, i.e. 
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(2.58) 


I AD)a tan2lY - y (2.59)
x A _x D 

(2.60) 


Note that the revolute joint constraints given by expressions (2.7) - (2.12), as well as the translational 

joint constraints given by expressions (2.17) - (2.19) are implicitly satisfied in expressions (2.58) ­

(2.60). 

The global positions of links 2 - 7 follow directly from the transformation given by expression (2.1), i.e. 

Y2 yA-~~sin$2 

Y3 ::::: yA ~: sin$3 

B ):B''!''
Y4 =y -~4 Slll'!'4 

(2.61) 
c ):C·,!,.

Ys =y -~s Slll'!'5 

X6 XD - ~~ COS$6 Y6 yD - ~~ sin$6 

x7 =X E - ~; COS$7 Y7 =yE ~; sin$7 

The global positions and orientation of link 8 (ground) is given by expressions (2.23) - (2.25), i.e. 

Xs ::= 0, Ys =0 and $s =O. With a known coordinate vector q =[Xl'YI'$pX2 'Y2,$2, ... ,Xg ,ys,$s]T, the 

Jacobian matrix J = [ :~:)] of the planar Gough-Stewart platfonn is uniquely defmed (see following 

expression (2.62»: 
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The right hand side of expression (2.51) as applied to the planar Gough-Stewart platfonn is 

o 
o 

(2.63) 

The partial derivatives of the three driving constraints with respect to time are the velocities of link 1, 

i.e.: ~d, (t) =XI (t), ~d2 (t) =YI (t) and ~d3(t) ~I (t), the calculation of which, for a specific tool 
at at at 

path, is explained in Chapter 3. 

Substituting expressions (2.62) and (2.63) into expression (2.51) results in 24 algebraic equations, linear 

in tenns of q, where q=[xl' Y1'~I'X2'Y2'~2 , ••• ,x8' Y8>~g]T is the velocity vector of the planar Gough­

Stewart platfonn. This linear system, of the general fonn Ax =C , is solved using the L-U factorization 

method. This method is a compact fonn of the Gaussian elimination method of operating on matrix A. 

After the operation is completed, the set of linear equations Ax =c is efficiently solved for any given c 

vector (see [65] and [55]). 

In the linear system (2.56), the Jacobian matrix (expression (2.62)) is also required to solve for the 

accelerations of the planar Gough-Stewart platform, i.e. for q=[x I' Yp$pX 2,:Y 2,$2 ,...,Xg,Yg,$sf. The 

right hand side of expression (2.56) is a 24 vector given by 
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(+, )'~~ cos., - (+,)'~~ co••, 

($, )'~;' sin., - ($, )'~~ sin $, 


(.,)'~~ cosq.,·· (.,)'~: cosq., 

(q.,)'~~sin$. -($,)'~:sin., 


($,)'~~cos$, -(+,)'~~cos$, 

(.,)'~~.in$, - (.,)'~~ sin $, 


(+,)'~; cos., 


(+,)'~; sin+, 


(+,)'~~ cos<l>, 

(+,)'~~.in<l>, 

(+,)'~;cos$, 

(+,)'1',; sin <1>,r -(<t>qq)qq 1 y,$, - y,+,~,~; cos<l>, + ~y, - 2y, - x,., + x,,j,,fo,~~ sin$, 

; - (<t>"'q') q' - 2<t>,d'q' - <t>'"'JL 1. q qt II o 
(2:<) 2X6 Y6+3~J;~COS$3 +~y) ~2Y6 -Xl.' +X6¢.1~i.:sin4l1 

o 

(2X.; - 2x, + y4~~ ~ Y1$" ~4;: cos • .; + ~y4- 2y1 X4$4 + X'.4 ~4~~ sin $.­


o 

o 

(2.64) 


The second partial derivatives of the driving constraints with respect to time are the accelerations of link 

2 2 2 
1, i.e.: a2dl (t) xl(t), a2d2 (t)::::y,(t) and a2d3 (t)=$I(t). Again the calculation of these

& & & 
accelerations for a prescribed tool path will be explained in Chapter 3. 

Substituting expressions (2.62) and (2.64) into expression (2.56) results in 24 algebraic equations, linear 

in terms of q , which can again be solved using the L-U factorization method. 

2.6 Kinetic analysis 

Kinetics is the study of motion and its relationship with the forces that produce the motion (see Figure 

2.1). Using Newton's second law, the equations of motion of a continuous rigid body are derived in 

Appendix A. This Section deals with the application of the equations of motion to a general system of 

unconstrained bodies experiencing planar motion. The underlying theory is also applied to a system of 

constrained bodies experiencing planar motion with specific reference to the planar Gough-Stewart 

platform. 

2.6.1 Planar equations of motion for a system of unconstrained bodies 

The equations of motion for a single unconstrained body moving in the plane (see Appendix A) may be 

written in matrix form as 
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(2.65) 


where for notational simplicity the polar moment of inertia j~~ is denoted by J.t (see [65]). The subscript 

i in expression (2.65) indicates that these are the equations ofmotion ofbody i. 

According to Nikravesh [65], expression (2.65) may also be written as 

(2.66) 

where M i = diag [m, m, J.tL 

qj [x,y,$]~ and 

Furthermore, for a system ofb unconstrained bodies, expression (2.66) is repeated b times to give 

Mq=g (2.67) 

where M diag [MI'M 2 , ••• ,Mb ], 

T T T]T dq =[ ql ,q2 ,···,qb an 

T T T]Tg [ gJ ,g2 ,···,gb . 


The system mass matrix M is a n x n constant diagonal matrix, and vectors q, q, q and g are n vectors. 


Note that n =3b , where n is the number of coordinates of the system ofb bodies (see expression (2.3». 


2.6.2 Planar equations of motion for a system of constrained bodies. 

If the system of bodies is interconnected by kinematic joints, it is referred to as a system of constrained 

bodies. 

In general the system vector of coordinates for b constrained bodies is denoted by q (see expression 

(2.3». Furthermore the kinematic joints in the system can be represented as m independent constraints 

<I>(q) =0 as given in expression (2.43). These m independent equations are normally nonlinear in terms 

of q (see expression (2.47». 

Each kinematic joint introduces reaction forces between connecting bodies. These reaction forces, which 

are also referred to as constraint forces, are denoted by vector g(C) : 
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(C) = [g(C) T g(e)T g(e)T]Tg I '2 , •.• , b (2.68) 

where g;C) , i =1,2, ... , b is the vector of the resultant of the joint reaction forces acting on body i. The 

sum of the constraint forces g(e) and the external forces g provides the total forces acting on the system. 

Hence, expression (2.67) may be rewritten to read: 

Mq =g + g(e) (2.69) 

For a system of constrained bodies experiencing planar motion, the reaction forces represented by 

expression (2.68) may be expressed in tenns of the same coordinate system as the vector of coordinates 

q. 

Consider the planar example shown in Figure 2.12, where the reaction force :R is acting on the body i at 

the revolute joint P. The three coordinates of the body follow from expression (2.2), i.e., 

qj [rT ,$]; =[x,y,$]; and the local coordinate system is assumed to be centered at C j the center of 

mass ofbody i (see Section 2.3). For convenience the subscript i is dropped in what follows. 

-s 

c 

Figure 2.12: Planar body with reaction force applied at the revolute joint. 

dy 

"­
"­
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I. 

Figure 2.13: Virtual displacement of planar body. 
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If the body undergoes a virtual displacement such that C' is the new position of the center of mass, and 

p' is the new position of the revolute joint (see Figure 2.13), the corresponding work done by the 

reaction force R is 
dW =R(x)(dx - sd$sin$) + R(y)(dy + sd$cos$) 

=R(x)dx + R(y)dy + (-R(x)s sin $ + R(y)s cos$)d$ 

g(x)dx + g(y)dy + g($)d$ 

Thus, the reaction force R may be represented by a three-vector g with each component associated with 

a planar coordinate, i.e., g =[g(x),g(ypg($)]T. The three components of g are consistent with the three 

coordinates x, yand $ and are called the generalized forces associated with the chosen coordinates q. 

The introduction of generalized forces allows for the constraint force vector gee) to be expressed in terms 

of the constraint equations <I> given by expression (2.43). In particular expression (2.43) contains m 

independent constraint equations <1>(q) =O. Furthermore, if the joints are assumed frictionless, the work 

done by the constraint forces in a virtual (infinitesimal) displacement dq is zero, i.e., 

(2.70) 

The Taylor series expansion of expression (2.43) about q is 

<1>(q + dq) = <1>(q) + <I> q dq (2.7l) 

if the higher order terms in dq are ignored. Since the virtual displacement dq must be consistent with 

the constraints (expression (2.43», it is required that 

<I>(q + dq) =0 (2.72) 

Substituting expressions (2.43) and (2.72) into expression (2.7l), yields 

<I> qdq 0 (2.73) 

According to Nikravesh [65] the vector ofn coordinates q may be partitioned into a set ofm dependent 

coordinates u and a set of n -m independent coordinates v, i.e., q == [uT, VT]T. This partitioning yields 

dq [du T ,dvT]T , <I> q =[<I> u' <I>.J and gee) [gi~~T,gl~)T r. 
Expression (2.70) may therefore be written as 

g (c) Tdu _gee) T dv (2.74)
(u) (v) 

and from expression (2.73) it follows that 

<I> udu =-<I> vdv (2.75) 

Appending these two expressions to each other gives 
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(e)T] [ (e)T] 
g~~ du - g~~ dv (2.76)[ 

Since <1> u is an m x m matrix with m independent rows, <1> u is a basis in R m , and g~~~ T may therefore 

be written as a linear combination ofthe m rows of <1> u , i.e., 

(2.77) 


where A is a m-vector ofmultipliers known as LaGrange multipliers. 

Substitution ofexpression (2.77) into expression (2.74) yields 

AT <1> du = _g(e) Tdv (2.78)
u (v) 

and from expression (2.75) it follows that 

_g(Cl Tdv- AT <1>,dv (v) (2.79) 

Since vector v is independent, expression (2.79) must hold for an arbitrary virtual displacement dv, 

which implies that 

(2.80) 


Furthermore, appending expressions (2.77) and (2.80) yields 

[gi~~1 [<1>! ]A (2.81 ) 
g (r l <1> T 

(v) v 

or simply 

(2.82) 


Finally substituting expression (2.82) into expression (2.69) gives the planar equations of motion for a 

system of constrained bodies, i.e.: 

Mq -<1>~A g (2.83) 

Thus for a given vector of external forces g, the forward dynamic analysis yields a unique solution for q, 

q, q and A when the constraint equations (2.43) are considered simultaneously with the differential 

equations of motion (2.83), and a proper set of initial conditions are specified. 

2.6.3 Constraint reaction forces 

The joint reaction forces given by expression (2.82) are studied here for the joints (kinematic pairs) of 

the planar Gough-Stewart platform. 
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2.6.3.1 Revolute joint 

Consider the revolute joint connecting bodies 1 and 2 of the planar Gough-Stewart platform (see Figure 

2.5). Figure 2.14 shows a schematic representation of the isolated revolute joint. 

Figure 2.14: Revolute joint connecting bodies 1 and 2 of the planar Gough-Stewart platform. 

The equations of motion ofbodies 1 and 2 follow from expression (2.83), i.e., 

(2.84) 

and 

(2.85) 

Using the applicable entries in the Jacobian matrix of the planar Gough-Stewart platform (see expression 

(2.62)), expression (2.84) may be written in expanded form: 

(2.86) 

Expression (2.86) may be written as a set of three separate equations: 

(2.87) 

(2.88) 

(2.89) 


Expression (2.87) indicates that besides the resultant external force f(x}l' another force "'I due to the 

constraints acts in the x-direction on body 1. Similarly, expression (2.88) indicates that besides external 

force f(Yh ,another constraint force "'2 acts in the y-direction on body 1. Figure 2.15 shows a free-body 

diagram ofbody 1, indicating constraint forces "'I and "'2' 
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Tjl 

A 

Figure 2.15: Free-body diagram of body 1 as part of the revolute joint with body 2. 

The moment arm of Al is ~;" sin<l>l with ~~ < 0, which results in a positive moment -(~~ sin<l>,)A1 

about 01 coinciding with the center of mass of body 1. Similarly, the moment arm of A2 is ~~ cos<l>l 

with ~;\ < 0, and therefore moment (~t cos <1>1 )A 2 acts in the negative rotational direction. 

Expression (2.85) may similarly be written in expanded form using the applicable entries in the Jacobian 

matrix (expression (2.62»: 

or 

(2.90) 

(2.91) 

(2.92) 

(2.93) 

Expressions (2.91) and (2.92) indicate that the constraint forces Al and A2 respectively act in the 

negative x and y-directions on body 2. The corresponding free-body diagram of body 2 is shown in 

Figure 2.16. 

A 

AI : 
A I 

~2 sin <1>2 ! 

\~~i 
, 

Figure 2.16: Free-body diagram of body 2 as part of the revolute joint with body 1. 
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From Figure 2.16 it follows that the moment arm of Al is l;: sin<pz with l;~ > 0, which yields a positive 

moment (l;: sin<P2)AI about Oz coinciding with the center of mass of body 2. Similarly, the moment 

arm of 1.2 is l;: cos<Pz with > 0, which gives a negative moment (l;: COS<P2 )1.2 about O2 • 

Note that the multipliers Al and 1.2 can assume both positive and negative values. In any case, the 

reaction forces acting at the revolute joint on the connecting bodies are always equal in magnitude and 

mutually opposite in direction. 

2.6.3.2 Translational joint 

Consider the translational joint between bodies 2 and 5 of the planar Gough-Stewart platform. Figure 

2.17 shows a schematic representation of the joint. 

Figure 2.17: Translational joint between bodies 2 and 5 ofthe planar Gough-Stewart platform. 

Following a similar argument as that outlined in Section 2.6.3.1, the equations of motion of body 2 may 

be written as: 

-l;~ sin<pz 


l;: cos<Pz 
 (2.94) 

x2)l;~ COS<P2 + (Ys - Y2)l;~ sin<p2 

or 

(2.95) 

(2.96) 

(2.97) 
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The free-body diagram of body 2 is sho\'m in Figure 2.18. Nikravesh [65] explains that the force 

associated with AI is the reaction force caused by the constraint equation which eliminates relative 

motion between bodies 2 and 5 in a direction perpendicUlar to the line of translation. It is therefore 

expected, as can easily be proved, that this reaction force (kI in Figure 2.18) is perpendicular to the line 

of translation. 

A 

,,,, 
!0 ,,,, 

I((~:: x 
2

) 

Figure 2.18: Free-body diagram of body 2 as part of the translational joint with body 5. 

It follows from (2.97), and as sho\'m in Figure 2.18, that the moment arm of the force COS~2AI about 

02 is (xs - xJ , and the moment arm of the force - S~ sin~2AI is (y5 Y2)' For the orientation of 

body 2 sho\'m in Figure 2.18, (xs - x 2) < °and (y 5 Y2) < 0, from which it follows that both moments 

(xs X2)S~COS~)"1 and (Ys Y2)s~sin~2AI are negative moments. 

The contribution of the second constraint equation, which eliminates relative rotation between bodies 2 

and 5, is a couple acting on body 2. Note that A2 may be a positive or negative quantity. 

The equations of motion of body 5 are similarly given by 

or 

(2.98) 

(2.99) 

(2.100) 

(2.101) 

Chapter 2 70 

, 'I 



KINEMATIC AND KINETIC MODELING OF A PLANAR MACHINING CENTER 

The corresponding free-body diagram of body 5 is sho'Wll in Figure 2.19. Note that ')..2 is the only 

constraint moment acting on body 5. 

Figure 2.19: Free-body diagram of body 5 as part ofthe translational joint with body 2. 

2.6.4 Vector of forces 

The external force vector g in expression (2.83), contains all the external forces acting on the individual 

bodies of the system, i.e., 

LT T Tyg = ~I ,g2 ,···,gb (2.102) 

To construct the vector g, the external force vector for each body must be determined. For a typical body 

i, the external force vector g; is 

(2.103) 


where f(xl;' f(Yl; and nj are respectively the sums of all force components in the x and y directions and 

the sum ofall the moments respectively. 

In the remainder of this sub-section, the two types of external forces that act on the planar Gough­

Stewart platform are discussed, and their contribution to g determined. 

2.6.4.1 Gravity 

The first external force acting on the moving bodies that make up the planar Gough-Stewartplatform is 

gravity. In accordance with Nikravesh [65], the direction of gravity is chosen to be in the negative y­

direction. If w; is the weight of the body i, i.e., w; mig , then the contribution of this force to the 

vector of force ofbody i is: 

g~gravitYl =[0,-w ,Or (2.104) 
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The first seven bodies of the planar Gough-Stewart platform in Figure 2.5, all have known weights 

contributing to the vector of external forces of each body, i.e., g;graVi,y) = [O,-w,Or , for i = 1,2, ... ,7 . 

Since the eighth body is the fixed ground, a zero weight is allocated to it, and a zero contribution is made 

to the vector ofexternal force ofbody 8. 

2.6.4.2 Single force 

The second type of external force that acts on the planar Gough-Stewart platform is what Nikravesh [65] 

refers to as a single force. This is due to the fact that the planar Gough-Stewart platform is to be used as 

a machining center. For both machining centers with either a fixed workpiece or a fixed cutting tool, 

there is a contact force between the cutting tool and the workpiece. This contact force may be modeled 

as a single force. 

Consider the general case, where a single force ii acts with a known direction at point Pi on body i as 

shown in Figure 2.20. 

y 

Figure 2.20: A body acted upon by a constant force (after [65]). 

The force i l in the above figure has components f(x)i and f(Y)i' If the local coordinates of PI are known 

as s;P =[~p, "P]; , then the global coordinates of point Pi are given by s; =Ais;P (see expression (2.1»). 

The moment of if about 0 i , which coincides with the center of mass ofbody i is 

ni =(S;Pfi \Z) 
-s;Y)/(X)i + s;X)if(Y)i (2.105) 

-(~; sin~i +11; cos~Jf(X)i + (~; COS~i -,,; sin~Jf(Y)i 

Note that S;P represents the expansion of s~ into a skew-symmetric matrix (see expression (A.18) and 

[65]). 
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The contribution of this force to the vector offorces ofbody i is 

g(single f) =[f f n]T 
i (x)' (y)' i 	 (2.106) 

In particular, the contact force between the cutting tool and the workpiece may also be referred to as a 

cutting force. For both the fixed workpiece and fixed tool cases of the planar Gough-Stewart platform 

machining center, this cutting force contributes to the vector of forces of body 1 (the moving platform). 

The contribution of the cutting force to the vector of forces of body 1 is subsequently labeled as 

(cutting f)g I • 

2.6.4.2.1 Fixed workpiece 

The same assumptions as listed under Section 2.4.1, are made here, namely that at any given time instant 

it is assumed that the following are known: 

1. 	 the global position ofthe cutting tool tip (P in Figure 2.8) on the prescribed tool path, and 

2. 	 the angle 13 between the platform mounted tool and the normal to the tool path at the point of contact 

(see Figure 2.8) and measured positive in the CCW direction. 

The free-body diagram of a typical fixed workpiece scenario is depicted in Figure 2.21. Since the cutting 

cutforce is applied to body 1 it is designated by fl • 

111 

o 

~I 

Figure 2.21: Free-body diagram for the fixed workpiece scenario. 

The cutting force flCU! is collinear with the tangent to the prescribed tool path at the point of contact, and 

it is modeled as a "resistance" force. This implies that the cutting force ftut is oppositely directed to the 

direction of travel, with magnitude assumed to be linearly dependent on the magnitude of tangential 

speed with which the prescribed tool path is traced IvCU!I. 
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It is assumed here that the vector VCtil has a known magnitude and direction, which are calculated as will 

be described in Chapter 3 (see also Section 2.5 expression (2.63». With the magnitude of the cutting 

velocity Ivcull known, the magnitude of the cutting force is given by: 

(2.107) 


where Celll is a "cutting force constant" expressed in Ns as a positive quantity corresponding to the 
m 

assumption made. 

cut : f l 
cutVector f,cu, is represented in the global reference frame by ft"t , i.e., f l =[ft,U;, ftyU;];. Similarly, 

vector VCUI is represented in the global reference frame by veul . Since the gradient angle e is known at 

the point of contact, i.e., tane dy (see expression (2.33», the components of the cutting force as 
dx 

shown in Figure 2.21 are given by 

fcut = 
I (2.108)-Ircutlcose

(x)1 

and 

fcut =-Ifcut , inEl 
(y)1 I S (2.109) 

The point of contact between the cutting tool and the workpiece is given by s;P as explained in [:p1 
Section 2.4.1. Hence the moment of f l 

cut about the center of mass of body 1, n~ut, may be determined 

using expression (2.105), i.e., 

n cut = -(n P cos,h ) rout ,h )fCUlp •
I '11 '!'I (x) I ( 111 sm'!'l (y)1 (2.110) 

The validity of expression (2.110) may be verified by considering the situation depicted in the free-body 

diagram (Figure 2.21). It is clear that the x-component of the cutting force ft,u;, in Figure 2.21 is 

negative. The moment arm of ft:~1 is 11; COS<PI' Thus, the first term in expression (2.110), 

(11; cos <PI )f(~;I' yields a positive moment. 

Similarly, the y-component of the cutting force f(~u;l in Figure 2.21 is negative, and the moment arm of 

f(~;l is 11; sin <PI . The second term of expression (2.110), - (11~ sin <PI )f(~u;1 , therefore also yields a 

positive moment in expression (2.110). 
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For the fixed workpiece scenario, the contribution ofthe cutting force to the force vector ofbody 1, is 

(Cutting f) =[fCUI fCUI n cut]Tg	 (2.l11)I (x)' (y), I 

where ft:;1 is given by expressions (2.1 08), f(~;1 is given by expressions (2.1 09), and n~uI is given by 

expression (2.110). 

2.6.4.2.2 Fixed cutting tool 

The same assumptions as listed in Section 2.4.2 apply here, i.e., at any time instant the following are 

assumed to be known: 

1. 	 the local position of the cutting tool tip (P in Figure 2.10) on the prescribed tool path, and 

2. 	 the angle ~ (measured positive CCW), from the normal to the tool path at the point of contact, to the 

vertical axis of the fixed cutting tool (see Figure 2.l0). 

The free-body diagram of a typical fixed cutting tool scenario is depicted in Figure 2.22. As in the case 

of the fixed workpiece, the cutting force is again applied to body 1 and designated by ft' . 
/ 

9' « 0) 

Figure 2.22: Free-body diagram for a fIxed cutting tool scenario. 

The modeling of the cutting force associated with the fixed cutting tool is done in a similar way to that 

done for the fixed workpiece. 

In particular, the cutting force fi 
cUI shown in Figure 2.22 is collinear with the tangent to the prescribed 

tool path at the point of contact. The tool path is specified in terms of the local 0 1~I 111 -coordinate 

75Chapter 2 



KINEMATIC AND KINETIC MODELING OF A PLANAR MACHINING CENTER 

system. Furthermore, the direction of the cutting velocity vCU! is also specified in terms of the local 

01~llll-coordinate system (V CU!: v'CO! =[v~~~,v~~ty) and the magnitude of the cutting velocity Iv,cutl is 

also assumed to be known (see Chapter 3). 

Since the magnitude of the cutting force is again assumed to be linearly dependent on the magnitude of 

cutting velocity, expression (2.107) remains valid here, and the magnitude is therefore given by 

fcutl = Ivcutlc
1 cut·I

The gradient angle of the prescribed tool path is known in terms of the local coordinates, tan 8' dll
, 

d~1 

(see expression (2.37)), hence the cutting force f l 
cut may be represented in the local 01~lll!- coordinate 

system by fl
cu, : f(cut [ft;u)t ,ft;;]~. The components of f(CUI are given by (see Figure 2.22) 

fcut = -If'CU! IcosE), (2.112)(t;)! I 

and 

fCUI = _If'cut Isin8' (2.113)(1])1 1 

The x- and y- components of the global cutting force representation fcut. fcut = [rout fcut]T may be 
I • I (xl' (y) 1 

determined from the transformation given by expression (2.1): 

f cut f cut '" fcut . '" 
(x)1 (t;)1 COS'!'I - (11)1 sm'!'l (2.114) 

and 

fcut f cut . '" fcut '" 
(y)! (~)! sm'!'l + (11)1 cos,!,! (2.115) 

or equivalently as 

ceut = A f,cut with A =[COS~I
1 1 1 I· "­sm'!'l 

With the global components of the cutting force known, the moment of ftut about the center of mass of 

body 1 may be determined using expression (2.105). Note that this moment n ~ut may also be determined 

using the local components of the cutting force, i.e. 

(2.116) 


The validity of expression (2.116) is borne out by inspection of the free-body diagram depicted in Figure 

2.22, from which it follows that the moment arm of f(~u)\ is ll~. Since the ~-component of the cutting 
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force in Figure 2.22 is directed in the negative ~-direction, the term -n~f(~;, in expression (2.116) 

results in a positive moment. Similarly, the moment arm of ft:;, is ~~ , and since the n-component of the 

cutting force in Figure 2.22 is in the positive n-<iirection, the term ~; ft~;, yields a positive moment. 

For the fixed cutting tool scenario, the contribution of the cutting force to the external force vector of 

body I is: 

g(cutting f) =[fcut fcut n cut]T 
1 (x» (y), 1 (2.117) 

where ft:;, is given by expression (2.114), f(~;, is given by expression (2.115) and n~ut is given by 

expression (2.116). 

2.6.5 Inverse dynamic analysis 

If the forces acting on a mechanical system are known, then the equations ofmotion can be solved to 

obtain the motion of the system [65]. This process is known as the forward dynamic analysis. In some 

problems, a specified motion for a mechanical system is sought and the objective is to determine the 

forces that must act on the system to produce such a motion. This process is usually referred to as 

inverse dynamiC or kinetostatic analysis. 

Haug [66] explains that inverse dynamic analysis is a hybrid form of kinematic and dynamic analysis in 

which the time history of positions or relative positions of one or more bodies in the system is 

prescribed, leading to complete determination of position, velocity, and acceleration of the system from 

the equations of kinematics. The equations of motion of the system are then solved, with known 

position, velocity, and acceleration, as algebraic equations to determine the forces that are required to 

generate the prescribed motion. 

In general, for a system of constrained bodies with n coordinates and m independent constraint 

equations, the inverse dynamic analysis therefore requires k driving constraints of the form 

<I>(d) =<I>(q,t) 0 (see expression (2.44)) to be specified. The number of driving constraints to be 

specified is equal to the number of degrees of freedom of the system, i.e. k n - m (see expression 

(2.26)). 

The three driving constraints of the planar Gough-Stewart platform under consideration have already 

been dealt with in Section 2.4. These constraints uniquely define the motion of body I (the moving 

platform) of the planar Gough-Stewart platform along a prescribed path. 
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Section 2.5 shows how the inverse kinematic analysis of the planar Gough-Stewart platform is done 

using the method of appended driving constraints. The inverse kinematic analysis yields the positions q, 

velocities q and accelerations q at each time instant as the prescribed path is traced. 

The objective of this sub-section is to determine the three actuator forces required to move the moving 

platform along the prescribed path. For this purpose the equations of motion of a system of constrained 

bodies (expression (2.83)) are rewritten to include the unknown forces, i.e., 

(2.118) 


where g(k) is the vector of known forces (see expression (2.102)), and g(u) is the vector of unknown 

forces. Expression (2.118) may be rewritten as 

(2.119) 


The unknown actuator forces are designated by fl, f2 and f3' and respectively act on bodies 2, 3 and 4 

as shown in Figure 2.23. By Newton's third law, for each force there is an equal and opposite reaction 

force. Hence, reaction forces fl , f2 and f3' respectively act on bodies 5, 6 and 7 and are also 

shown in the schematic Figure 2.23. 

In particular, the lines of action of forces fl and - fl coincide with the line of translation of the 

translational joint between bodies 2 and 5. Similarly, the lines of action of forces f2 and f2 coincide 

with the common line of translation of the translational joint between bodies 3 and 6, and the lines of 

action of forces f3 and - f3 coincide with the common line of translation ofbodies 4 and 7. 

/ 

Figure 2.23: Unknown actuator forces of the planar Gough-Stewart platform. 
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Figure 2.24 shows the free-body diagram of body 2 with the unknown actuator force (I applied to the 

body, as well as the constraint force kl and constraint moment /"'2 as a result of the translational 

coupling between bodies 2 and 5. 

A 

Figure 2.24: Free-body diagram of body 2 with the applied unknown actuator force f). 

From expression (2.119) it follows that the equations of motion ofbody 2 are given by: 

(2.120) 


where fl > 0 indicates that force (I is a "push-force" as chosen in Figure 2.24. Should the solution of 

expression (2.120) yield that f1 < 0, then force (I actually is a "pull-force" acting in the opposite 

direction. Also note that actuator force £] does not cause a couple about the center of mass ofbody 2. 

Expression (2.120) may also be written as 

o 
o (2.121) 

1 
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With regard to the reaction force £1' Figure 2.25 shows the free-body diagram of body 5 with the 

unknown reaction force - £1 applied to the body, as well as the constraint force kl and constraint 

moment - A2 as a result of the translational coupling between bodies 2 and 5. 

~5 

Figure 2.25: Free-body diagram of body 5 with the applied unknown reaction force - fl' 

From expression (2.119) it follows that the equations ofmotion ofbody 5 are given by: 

(2.122) 

where fl < 0 indicates that the reaction force - £1 is a "push reaction force" as chosen in Figure 2.25. 

Should the solution of expression (2.122) yield that fl > 0, the associated reaction force fl actually is a 

"pull reaction force" acting in the opposite direction. Note that there is no couple about the center of 

mass ofbody 5. 

Expression (2.120) may also be written as 

(2.123) 

Similar expressions are also obtained for bodies 3 and 6, as well as bodies 4 and 7. Hence, the equations 

ofmotion of the total planar Gough-Stewart platform system may be written as: 

(2.124) 


<l>q consist of the first 21 rows of the Jacobian matrix J(see expression (2.62)), 
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B is the following 24 x 3 matrix: 

!O 0 0 cos~, sin~, 0 0 0 0 0 0 0 -cos~, -sin~, 0 o 0 o 0000)'
B ~ lO 0 ° 0 0 0 cos$, sin $, a 0 0 0 0 0 0 - oos$. sin<j>. 0 o o a 0 0 

o 0 0 0 0 0 0 0 0 cos$, sin $, 0 0 0 0 o 0 cos 417 - sin;P1 o 0 0 0 ' 

A is a 21-vector containing the LaGrange multipliers, i.e., A= ["-1'''-2,''-3,... ,''-21]T , 

ffis the vector containing the magnitudes of the unknown actuator forces ff = [fl f2 fJT using the 

positive sign convention chosen in Figure 2.24, and 

g(k) is the vector of known external forces given acting on the planar Gough-Stewart platfonn 

r{g(grav;ty) + g(cuttingf))T g(gravity)T g(gravitY)T g(gravity)T g(gravity)T g(gravity)T g(gravity)T 0 0 oj
L~, 1 '2 '3 '4 '5 '6 '7 ", 

The cutting force g;cutting
f) is either given by expression (2.111) or expression (2.117) depending on the 

particular machining scenario, and finally expression (2.124) may be solved using a linear solver as 

explained in Section 2.5, to find the 24-vector [~]. 

2.7 Veri'fication of special purpose program 

In this section, the special-purpose program for analyzing the planar Gough-Stewart platfonn machining 

center is, tested and verified. 

2.7.1 Jacobian matrix verification 

The Jacobian matrix derived for the planar Gough-Stewart platfonn (expression (2.62»), is of 

importance, since it is used in both the inverse kinematic analysis of the mechanism and the inverse 

dynamic analysis. In order to verify the correctness of the Jacobian matrix constructed here, and to be 

used in the special purpose program, the general purpose Kinematic Analysis Program (KAP) developed 

by Nikravesh [65] is applied to do the inverse kinematic analysis of a specific planar Gough-Stewart 

platfonn following the simple test trajectory shown in Figure 2.26. 
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Figure 2.26: Straight line motion. 

/ 

The length of the moving platform is chosen as 0.4 m, and the coordinates of the lower rotational joints 

C, D and E are as indicated in Figure 2.26. 

Three independent driving constraints of the form given by expressions (2.27) - (2.29) prescribe the 

motion of the planar Gough-Stewart platform. In particular, for the simple straight line trajectory shown 

in Figure 2.26, expressions (2.27), (2.28) and (2.29) are respectively: 

cI>(d-I,I) == XI + 0.1- 0.05e = 0 (2.125) 

cI>(d-2,1) YI + 0.1 - 0.05e = 0 (2.126) 

1t 1t 
-+ =0 (2.127)
12 6 

Driving constraints (2.125) and (2.126) control the displacement of the center of the moving platform 

(body 1 in Figure 2.5) in the x-y plane along a straight line from (-0.1, - 0.1) at t = 0, to 

(-0.05, 0.05) at tIs. Driving constraint (2.127) controls the rotation of the moving platform from 

its initial orientation <PI = 15° at t = 0, to its final orientation <PI = -150 at t = 1 s . 

The results obtained by KAP [65] for the velocities and accelerations of the seven moving bodies are in 

exact agreement with the results obtained using expressions (2.51) and (2.56), indicating that the 

Jacobian matrix ofthe planar Gough-Stewart platform constructed here (expression (2.62)) is correct. 

Furthermore, the analytical solution of the positions and orientations of the 7 bodies obtained from 

expressions (2.57) - (2.61) is also in exact agreement with the iterative solution obtained using KAP. 
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2.7.2 Inverse dynamic analysis verification 

The objective of this sub-section is to verifY the methodology for determining the unknown actuator 

forces as explained in Section 2.6.5. 

The verification of expression (2.124) is done noting that it may also be used to determine the static 

balance forces required to support the planar Gough-Stewart platform in static equilibrium. It follows 

that with the planar Gough-Stewart platform in static equilibrium, q= 0, and therefore expression 

(2.124) reduces to: 

(2.128) 


As explained in Sections 2.4 and 2.5, by prescribing the three driving constraints (expressions (2.27) ­

(2.29» at any specific time instant, the Jacobian matrix given by expression (2.62) is uniquely defined. 

Therefore for any given stationary platform configuration, equation (2.128) may be solved for the vector 

[~] using a linear solver. 

In expression (2.128): 

(I)q consist of the first 21 rows ofthe Jacobian matrix J(see expression (2.62», 

o ° 0 cosoj>, sin 4>, 0 0 0 0 0 0 0 -cos<l>, -sinoj>, 0 o 0 0 0 0 0 0 01" 


B = 0 0 0 0 0 0 cos<l>, sin oj>, 0 0 0 0 0 0 0 - cos<l>, sin <1>. 0 0 0 0 0 0 oj 

o 0 0 0 0 0 0 0 0 cos <1>, sin <1>, 0 0 0 0 0 o 0 -cos<l>, ···sin<l>, 0 0 0 0 'l

Ais a 2 I-vector containing the LaGrange multipliers, i.e., A 

(k) = [g(k)T g(k)T g(k)Tf 
g U 1 '2 '''., g • 

Consider the simple test example shown in Figure 2.27, where the vector of external forces is reduced to 

g(k) [1600, - 440, 250, 0, 0, 0,... , Or. 
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o 

1.0 1.0 

440 N r, 
1600N 

<(0, 1.732) 

Figure 2.27: Simplified static analysis example. 

The results obtained for the unknown actuator forces ff by solving expreSSIOn (2.128) are 

f! = -1400.8 N ,f2 1799.2 N and f3 =95 N . 

For this simple problem the unknown actuator force f3 may also be obtained by considering the sum of 

the moments about A, i.e.: I MAO: 250 - 440 + 2f3 = 0 and thus f3 =95 N . 

Also, summing the external forces in the x- and y-directions and substituting the value for f3 yields the 

following equations in the unknown actuator forces f! and f 2 : 

IF. = 0: fl cos60° - f2 cos 60° + 1600 = 0 (2.129) 

I Fy = 0: fl sin 60° + f2 sin 60° + f3 - 440 =0 (2.130) 

Solving (2.129) and (2.130) finally gives fl =-1400.8N and f2 1799.2N. This together with the 

value of f3 =95 N confirms the accuracy of the results obtained via (2.128). 

2.7.3 Fixed workpiece vs. fixed tool verification 

The two modes of operation of the machining center are explained in Sections 2.4.1 and 2.4.2. The 

objective of this section is to verify the actuator force computations, by reconciling the results for the 

fixed tool scenario with that of the fixed workpiece scenario. This is done by considering the case where 

the respective tool path specifications are such that the space path of the platform is identical for both 

scenanos. 
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For this illustrative example the fixed workpiece scenario is as depicted in Figure 2.28, and the cutting 

tool is omitted from the moving platfonn. 

y 

_~O;::.......::::o---.x 


starting point (0, 0) 

0.3 

(0,-0.3) 

Figure 2.28: Fixed workpiece scenario with prescribed circular path. 

The center ofmass of the moving platfonn (body 1 in Figure 2.5) is controlled to trace the circle defined 

by 

x 2 +(y+0.32 
) 0.32 (2.131) 

at a constant tangential speed of 0.1 ml s . 

This circle is traced in a CCW sense starting at (x, y) (0,0). It is furthennore required that the 

prescribed circular path be traced while a horizontal orientation is maintained by the moving platfonn, 

Le. $1 ;;: O. 

With the positional driving constraints and the fixed orientation prescribed, the inverse kinematic 

analysis may be done to obtain the acceleration vector ij = [ijr ,ij~ , ... ,ij~ r for any time instant. It is 

then used in the inverse dynamic analysis, which is done via the equations of motion given by expression 

(2.124). 

The following mass matrix is used for the example planar Gough-Stewart platfonn shown in Figure 

2.28: 

M =diag[M~ ,M; ,Mi ,... ,M~] (2.132) 

with 
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MI =[3, 3, 0.0625]T 


M2 M3 M4 =[0.6,0.6, 0.02]T 


M5 =M6 =M7 =[2.5, 2.5, 0.003f 


Ms =[0,0, O]T 

and specified in SI units. 

Figure 2.29 shows the computed actuator forces required to control the planar Gough-Stewart platform 

along the prescribed circular path at the specified constant tangential speed of 0.1 mls. The cutting force, 

discussed in Section 2.6.4.2.1, is neglected here. 
--I 

Fixed Workpiece Actuator forces 

50.00 -,-------~~------------~---~.-..--.--_. 

40.00 

30.00 

20.00 L.'-------~.._._.,J""------~_ 
~ 10.00 

0.00 +---~,_ 

-10.00 

-20.00 

Figure 2.29: Actuator forces for the fixed workpiece circular tool path. 

For the fixed tool scenario to be consistent with that of the fixed workpiece scenario, it is required to 

specify a prescribed path in the moving workpiece such that the motion in space of the moving platform 

is identical to the motion of the moving platform associated with the fixed workpiece example shown in 

Figure 2.28. For this to be so, the fixed cutting tool has to trace the prescribed solid circular path shown 

in Figure 2.30 in a CCW manner starting at (~I,"I1 ) =(0,0) . 1 
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y 

starting point: fixed cutting tool 
(tip coinciding with (~I;rh) (0,0) 

/
body path in 
workpiece 

...If}if~:---.x'--", 

--­

, 
\ 

\ 
\ 

f~ 
; space path of 

/ workpiece origin 
I

/ ( center of mass of 
// moving platform) 

Figure 2.30: Fixed tool scenario with prescribed circular path. 

In particular, the circular path in the local platform coordinate frame is defined by 

~12 + (Th -0.32 
) =0.3 2 (2.133) 

The global coordinate system is shown with its origin coinciding with the cutting tool tip. Using the 

transformations given by expressions (2.41) and (2.42), the motion of the moving platform in the global 

reference frame can be computed. This path is shown by the dashed circle in Figure 2.30 and 

corresponds exactly to the motion of the moving platform associated with the fixed workpiece example 

shown in Figure 2.28. Figure 2.31 shows the computed actuator forces required to manipulate the 

moving platform along the prescribed path of Figure 2.30. As is expected they are in exact agreement 

with the actuator forces shown in Figure 2.29. Note again that the cutting forces, discussed in Section 

2.6.4.2.2, are neglected here to ensure that the load conditions are equivalent for both scenarios. This 

allows for a comparison of results. The fact that the results are identical gives further confidence in the 

respective methods of analysis. 
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Fixed Tool Actuator forces 

40.00 

30.00 

20.00 ~------~~~----~~ 
~ 10.00 . .....-1 

-10.00 

-20.00 

[-fl 

[-f2[ 

L""':"f~l 

Figure 2.31: Actuator forces for the fixed tool circular tool path. 
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Chapter 3 


3 TRAJECTORY-PLANNING THROUGH 

INTERPOLATION BY OVERLAPPING CUBIC ARCS 

AND CUBIC SPLINES 

3.1 Basic interpolation problem in trajectory planning 

Given: 

(i) a set of nodal points {Pi =(xpYi),i=O,l,...,N} along a general curve Ctobe followed by a working 

point (wp) from Po to P:,< as shown in Figure 3.1, 

(ii) prescribed tangential speeds ofwp, So and SN at Po and PN respectively, 

(iii) either prescribed tangential acceleration So at Po or SN at PN ofwp, and 

(iv) 	 dy at both Po and PN • 

dx 

Then it is required to determine: 

(a) an acceptable time interval [0, T] during which the curve is executed, 

(b) time parametric curves X(t) and Y(t) , te[O,T] that interpolate the nodal points (xpYi),and 

(c) continuous time parametric curves for velocities X(t) and yet) as well as for the accelerations 

X(t) and Yet), te[O,T]. 

y 

/\/c 

P, 
p, 

~,(X) 

~----------------------------__• x 

Figure 3.1: Basic interpolation problem. 

PN(X) 
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Without loss in generality consider the case in (iii) where SN is known at PN • Objectives (a), (b) and (c) 

may then be achieved by following the procedure outlined in the following subsections. 

3.1. 1 Determination of time parametric intervals 

In order to achieve objective (a) stipulated above, the first task is to determine the total path length S 

from Po to PN' This is done as follows: for each arc (x i-I> YH) to (x i'Yi)' i =1,2, ... , N , determine the 

corresponding path length s,. Firstly determine a cubic interpolating polynomial approximation Pi (x) 

over each arc interval, i.e. y(x)::::: p,(x) , x E [xi-] ,x;] (or x(y)::::: Pi(Y)' Y E [Yi-I ,Yi ] depending on what 

is the most convenient). 

3.1.1.1 Determination of interpolating and overlapping cubic arcs 

It is assumed that for any three consecutive nodal points (nodes) PH' Pi and Pi+1, i =1,2, ... , N -1 in the 

given set ofnodal points {Pi =(x i' Yi)' i 0,1,... , N} , at least one of the following conditions must hold: 

i 

I 

! 

Table 3.1 

In the event of non-compliance with all four the above conditions, the set of nodal points is considered 

insufficient since it implies that the section ofthe curve, represented by the three nodes that do not satisfy 

any of the conditions, cannot be expressed in the form where one of the coordinate variables is a unique 

valued function of the other. An extreme example of this non-uniqueness is depicted in Figure 3.2 which 

shows a complete curve C represented by the three nodes Po, PI and P2 • 

Y 

Condition l(a): Xi+1 >x i >x H 

Condition l(b): Xi+I<Xi<X H 

Condition 2(a): Yi+1 > Yi > Yil 

Condition 2(b): Yi+I<Yi<YH 

L--------------------------------------.X 
Figure 3.2: Insufficient set of nodal points. 
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Clearly < XI while XI > xo ' violating both conditions lea) and l(b), and further y 2 < y, whilex 2 

YI > Yo , violating both conditions 2(a) and 2(b). This situation can easily be remedied by specifying, for 

example, two additional nodes, resulting in a set of five nodal points, as shown in Figure 3.3. 

y 
C 

/--J 

~--------------------------------------~X 

Figure 3.3: Sufficient set of nodal points. 

The five nodal points shown in Figure 3.3, {Pi =(X i' yJ, i =O,I,...,4} may be grouped to form three 

overlapping triplets of consecutive nodes, Le. 

I x 2 > XI > Xo (satisfYing condition lea)) 
i Triplet 1: 

• y 2 < Y1 and y 1 > Yo (violating conditions 2( a) and 2 (b)) 

I 
! 

X3 < x 2 and x 2 > Xl (violating conditions I (a) and l(b)) 
. Triplet 2: 

I y 3 < Y2 < Y1 (satisfYing condition 2(b ) 

1------.;---------+-lx--<--X--<-x-2-(s~tisfYing condition 1 (b» 
4 3 

Triplet 3: (P2 ,P3 ,P4 ) 

i y 4 < Y3 < Y2 (satisfYing condition 2(b» 

Table 3.2 

Curve C shown in Figure 3.3 may now be approximated by four (in general N) overlapping interpolating 

arcs shown separately in Figures 3.4, 3.5 and 3.6. Along each arc one variable may be expressed as a 

unique function of the other depending on which condition in Table 3.1 is satisfied. In particular it may 

be desired to represent each arc by a cubic polynomial interpolating function. 
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y Cubic arc 1 

2 

Figure 3.4: Cubic arc 1. 

It follows by inspection that arc 1 in Figure 3.4, passing through the three nodes of triplet 1, may be 

represented by a unique valued function ofx (see Tables 3.1 and 3.2). In particular it may be expressed 

as a cubic polynomial in x of the form: 

PI (x) =a l + b,(x- x o) + c l (X-XO)2 + d ,(x-xo)} , X E [X O'x 2 ] (3.1 ) 

The derivative of (3.1) with respect to x is given by 

~p,(x)=b,+2c,(x-xo)+3dl(x-xo)2, xE[xo,xz1 (3.2)
dx 

The four unknown coefficients of the cubic interpolating polynomial (ai' b l ,c 1 and d!) may be uniquely 

determined by utilizing the initial known gradient, i.e. dy at Po (see given data (iv), at the start of 
dx 

Section 3.1), as well as the three nodal points of triplet 1. More specifically substituting each of the three 

nodal points of triplet 1 into equation (3.1), results in three independent equations: 

(3.3) 

(3.4) 

(3.5) 

dyl '\The fourth independent equation follows from substituting the initial gradient dy at Po 
J

into
[dx dx Po 

equation (3.2): 

dyl = dy(xo) ~~ (x) =b (3.6)d d d PI 0 I
X Po X X 

With a l and b l known from expressions (3.3) and (3.6) respectively, one may solve for c 1 and d} using 

expressions (3.4) and (3.5): 
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from (3.4): c t 

where e l = Yt -at-b1(x l, xo) ,and substituting the expression for c 
(xl-X O)" 

1 

into (3.5): yz =at+bt(x2-xo)+(el-d,(xl-xo))(x2 xo)2 +d l(x 2 x o)3 

Y2 al-bl(x2-xo)-et(x2 Xo)2
and therefore d I 

(Xl Xo)3 (XI XO)(x 2 Xo)2 

It is proposed here that the cubic interpolating polynomial PI(X) constructed in this manner be called a 

clamped three-order interpolating cubic arc, or simply a C-3 node cubic arc. 

Although cubic arc 1 interpolates through points Po, PI and P2 and is thus valid over the interval 

[X O,x 2 ], it will only be used to represent the cubic polynomial function over the first interval [xo,x t], 

Cubic arc 1 is forced through the three nodes of triplet 1 (see Table 3.1) with only the initial gradient 

(:\J being enforced. The approximation p,(x) is therefore expected to deteriorate in gradient 

accuracy in the vicinity of node P2 and this is the reason why it will only be used over [x 0' X t]. To 

obtain a more reliable approximation between nodes PI and Pz an overlapping strategy is employed to 

avoid the accumulation of excessive gradient approximation errors, which will result in increasingly 

inaccurate fitted cubic arcs. 

y Cubic arc 2 

~-------------------------------------.x 

Figure 3.5: Cubic arc 2. 

The cubic arc 2 passing through the three nodes of triplet 2, (see Figure 3.5) is also represented by a 

cubic polynomial function this time of y (see also Table 3.1 and Table 3.2). This function is formally 

expressed as 

Chapter 3 94 



TRAJECTORY -PLANNING THROUGH INTERPOLATION BY OVERLAPPING CUBIC ARCS AND CUBIC SPLINES 

P2(y)=a 2 +b2(y YI)+C 2 (Y YI)2+d2(y-yY, ye[Yi>Y3 ] (3.7) 

The derivative of (3.7) with respect to Y is 

d 
-P2 (y) =b2 + 2c2(y -YI) + 3d2(y YI) (3.8)
dy 

Again the initial gradient of cubic arc 2 at PI r:xIi is required together with the three nodes of triplet 
\ Y P, J 

2 to calculate the four unknown coefficients (a2' b2 ,cz and d 2) of polynomial (3.7). Here, at the start of 

arc 2 (as for the subsequent arcs) the value of the gradient is not explicitly prescribed and is therefore 

unknown. However, once the four unknown coefficients of the previous cubic arc 1 have been 

determined, equation (3.2) provides an approximation to the required gradient at PI' i.e. 

(3.9) 

Thus in computing the coefficients of approximating arc 2 the condition dxl :;:: [dP t (Xl)]-l is used. 
dy p dx 

I 

Polynomial P2 (x) will only be used to describe the arc between nodes Pj and P2 • 

y 

P4 -7 ........C... Cubic arc 3 

P4(x)7 C~bic arc 4 

~----------------------------------~x 

Figure 3.6: Cubic arcs 3 and 4. 

Cubic arc 3 passing through the three nodes of triplet 3 (see Figure 3.6) is different to the previous arcs 

in that both conditions 1(b) and 2(b) are satisfied (see Table 3.1 and Table 3.2). This implies that cubic 

arc 3 can be expressed as a cubic polynomial function of either x or y and a choice has to be made. If 

this situation occurs, only one of the following two conditions will be satisfied: 

Condition 3(a): 

Condition 3(b): 

Table 3.3 
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For the case depicted in Figure 3.6, cubic arc 3 satisfies condition 3(a) in Table 3.3, and it is therefore 

clearly preferable to express the arc as a cubic polynomial function of x: 

(3.10) 

The unknown coefficients of cubic polynomial (3.10) are determined in a similar manner to those of 

cubic arc 2 (equation (3.7», with the initial gradient at P, taken as :~ I., [dp~~')r. Again p, (x) 

will only be used over the first interpolating interval, i.e., between nodes P2 and P3 (Figure 3.6). 

Having determined cubic arc 3, it remains to find a suitable cubic interpolating polynomial function 

P4(X), XE[X 3 ,XJ, which is to represent the final interval to P4 of the total curve underP3 

consideration. 

The overlapping strategy may be continued for the final part of the curve by fitting a cubic arc through 

nodes P4, P3 and P2 , and utilizing the given gradient at P4 (see given data (iv) at the beginning of 

Section 3.1). The polynomial has the form 

P4(X) = a 4 + b4(x-x4)+c 4(x- X4)2 + d 4 (x-x4)3 , X E [x 4 ,X Z ] (3.11 ) 

The derivative of (3 .11) with respect to x is 

~p4(x)=b4+2C4(x-x4)+3d4(x-x4)2, X E[X 4 ,XJ (3.12)
dx 

With the given final gradient at P and interpolating through the three nodes P , P and P , four4 4 3 2dx 

independent equations in the unknown coefficients follow from expressions (3.11) and (3.12) as before. 

These equations may be simultaneously solved to give a 4 , b4, c4 and d 4 • The resultant interpolating 

polynomial p 4 (x) , representing arc 4 and to be used over the final interval between nodes P3 and P4, is 

also indicated in Figure 3.6. 

The following truth table shows how the different conditions listed in Table 3.1 and Table 3.3 determine 

the dependent variable for a specific arc. The rows show different combinations of satisfied and violated 

conditions, where a 1 indicates that a specific condition is satisfied and a 0 that it is violated. 
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I 
i 

Condition Condition Condition Condition Condition Condition Dependent 

1(a) 1(b) 2(a) 2(b) 3(a) 3(b) variable 

1 0 0 0 
i 

x 

° 1 0 0 x 

° 0 1 0 y 

0 0 0 1 Y 

1 0 x 
1 0 1 0 

i 
0 1 Y 

1 0 x 
1 0 0 1 

0 1 y 

1 0 x 

° 1 1 0 
0 1 Y 

1 0 x 

° 1 0 1 
0 I y 

i 

I 

I 

i 

I 

i 

I 

I 
Table 3.4 

Here, for illustrative purposes, the presentation of the overlapping cubic arc methodology for 

constructing an approximation to a curve defined by nodal points Po, PI ,..., P N' has been restricted to the 

case N =4. The extension of the method to the more general case where N may be larger than 4 is clear 

and obvious. 

3.1.1.2 Computation of total path length S 

With p,(x) (or Pj(Y» representing the approximation to the curve to be used over [xH,xJ known, the 

corresponding curve length Sj may be obtained by integration. From the differential relationship 

ds2 == dx 2 + dl it follows that ds ~l + (~)2 dx and therefore the curve length s, is given by 

Sj = r ~1 + C! Pj(x»2dx == rf(x)dx 
H 

for each i:= 1,2, ... , N 

It is convenient to do the integration numerically by using the composite Simpson's rule for n 

subintervals [55]: 

r h[ ~ ](~If(x)dx':':;"3 f(a)+2 f.f(x 2j ) +4f.f(x2i- , )+ f(b) (3.13) 

. (b a)
where n IS even, h =--, and x k = a + kh for k = O,l,... ,n 

n 
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The total path length S ofcurve C is then given by 

(3.14) 

3.1.1.3 Dependence of curve length on parameter t 

Assume that the distance s of the working point (wp) along the curve is represented by a cubic 

polynomial in time t of the form: 

s(t)=a.+bst+cse+dse, tE[O,T] (3.15) 

Expression (3.15) is associated with a known initial curve length s(O) So (usually So = 0), a known 

initial tangential speed s(O) = Vo (usually Vo = 0), as well as a known final curve length seT) S 

(usually found via expression (3.14) above). 

For the time being, assume that a gradual increase in tangential speed is required over the time interval 

t E [0, T], such that a specified tangential speed v· is attained at time T, i.e. seT) v'. The time 

derivative of(3.15), representing the tangential speed over the total path is 

set) = bs + 2cs t+ 3d, e, t E [0, T] (3.16) 

The acceleration over the total path may be obtained from the time derivative of (3 .16): 

set) 2c. + 6d, t, t E [0, T] (3.17) 

It is further required that the magnitude of the final tangential acceleration has to be zero, i.e. seT) = ° . 

Now, with s(O) so, seT) S, s(O) = va' seT) =v· and seT) = 0 known, one may solve for as' bs' cs ' 

d s and T as follows: 

s(O) = as So 

S(O) bs Vo 

seT) S= as + b, T + c, T2 + d, T3 	 (3.18) 

seT) = v· b s + 2c, T + 3d, T2 	 (3.19) 

seT) =0 2c,+6d, T 	 (3.20) 

from (3.20): Cs = -3d, T 	 (3.21) 

and substituting (3.21) into (3.19): v· v 0 - 3d, T2 , from which it follows that 

(3.22) 

. 
Substituting (3.22) into (3.21): c. = v 	 - Vo (3.23)

T 
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and substituting (3.22) and (3.23) into (3.18): S =So + T( ~o + 2;·) from which it finally follows that 

T= 3(S- so) 
(3.24)

Vo + 2v· 

Note that if the initial time instant to *0, the corresponding polynomial set) can readily be obtained by 

the simple replacement of T by T - to in expressions (3.18) - (3.24) and the corresponding replacement 

oft by t to in expressions (3.17) - (3.19). 

For each node Pi (xi,yJ, i =O,I,...,N the total path length up to the specific node may be determined 

from (3.14): 

S; = ~:Sj , i =O,I,...,N (3.25) 
j~I 

Further, with Si' i = 1,2, ... , N -1 known, the Newton-Raphson iterative method may be used to solve for 

the corresponding nodal times t;, i 1,2, ... ,N-1 [55]. This well-known and powerful numerical 

method solves for the root ofa non-linear equation of the fonn f(x) == 0 via the iterative scheme: 

, x(j-l) f(x U- I» . 

xl)~ = [ (' )] , J == 1,2, ... df(x )-1 ) 

dx 

where an initial estimate x (0) is given. 

To solve for a specific t; corresponding to distance S" requires the solution of the non-linear equation 

f(tJ s(tJ - S, 0 

where from (3.15): s(t,) == as + b. ti + Cs t/ + d, t/ , and thus, more explicitly, the equation to be solved 

becomes 

An equation corresponding to the above, is to be solved for each i =1,2, ... , N - 1 . 

Since tN == T is known from (3.24), good initial approximations for t;, i = 1,2, ... ,N-1 may be found: 

t/O) ={~). i=1,2,... ,N-1 

Starting with an initial approximate root given by the above, the Newton-Raphson method generates, for 

h · f" {(j). 012 }eac l, a sequence 0 apprOXImatIons t{ , J= " ,... : 
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The iteration continues until convergence is obtained. In practice, with a tolerance E >°specified, the 


Newton-Raphson iteration continues for each i until one of the following convergence criteria is met: 


It/i) - t/i-1)1 < E 


t.w - t (j-1)II t t (j) ° Cl <E,t.:t=
t. J I 

I 

3.1.2 Cubic spline representations for X(t) and yet) 

With the time interval [0, T] during which the curve is executed determined (see objective (a) Section 

3.1), and the nodal times t;> i:= 1,2, ... , N - 1 known, time parametric curves X(t), and Y (t), t E [0, T] 

interpolating the nodal points (x;,y;) (see objective (b) Section 3.1), can be determined. 

Since a unique time instant t; E[O,T] is associated with each nodal point (XpYi), i=O,l, ...,N and 

since 0= to < t) < ... < tN = T , separate cubic spline interpolations X(t) and yet) may be fitted to the 

respective nodal point sets, (xi'tJ and (Yi'tJ . 

According to Burden and Faires [55] cubic spline interpolation, which fits cubic polynomials between 

each successive pair of nodes, is the most common piecewise polynomial approximation. Based on their 

defmition, the cubic spline interpolant X(t) , is a function that satisfies the following conditions: 

X(t) is a cubic polynomial, denoted XJt) ,on subinterval [tl' t'+I] for each i = 0,1,... , N 

X(t;) =x; for each i = O,l,...,N 

X'+I(t i+1) X,(t i+1) foreachi=0,1, ...,N-2 

X'+1(t'+I)=X,(t;+I) for each i=O,l,...,N 2 

X'+I(tl+J Xi(t,+J for each i = O,l, ...,N - 2 

One of the following set of boundary conditions is satisfied: 

X(to) = X;(tN) = °(free or natural boundary) 

or X(to) = Xo and X(tN) = xN (clamped boundary) 

Chapter 3 100 



TRAJECTORY-PLANNING THROUGH INTERPOLATION BY OVERLAPPING CUBIC ARCS AND CUBIC SPLINES 

When the free boundary conditions are prescribed, the spline is called a natural spline, and its form 

approximates the shape that a long flexible rod would assume if forced to go through each of the nodal 

points. 

For the interpol ants X(t) and yet) to be constructed here, however, clamped boundary conditions are 

used, since they contain more information about the respective functions, and therefore lead to more 

accurate approximations. 

Assume for the moment that the derivatives at the end points (xo and xN ) are accurately known. To 

construct the cubic spline interpolant for x as a function of t, the conditions listed above are applied to 

the cubic polynomials of the following form: 

(3.26) 

The unknown coefficients a)(j, b)(j' CXi and d xi , i::::: O,l,...,N -1, may easily be determined as shown 

in [55]. 

If not explicitly known, the initial derivative Xo may be accurately approximated using Taylor 

where Xi corresponds to x(t,) and At, ::::: t, - to' i::::: 1,2,3,4. 

above expressions leads to the following set oflinear equations: 

XI -xo 
x 2 Xo 

X3 -xo 
x 4-xo 

::::: 

(Aty (Atl)3 (Aty
Atl 

2 6 24 
(At2)2 (At

2 
)3 (AtJ4

Atz 2 6 24 
(At3)2 (At] )3 (At3)4

At3 
2 6 24 

(At4)2 (At 4 )3 (At4)4
At4 

2 6 24 

Ignoring the higher order terms in the 

Xo 

Xo 
(3.27)

Xo 

Xo 

Expression (3.27) is a linear system of the form Ax::::: b , and can be solved directly using a scheme such 

as LU-factorization [55]. The solution vector x contains the sought after initial derivative xo' 
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The final derivative xN may be obtained in a similar manner, where the set of linear equations in matrix 

form is given by: 

XN-1 -XN 

XN_2-XN 

XN_
3 XN 

XN_4-XN 

= 


(~tl )2 _ (~tl)3 (~tlt
~tl 

2 6 24 
(~t2 )2 _ (~t2)3 (~t2t

-~t2 
2 6 24 

(~tJ2 _ (~tJ3 (~t3 )4
-~t3 

2 6 24 
(~t4 )2 (~t4 )3 (~t4 )4

~t4 
2 6 24 

x N 
XN 

(3.28)
XN 
xN 

with ~tj tN tN_i> i =1, 2, 3, 4. 

The advantage of using a cubic spline interpolation for X(t), t E [0, T] is that each constituent cubic 

polynomial Xj(t) involves four coefficients, so there is sufficient flexibility in the cubic spline 

procedure to ensure that the interpolant is not only continuously differentiable, but also has a continuous 

second derivative over the whole interval [0, T] (see [55]). 

Once ax;, bXj ' cx;, and dx;, i =O,l,...,N -1 (see (3.26» are determined, X(t) and X(t) are given by: 

X;(t) bx; +2c x;(t-t;)+3d xi (t-tY, i=0,1, ... ,N-1 (3.29) 

X;(t)=2c x; +6dx;(t-t;), i O,l,...,N-l (3.30) 

which are continuous functions over the interval [0, T] (see objective (c) Section 3.1). 

It follows that Y(t), yet) and yet) can be found in a similar manner. 

3.2 	 Practical problem of determining dy at Po and PN
dx 

In general the set of given nodal points {Pi (xi' Yi)' i =0,1,...,N} may represent a curve for which no 

y
explicit analytical expression exists, and therefore the exact initial and final gradients (d at Po and 

dx 

PN) will not be known. In this case approximations to these gradients with respect to x may be 

determined using Taylor expansions in an analogous manner as done for the time derivatives Xo and xN 

in Section 3.1.2 (see expressions (3.27) and (3.28». 
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In Section 3.1.1.1 it is apparent that the nodal points representing a curve must be chosen in such a way 

that certain conditions are satisfied (see Table 3.1 and Table 3.3). These conditions ensure that each 

consecutive cubic arc can be expressed as a function of either x or y. 

Returning to the illustrative example curve of Figure 3.3, it was shown that 5 nodal points along the 

curve are adequate in terms of the conditions listed in Table 3.1 and Table 3.3, provided that the exact 

initial and final gradients are known. However, if the exact values of the initial and final gradients are 

not known, the nodal points should be specified in such a way that sufficiently accurate approximations 

for these gradients may be calculated. 

y 

~-------------------------------------.x 

Figure 3.7: Additional nodal points specified. 

Figure 3.7 shows the same illustrative example curve, but with four additional nodal points. An 

y
approximate value for the initial gradient (d at Po, i.e. y~) may then be determined using the 

dx 

following Taylor expansions: 

(~ )2 (Ax )3 
Y ;:;;; Y + Ax y' + 1 y" + I y" + O(Ax )4

I 0 I 0 2! 0 3! 0 I 

(Ax )2 (Ax )3
= Y +~ y' + 2 y" + 2 y"' +O(~ )4Y2 0 2 0 2! 0 3! 0 2 

with 8x j =Xj x o ' i =1,2,3. 

The clustered distribution ofnodal points Po, PI' P2 and P3 shown in Figure 3.7 is justified considering 

the fact that the fourth order error term in the above Taylor expansions becomes smaller using smaller 

step sizes Ax 
l 

, Ax and Ax • Neglecting these error terms an approximate initial gradient y~ isz 3 

obtained by solving the following linear system: 
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y 

Y2' Yo ­

Y3 -Yo 

r Y} 

(~Xl )2 (~xy

~XI 
4 6 

(~X2 )2 (~X2)3 
~X2 (3.31 )

4 6 
(~XJ2 (~3)3 rm 

~X3 
4 6 

Similarly, an approximate final gradient y~ may be obtained by solving the linear system: 

(~xy (~XI)3
-~Xl 

r 1 
4 6 nYN N 

(~X2 )2 (~X2)3 
(3.32)~X2YN-2 YYN' y:4 6 

y)/y}/-3-YN (~X,)2 (~X3)3
-~X3 

4 6 

with ~Xi =x N -X N_i , i =1,2,3. 

Depending on the particular circumstances, approximations for dx at Po and PN may be determined in a 
dy 

similar manner using Taylor expansions. The choice between determining dy or dx at Po and PN 

dx dy 

depends on which of the following conditions are satisfied, and which are violated: 

Condition 4(a): 

Condition 4(b): 

Condition 4(c): 
r----..- ­ ..--,-----r------------',

Condition 4(d): 
I 

Condition 5(a): 

Condition 5(b): 

Condition 5(c): YN-3 > YN-2 > YN-I > YN 

Condition 5(d):
L-___________~__________~ 

Table 3.5 

Since four node points are involved in each condition, the clustered distributions of the nodal points Po, 

PI' and P3, as well as Ps ' P6 , and in Figure 3.7 are further justified considering theP2 P7 Ps 

requirement that at least two of the conditions listed in Table 3.5 must be satisfied for any set of nodal 

points. In particular, at least one of conditions 4(a), 4(b), 5(a) or 5(b), and one of conditions 4(c), 4(d), 

5(c) or 5(d) must be satisfied for the purposes of determining the sought after initial and final gradients. 
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For nodal points Po, PI' Pz and P3 shown in Figure 3.7 it is clear that both conditions 4(a) and 5(a) are 

satisfied, implying that either dy or dx can be determined at Po. Similarly for nodal points Ps, P6 , 

dx dy 

and Pg , both conditions 4(c) and 5(c) are satisfied, implying that either dy or dx can be determined P7 
dx dy 

at PN =Pg • In these eventualities, the appropriate choice is made by testing which of the additional 

conditions listed in Table 3.6 are satisfied. 

ICondition 6(a): \x 3 ­ X0 I~ Iy 3 - Yo! 

i 

Condition 6(b): IX3 xol < IY3 -Yo\ 

Condition 7(a): IXN XN_31~ IYN YN-31 

Condition 7(b): IXN -XN_3 !< IYN YN-3! 
Table 3.6 

For example, since for nodes Po and P3 shown in Figure 3.7, condition 6(a) is satisfied, the obvious 

choice is to determine dy at node Po' Similarly, since condition 7(a) is satisfied for nodes Ps and Pg , 

dx 

dy is to be determined at node P N Pg • 

dx 

The following truth table shows how the conditions from Table 3.5 and Table 3.6 determine the form of 

the gradient to be used at node Po' As before, the rows show different combinations of satisfied and 

violated conditions, where a I indicates that the specific condition is satisfied, and a 0 that it is violated. 

Condition 

4(a) 

1 

Condition 

4(b) 

0 

Condition 

5(a) 

0 

Condition 

5(b) 

0 

I 
i 

I 
i 

Condition 

6(a) 

Condition 

6(b) 

Gradient at I 

Po i 

dy 

dx 

i 

0 

0 

1 

0 

0 

1 

0 

0 

dy 
dx 

dx 
-
dy 

0 0 0 1 
dx 
-
dy 
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I 
! dy 

dx 
1 

I 
0 

11 0 I0 I I I dx 
1 ­0 

! dy
I I 

dy
01 

dx
I11 00 
I dx 

-0 i 1 
dyi 

i 

I dy
1 0 II dx 

I1 10 0 
dx 
-10i dy 

I 
dy

0 
dx 

I1 10 0 
dx I 

I I 
i 

l l I 

-

I 
Table 3.7 

A similar truth table may be drawn up showing how the different combinations of conditions determine 

the form of the gradient to be used at P N • 

Of course, with dy (or dx ) determined at nodes Po 
dx dy 

and P
N 

using the above strategy, dx 
dy 

(or dy) at 
dx 

nodes Po and PN is simply given by the reciprocal relationship: 

1 
dX(Yr·)

dy 
[dY(X,.)]-1

dx or 
dy(x,.) 
~ 

[dx(y)J­
dx i for i = 1, N 
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3.3 Synthesis of more general curves 


y 

"X 

Figure 3.8: General curve where the prescribed speed is achieved. 

Section 3.1.1.3 deals with the simplified situation of tangential acceleration along the prescribed curve 

until a specified tangential speed v· is achieved at time tN = T. A more realistic example is shown in 

Figure 3.8 where the motion is executed in three segments: tangential acceleration along curve C1 , 

constant tangential speed along curve Cn , and tangential deceleration along curve C • The set of nodalm 

points associated with the general curve ofFigure 3.8 is {Pj (xi' Yj ),i 0,1,... , NI'".,N II ,,,., N Ill} . 

This Section proposes a methodology by means of which node numbers N I and N II may automatically 

be assigned, given the prescribed constant tangential speed v· along C II and the maximum allowable 

tangential acceleration SALLOW' 

In what follows "speed" and "acceleration" refer to tangential speed and tangential acceleration, unless 

otherwise specified. 

3.3.1 Linear segment with cubic blends 

Assume that node numbers N I and N II are given. Node number N III is automatically known, since it 

is the final node in the specified data series. Path lengths SI' SII and SIll' corresponding to the 

respective curves C 1 , Cli and Cm, may then be determined by following the procedure outlined in 

Sections 3.1.1.1 and 3.1.1.2. 
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The acceleration curve C in Figure 3.8, corresponds to the situation already discussed in Section r 

3.1.1.3, i.e. a gradual increase in speed is required over the time interval t E [0, Tj ], such that the 

prescribed speed v' is attained at time Tj • 

For curve C! the distance along curve Sl at any instant t is represented by the cubic polynomial in time 

(see expression (3.15»: 

SI(O == a,l+ bsl t+csi e +dsl e, t E [O,TI] (3.33) 

with quadratic expression 8] (t) =bSi + 2c s1 t + 3dsi e,for the speed (3.34) 

and linear form Si (t) t, for the acceleration (3.35) 

8

2cSl + 6dsl 

The motion along the acceleration curve C1 is associated with boundary conditions that are similar to the 

ones given in Section 3.1.1.3; namely 

SI(O)=SO (usually So =0) 

sl(T1)=SI 

SI(O)=VO (usually Vo =0) 

j (T1)=v' 

sl(TJ == 0 

The unknown coefficients a sl ' ' and d ] , as well as Tj are determined in exactly the same manner b Sj c s1 S

as explained in Section 3.1.1.1 (expressions (3.18) - (3.24». With the coefficients and the time instant 

T] known, the nodal times t;, i == 1,2, ... ,N 1 may be obtained using Newton's method (see Section 

3.1.1.3). 

Along the constant speed segment C ll in Figure 3.8 the distance sl! along the curve from nodal point 

PN is given by the following linear relationship in time: 
1 

(3.36) 


For each node Pi == (x" y;), i N I + 1, N 1 + 2, ... , Nil' the total path length S; from Po up to the specific 


node Pi may be determined from (3.25): 


S, = ~>j ,i = N] + 1, N j + 2, ... , N II (3.37) 
j=1 

The corresponding nodal times t;, i N 1+ 1, N 1+ 2, ... ,N II then follow from (3.36): 

Sj -S] T ' N 1 N 2 N-'--.---'- + I' 1 == I +, 1 + ,.. " II (3,38) 
V 
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For the final deceleration segment Cm in Figure 3.8, the distance along the curve Sill from nodal point 

is also given by a cubic polynomial function of time:PN" 

slll(t)=asm+bsm(t-TII)+csm(t Tu)2+dsm(t-Tn)3, tE[TII,Tm] (3.39) 

sm(t) == bSIll + 2cslIl ( t - Til) + 3dsm ( t - TII)2 (3.40) 

Sm(t) = 2csm + 6dslll (t - Tu) (3.41) 

Since a decrease in speed is required along the deceleration segment Cm , the following boundary 

conditions are enforced: 

Sill (Tu) = v· 

sm(Tm) == 0 

sllI(Tu ) = 0 

from which the coefficients a.lII , ' and the final time instant T III can be determined: bslll ' cslII d slII 

0:. csIll 

(3.42) 

(3.43) 

and with b. = v· it follows from (3.43): m . 
v 

(3.44) 

and substituting (3.44) into (3.42): 

(3.45) 


Newton's method is then used to determine the corresponding nodal times t" i =Nil + 1, N II + 2, ... ,Nm 

in the manner already described in Section 3.1.1.3. 

It follows that the motion, described in terms of the distance set) along the general curve shown in 

Figure 3.8, is a linear segment with cubic blends (LSCB), since the cubic motions along curves C 1 and 
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CII! are merged or blended with the constant velocity motion along curve CII at the respective blend 

times TI and Til as shown in Figure 3.9 (see [60]). 

s 

o~~------~----~------~--------~~t 
TJ Till Tn Till 

T 
Figure 3.9: Linear segment with cubic blends (LSCB). 

Blend time T( is given by (3.24): 

(3.46) 


which reduces to T( 3S~ with So =0 and vo =0. 
2v 

Similarly, blend time TIl is given by (3.45): 

T -T = 3(Sm- Su) (3.47)
III II 2v' 

The latter two equations indicate that if the nodal points N ( and N II are chosen in such a way that 

Sm Su S( , then time spans (T( - 0) and (T[II - Til) are equal. In this case the LSCB, as shown in 

Figure 3.9, is "centro-symmetric" with respect to the midpoint [T~I1 ,S~II] (see [60]). 

Another important and desirable feature of the proposed LSCB motion, is the fact that the corresponding 

speed and acceleration curves are continuous as depicted in Figure 3.10. 
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s 

s 

v' 

o'-------.,----.\-.t 

s 

Or--~------~---.t 

Figure 3.10: LSCB motion with its accompanying speed and acceleration curves. 

The initial acceleration 81 (0) is obtained by substituting (3.46) into (3.23) giving 

which, after substituting into (3.35) yields 

_ 2(v· - v 0 )(v0 +2 v • ) 
2Col - (3.48)

3(SI -so) 

Expression (3.48) simplifies further if v 0 =0 and So 0, as is usually the case, to give 

"j(O) 4(V·)2S (3.49)
3S] 

. 
Further, by substituting d,m = -v 2 as well as (3.47) into (3.41), the final acceleration is given 

3(Tm - Til) 

by 
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.. (T) -4(V')2 
(3.50)

SIll III = 3(S -S )
III II 

If SIll - SIl = SI , the magnitude of the initial acceleration SI (0) is equal to the magnitude of the final 

acceleration S III (Till) due to the symmetry that exists in this case (compare expressions (3.49) and 

(3.50». It is of particular interest to note that for this symmetrical situation, the magnitudes of the 

accelerations at the initial and final times are not only equal but correspond to the maximum acceleration 

magnitude that occurs along the total curve. 

3.3.2 Treatment of constraint on acceleration 

The practical requirement that the prescribed motion is to be executed as fast as possible, is usually 

subject to a prescribed maximum allowable acceleration magnitude SALLOW' A procedure is now 

described that may be used to select appropriate node numbers N 1 and N II such that the following 

specific acceleration constraints are not violated: 

(3.51 ) 

(3.52) 


Since by (3.35) and (3.41) the acceleration along both C1 and CIl! vary linearly with time, it follows that 

if the specific constraints (3.51) and (3.52) are satisfied, that the constraint on the acceleration is also 

satisfied at each instant along the whole path. 

As before, for each node Pi = (xPy;), i O,I,... ,N IlP the total path length up to the specific node may 

be detennined using expression (3.25). A special nodal point N MID' corresponding to a point 

approximately halfway along the total curve (i.e. for which SN """ Sm ) can be identified using the 
MID 2 

following criterion: 

(3.53) 


As a first iteration in finding the appropriate choices for nodes N I and N II , assume that nodes N 1 and 

N 1I coincide with node N MID as shown in Figure 3.11. 
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y 

TI = TMID = Tn 

Figure 3.11: General curve showing the midpoint NMID• 

From (3.53) it follows that Sm SMID;?: SMID' and with nodes N I and Nil coinciding with node N MID' it 

further follows that Sm - Sn ;?: SI which, when substituted into (3.49) and (3.50), gives 

(3.54) 


Consequently, for the situation depicted in Figure 3.11, if the initial acceleration S1(0) satisfies 

constraint (3.51), the final acceleration sm(Tm) will also satisfy constraint (3.52) and, indeed, the 

constraint on the magnitude of the acceleration will be satisfied at each instant along the total curve. 

3.3.2.1 Attainment of central speed v· 

If the initial acceleration for the situation shown in Figure 3.11 satisfies constraint (3.51), the desired 

central speed v· may be reached at node N MID . For practical purposes the ideal objectives are, 

however: 

1. 	 to attain the desired central speed v· in the shortest possible time without exceeding the TJ 


allowable maximum acceleration magnitude SALLOW' and 


2. 	 to maintain the desired speed v· for the longest possible time span (Tn - T j ) provided that, over the 

final time interval [Tn' Till] , the maximum deceleration magnitude does not exceed the allowable 

magnitude 5 ALLOW' 

With reference to objective 1 above, expressions (3.46) and (3.48) respectively indicate that for a specific 

speed v· , a shorter path length SI will result in a shorter time TI and a larger initial acceleration 8) (0) . 

By shifting, for example, node N I to coincide with node N MID - 1 the associated path length Sl and 

corresponding time T j will be reduced, while the associated initial acceleration 51 (0) will become 

larger. This increased initial acceleration is then tested against constraint (3.51), and if the constraint is 
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still satisfied, node N I is shifted further to coincide with node N MID - 2. These integer shifts are 

continued until, after p integer shifts, the choice of node N I , coinciding with node N MlD - P , is such 

that the initial acceleration satisfies constraint (3.51), while the choice N I = N MID - (p + 1) violates the 

constraint. 

With regard to objective 2, inspection of expressions (3.47) and (3.50), indicates that a decrease in the 

path length (SIll - SlI) will result in a shorter time span (TIll - TIl), and a larger final acceleration 

magnitude iSm(Tm )1· For example, if node N n is shifted to coincide with node N MID + 1 and thus 

shortens the path length (Sm SII) and the time span (Till - Til), it will result in a larger final 

acceleration magnitude ISm(Tm)l. If the larger ISllI(Tm)1 satisfies constraint (3.52), node Nu may be 

shifted further to coincide with node N MID + 2 ,etc. These integer shifts may be continued until, after q 

shifts, node Nil' coinciding with node N MID + q is such that the final acceleration magnitude Is III (Till )1 

satisfies constraint (3.52), while the choice Nil = N MID + (q + 1) violates the constraint. 

3.3.2.2 Violation of maximum allowable acceleration 

If the initial acceleration, for the situation depicted in Figure 3.11 with specified central velocity v·, 

violates constraint (3.51), a different strategy is proposed which ensures that the maximum allowable 

acceleration is not exceeded. For this case, the motion along the curve shown in Figure 3.11, consists of 

two blended cubic polynomials in time. The blend time is TMID as shown in Figure 3.12: 

s 

Figure 3.12: Blended cubic polynomials. 
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More specifically, the two objectives set in this case are: 

1. to accelerate as fast as possible along curve C [ without violating constraint (3.51), and 

2. to decelerate as fast as possible along curve Cil without violating constraint (3.52). 

Objective 1 implies a different set of boundary conditions for determining the coefficients of the cubic 

polynomial function representing the path length along curve C[ (see expression (3.33». These new 

boundary conditions are 

s[ (0) = So (usually So 0) 

from which a s[' b sl ' col' dOl' and TMID may be determined as follow: 

s (0)::: a ::: SIsO 

S (O):::b =v[ s 0 

Sand therefore c ::: ALLOW 
sl 2' 

(3.55) 

(3.56) 

and thus 

d ::: -SALLOW (3.57)
sf 6TMID 

SALLOW (T )2Substituting (3.57) into (3.55): sl(TMID )::: SMID So +VOTMID +-- MID 
3 

which gives TMID 

and which reduces to 

T =+ /3SMID (3.58)MID -Vi .. 
SALLOW 
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The positive root gives the sought after time instant TMID . 


From (3.34) and substituting the values ofthe coefficients determined above, the speed at node N MID is 


. () SALLOW 
V MID =SI TMID =vo +-2-™1D 

which reduces to 

~3SMIDSALLOW (3.59) 
2 


if So =0 and v 0 O. 


The cubic polynomial function of time representing the deceleration segment C III in Figure 3.11 is given 

by expression (3.39). The unknown coefficients a,lII' b,m' C,III and d'lI! as well as T III are solved for 

by using similar boundary conditions as before: 

slll(TIl ) SMID 

slll(Tm)=0 

sm(TIJ = 0 

Substituting these conditions in the corresponding general expressions (3.39), (3.40) and (3.41) for s, s 
and s , and following the identical steps represented by equations (3.42) to (3.45) finally yields: 

=bSIlI V M1D 

0csIIl 

As with the LSCB motion (see Figure 3.10), the blended cubic polynomials also result in continuous 

speed and acceleration curves as shown in Figure 3.13. 
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s 

~~----+-------~t 

O~------~------~t 

of-------=-'''<:--------++t 

Figure 3.13: Blended cubic polynomials motion with its associated speed and acceleration 
curves. 

From the above acceleration curve, it is clear that the initial acceleration is equal to the allowable 

maximum acceleration, i.e. 5JO) SALLOW' Since the final acceleration magnitude ISm(Tm)1 is either 

smaller than or equal to the initial acceleration magnitude 51 (0) (see expression (3.54)), ISn/TIll)1 

automatically satisfies acceleration constraint (3.52). 

3.4 Incorporation of an orientation angle ~. 

For certain applications of planar motion, the time parametric curves X(t) and yet) that interpolate the 

given set of nodal points {Pi =(xi' Yi)' i 0,1, ..., N}, are insufficient for the control of the particular 

mechanism, e.g. for a planar mechanism where the end-effector is to be orientated in a prescribed 

manner with respect to the tangent of the given path. 
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As an example, consider the situation where the orientation of the end-effector is to be exactly tangential 

to the curve, as the working point on the end-effector progresses along the prescribed curve. The gradient 

angle e at any point along the curve is given by 

tane = dy ~ dpJx) or [dP;(y)]-l (3.60)
dx dx dy 

Another convenient form of expression (3.60) is 

(3.61) 


With the time parametric curves X(t) and yet) known, the respective derivatives X(t) and YCt) are 

also known. Expression (3.61) may therefore be evaluated at nodal points Pi' i =O,I,... ,N to find the 

corresponding values of e;, i = 0,1,... , N. As will be described below, the actual orientation angle <p of 

the end-effector is related to the angle e in a non-straightforward manner as the working point executes 

the path. 

In computing e, care must be taken at nodes Po and PN , since the respective speeds at these nodes are 

often zero, i.e. sr(O)=vo=O and Sill (Tm) =0. With this being the case, X(O) Y(O)=O and 

X(Tm) = Y(TllI ) 0, and consequently expression (3.60) must be used instead of (3.61) to determine 

eo and eN' since dy is known at nodes Po and PN (see Section 3.2).
dx 

Since the arc tan function, through which e is determined via (3.60) or (3.61), only assumes values 

between 90° and + 90° , a special procedure must be adopted to determine the exact orientation angle 

<p as the working point on the orientated end-effector tangentially follows the prescribed curve. 
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e= 0° l,rep = 0° 
-:::::---=----"" 

B 

e=+ 90° 

~C 
----~~-----------------------~~.x 

~ e 90 

D 

Figure 3.14: Circular prescribed curve. 

Consider, for example, a prescribed circular curve as shown in Figure 3.14 with zero orientation angle ~ 

at B. Starting at point A with e and ~ -90° and progressing counterclockwise (CCW) around the 

circular curve the gradient angle e computed via (3.60) or (3.61) gradually increases with ~ from 

90° at A, to 0° at B, to + 90° at C. The CCW crossing of the x-axis at point C is however associated 

with a jump of -180° in the computed gradient angle e although ~ is still clearly increasing 

continuously. Progressing CCW along the lower half of the circle again sees a gradual increase in the 

gradient angle e from - 900 at C, to 0 0 at D, to +900 at A, while ~ continues to increase from 90° to 

2700 at A. At A where another jump of 1800 occurs in the computed value e if the X-axis is crossed 

CCW. 

A similar pattern is recognized using a clockwise (CW) tracing of the circular curve. Starting at point A, 

the computed gradient angle e gradually decreases from +90° at A, to 0° at D, to 90° at C while ~ 

decreases from 90° at A to 270 0 at C. The + 1800 jump that occurs in e with the CW crossing of 

the x-axis at C is followed by another gradual decrease in the gradient angle starting from + 90° at C, to 

00 at B, to 90° at A, while clearly ~ continues to decrease from - 270° at C to - 450° at A. 

The above-explained behavior of the gradient angle e is used in establishing a procedure to determine 

the orientation angle ~: 

If the jump between any two successive gradient angles ei-! and ej' i =1,2, ... , N is smaller than - 90° , 

i.e. ej ei-I :S; -900 
, a CCW-counter Iccw is incremented. Further reflection indicates that Iccw should 

Chapter 3 119 



TRAJECTORY -PLANNING THROUGH INTERPOLATION BY OVERLAPPING CUBIC ARCS AND CUBIC SPLINES 

also be incremented if 0 < 0; 0i-J < 90°. Similarly if 0; - OJ-! 2900 or 900 < OJ - OJ-l < 0, a CW-

counter lew is incremented. Using these counters, the true associated orientation angles ~i' 

i::: 1,2,... ,N are given by 

(3.62) 


(3.63) 


In general expressions (3.62) and (3.63) respectively are given by: 

~i 0; +(Ieew)(1800)+~offset (3.64) 

(3.65) 


The term ~offset in expressions (3.64) and (3.65) is defined as the offset orientation angle of the end­

effector measured in a CCW convention from the tangent to the prescribed path at the point of contact as 

shown in Figure 3.15. 

e=+ 90° 

~c 

D 


e 0° 


Figure 3.15: Circular prescribed curve with an angular offset added to the end-effector 
orientation. 

Since the time instants tp i 0,1,2, ... , N are known (see Section 3.1.1.3), a cubic spline representation 

<1:>(t) may now be determined in exactly the same way as the cubic spline representations X(t) and 
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yet) (see Section 3.1.2). With the cubic spline <1>(t) known, the continuous first and second 

derivatives <D(t) and <I>(t) follow automatically. 

Any prescribed path may also be traced with the end-effector posed in a specified fixed orientation ~fix , 

thus eliminating the need to determine the cubic spline <1>(t) with its fITst and second derivatives <D(t) 

and <I>(t). 

3.5 Test problems 

The proposed trajectory planning methodology using Overlapping Cubic Arcs and (cubic) Splines 

(OCAS) is tested here on five different test functions. Appendix B contains a flow chart of the OCAS 

trajectory planning methodology. 

3.5.1 Parabolic test function 

The first test function is a parabola, where y is the quadratic function of x: 

2 

y(x) = 
x

(3.66)
2 

The accuracy of the approximating fit is dependent on the number and distribution of the given nodal 

points {Pj =(x" Yi)' i == 0,1,... , N}. The parabolic test function is approximated over the x-interval 

x E [~2,2] using 29 points spaced in such a way that they are more densely distributed at the beginning 

and end of the interval (see Figure 3.16). This is done to increase the accuracy of the calculation of the 

initial gradient dy at Po and final gradient dy at P as explained in Section 3.2. The nodal points are, 
dx dx 

N 

for the obvious reason of greater accuracy, chosen more densely in neighborhood of the turning point 

where the greatest change in direction occurs. 

. 2.00... 
1.50 • 

100 

• 

-2.00 -1.00 0.00 1.00 2.00 3.00 

x 

Figure 3.16: Nodal points used to approximate the parabolic test function. 
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In order to determine its accuracy, the fitted approximation is evaluated at chosen intermediate points 

between the pairs of consecutive nodes shown in Figure 3.16. Since the proposed OCAS-approach 

results in cubic spline representations for X(t) and yet) (see Section 3.1.2) over the time span between 

each pair of consecutive nodes, i.e. over tl - _ , i 1,2,... ,28, each interval may be subdivided to tl l 

obtain a specified number of equally spaced additional intermediate time instants. The respective cubic 

spline representations X(t) and yet) are then evaluated at the intermediate time instants to give the 

corresponding approximated intermediate x- and y-values along the curve. Each approximated 

intermediate x-value lies in the interval x E [-2,2], and may therefore be substituted into (3.66) to find 

the corresponding actual y-value. For each intermediate x-value, the y-error is taken as the absolute 

difference between the approximated y-value and the actual y-value. 

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 

x 

Figure 3.17: OCAS-approximation of parabolic test function. 

Figure 3.17 shows the x-y profile obtained from the OCAS-approximation. Each consecutive time span 

t; - tj-J' i 1,2,... ,28 is divided into 10 equal subintervals and the curve in Figure 3.17 therefore 

represent a plot at 281 division points. The maximum absolute y-error over this set of points is 

4.470 x 10-5 with an average error of 5.222 x 10-6 
• 

The trajectory planning along the parabolic profile was done by specifying a maximum al10wable 

acceleration magnitude of 0.7 meter per second square, i.e. 8ALLOW =0.7, and a specified central speed 

of 1.0 meter per second, i.e. v· = 1.0. These specifications resulted in the LSCB-motion (see Section 

3.3.1) shown in Figure 3.18. The blend times are TJ 2.922 s and Til 4.942 s with the final time 

Till = 7.864s. The initial acceleration is 81(0) 0.684 and the final acceleration is 8 (TIll) = -0.684m 

the magnitudes of which are both less than the specified maximum allowable acceleration magnitude 

SALLOW 0.7. 
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8 8 8 8 8 8 8 8- N ... .. .,; <ri ~ <ri m 
·060~ " 

Figure 3.18: LSCB-motion for parabolic test function with its associated speed and acceleration 
curves. 

The cubic spline representations X(t) and yet) that represent the x- and y-coordinate positions as 

functions of time, and plotted at the 281 time instants, are shown in Figure 3.19, together with the graphs 

of the continuous x- and y- velocities (X(t) and Yet) designated as Vx and Vy) and accelerations 

(:X(t) and yet) designated as Ax and Ay) over the total time interval [0,7.864]. Note that the start 

point and end point of the prescribed trajectory follows from the cubic spline representations X(t) and 

Y(t) , Le. (-2,2) at t 0 and (2,2) at t 7.864s. 
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Figure 3.19: Plots of approximate coordinate positions, -velocities and -accelerations versus 

time for the parabolic test function. 


With the specification that the end-effector be tangentially orientated with respect to the prescribed 


curve, (see Section 3.4), the cubic spline approximation cD(t) representing the orientation angle <\l 


[degrees] over the time interval [0,7.864] may be determined and is shown in Figure 3.20. Also shown 


in Figure 3.20 are the continuous orientation angular velocity curve <D(t) [rad/s] as well as the 


continuous orientation angular acceleration curve &(t) [rad/s 2 
]. 

700 

6,00 

SOD 

400 

3.00 

200 

1,00 

0,00 

5000 

60.00 

4000 

2000 

-20.00 

·40.00 

·6000 

Tangential .peed Tangef1tlalaccea&ratlonLSCB Molion sit) 
0.80 

060 

040 

0.20 

000 

-t120 

·040 

~O.60 

8 8 

Orientation angle 

12O 

100 

0.60 

060 

8 
.-' 

8 
N 

8 
M 

8.. 8 
'" 

8 
'" 

8 8 
~ 

8 
'!' 0.40 

020 

0.00 

Orientation angular velocity Orientation angular acceleration 

100 

060 

0.60' 

0.40 

0,20 

000 

-020 8 8 
N '"·0.40 

·060 

-O.BO 
8 8 8 8 8 8 8 8 ·1 00 ~ 
0 ~ N ~ .. <ri ~ 0>'" '" 

Figure 3.20: Plots of approximate orientation angle, orientation angular velocity and ­
acceleration for the parabolic test function. 
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3.5.2 Spike test function 

The second test function is a spike test function taken from [68]: 


1 

y(x)=-1-2 

(3.67) 
+x 

This spike test function is also approximated over the x-interval x E [-2,2]. The initial and final nodal 

points are Po =(xo,yo)=(2,0.2) and PN (XN'YN) (-2,0.2) respectively. In total 27 nodal points 

are specified as shown in Figure 3.21, with denser distributions of nodal points at the end points of the 

interval, as well as at the midpoint as is evident in Figure 3.21. 

1.20 l 

100·t·. . 
. . 

I 

8.80 1 

• 0.60 i 
0.40 J 

... ..... 0.20 i 

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 
x 

Figure 3.21: Nodal points used to specify the spike test function. 

As in the case of the parabolic test function of Section 3.5.1, each consecutive time span t; tl-l' 

i = 1,2,...,26 is divided into 10 subintervals by equally spaced additional time instants. The approximate 

x-y profile is drawn by plotting the values at the 261 division points as shown in Figure 3.22. Here the 

absolute maximum y-error resulting from this approximation is 1.359 x 10-4 with average error 

1.201 x 10-5 
• 

~I j0.60 

OAO 

0.20 

g o go 
ci N 
x 

Fignre 3.22: OCAS-approximation of spike test function. 
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With a specified central speed of v' =1.0 meter per second, and a specified maximum allowable 

acceleration SALLOW =0.5 ml S2 , the resulting motion is described by two blended cubic polynomials (see 

Section 3.3.2.2), as shown in Figure 3.23. The associated blend time is TMID =3.6148 s, and from the 

tangential speeds graph in Figure 3.23 it is clear that the speed at the blend time, v MID =0.9037 mis, is 

slightly less that the desired speed of v· 1.0 m Is. This is due to the fact that the magnitudes of both 

the initial and final curvature accelerations are equal to the maximum allowable acceleration of 

SALLOW 0.5 mlS2 • 

5.00 ] 
Blended Cubic PoIynonUlo Motion s(t) 

100 

Tang speedential 
0.60 

Tangential acceleration 

450 090 
400 ' 080 0.40 

350 070 
300 080 
2SO 050 
2.00 040 
LSO 0,30 

1.00 0.20 

OSO 0.10 

000 000 
8 8 8 8 8 8 8 8 8 8 
0 ~ ~ .. ~ ~ ~ § ri ..'" '"'" " "' "' 

8 8 ... '" t t 

Figure 3.23: Blended cubic polynomials motion for spike test function with its associated speed 
and acceleration curves. 

Figure 3.24 shows plots of the x- and y-positions X(t) and Y(t) (with start point (2,0.2) at t =0 and 

end point (-2,0.2) at t 7.230 s), the x- and y-velocities X(t) and yet) (designated as Vx and Vy), 

and the x- and y-accelerations X(t) and yet) (designated as Ax and Ay) at the 261 time instants 

distributed over the time interval [0,7.230]. 
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Figure 3.24: Plots of the approximate coordinates, velocities and accelerations versus time for 
the spike test function. 

The tangentially orientated end-effector specification results in the cubic spline approximation <I>(t) 

[degrees] plotted in Figure 3.25, together with the corresponding plots of the continuous orientation 

angular velocity curve <P(t) [rad/s], and the continuous orientation angular acceleration curve <D(t) 
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Orientation angle Orientation angular acceleration Orientation angular velocity 

Figure 3.25: Plots of approximate orientation angle, orientation angular velocity and 
acceleration versus time for the spike test function. 

In order to verify expressions (3.64) and (3.65), an orientation angle offset <PoffSet = 30° is specified, and 

the associated cubic spline approximation <p(t) [degrees] is plotted in Figure 3.26. Also shown in 

Figure 3.26 are the corresponding plots of the continuous orientation angular velocity curve ci>(t) 

[ rad! s ], and the continuous angular acceleration curve <l>( t) [rad / s 2 ]. 

OffHt nrl.nutlo" anole Orlentatlon angular vetoctty Orientation angular acceleration 

7000 j 500 

Comparing the offset cubic spline approximation <p( t) of Figure 3.26 with the tangential cubic spline 

approximation <p(t) of Figure 3.25, it is clear that the specified offset (<PoffSe! =30°) resulted in an 

upward shift of the orientation angle curve. As expected, the orientation angular velocity and orientation 

angular acceleration curves of Figures 3.25 and 3.26 are in exact agreement. 

3.5.3 Circular test curve 

The ability of the proposed OCAS-approach to approximate curves that cannot be represented by 

unique-valued functions of one coordinate variable in terms of the other, is demonstrated here for the 

circle: 

(3.68) 

The nodal points {Pi =(xi' yJ, i 0,1, ... ,N} are specified usmg corresponding sweep angles 

0; E [0° ,720°], where the sweep angle is measured clockwise from the positive x-axis. For any specific 
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Figure 3.26: Plots of approximate offset orientatiou angle, orientation angular velocity and 
acceleration versus time for the spike test function. 
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sweep angle ~i' i O,l, ... ,N the corresponding x- and y-values are given by Xi =3cos ~i' and 

y, = 3sin~j respectively. Here the sequence of sweep angles {~J is chosen such that starting at ~ = 0 0 
, 

two complete CCW revolutions are followed. 

The spacing of the nodal points is again clustered around the beginning and end of the total interval as 

can be seen in Figure 3.27. A total of 79 nodal points cover the two revolutions of the circular path. The 

nodes for each revolution are shown separately in Figure 3.27. In particular, the first revolution 

(f:3E [0, 3600
]) is shown on the left-hand side of Figure 3.27, and the second revolution 

(i3 E [360°,7200 
]) is shown on the right-hand side of Figure 3.27. 
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Figure 3.27: Nodal points used to approximate two revolutions of the circular curve. 

As before, each time span tj tl-l' i 1,2,...,78 is divided into 10 equal subintervals for the purpose of 

mapping the computed approximation at the division points (see Section 3.5.1). The x-y-profile obtained 

from the OCAS-approximation at the specified division points is shown in Figure 3.28. For any given 

time instant the approximated x- and y-coordinates correspond to an approximated radius, from which 

the absolute radius error can be calculated. The maximum absolute radius error computed over the 781 

division points is 5.27 x 10-5 with an average error of 6.27 x 10'6 . 
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Figure 3.28: OCAS-approximation of circular test curve. 

The trajectory planning is done by limiting the maximum allowable acceleration to 0.5 meter per second 

square, i.e. SALLOW = 0.5 m/s2, and by specifying a central speed of 1.0 meter per second, i.e. 

v' 1.0 m/ s. These specifications resulted in a LSCB- motion with corresponding blend times 

TI = 4.712 s and Tn = 36.127 s (see Figure 3.29) and total path time TIll 40.841 s. The initial and 

final tangential accelerations are sI(0)=0.424m/s2 and s CT )=-0.424m/s2 both satisfying the m m

bound on the magnitude of accelerations. 
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Figure 3.29: LSCB-motion for the circular curve with its accompanying speed and acceleration 
curves. 

Figure 3.30 shows the x- and y-positions X(t) and yet) (with start point (3,0) at t = 0 and end point 

(3,0) at t = 40.841 s), the x- and y-velocities X(t) and yet) (designated as Vx and Vy), and the x­

andy-accelerations X(t) and Yet) (designated as Ax and Ay) over the time interval [0,40.841]. 
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Figure 3.30: Plots of the approximate coordinates, velocities and accelerations versus time for 
the circular curve. 

For the circular test curve, the situation depicted in Figure 3.14 occurs, where the specification of a 

tangentially orientated end-effector necessitates the monitoring of the behavior of the calculated gradient 

angle eto keep track of the end-effector orientation angle ~ (see Section 3.4). The corresponding cubic 

spline approximation <I>(t) [degrees] that results from the monitoring procedure outlined in Section 3.4 

is shown in Figure 3.31. Since the nodal points were specified within the sweep angle range of 

[0° ,720°], the orientation angle varies from - 90° to 630°. The corresponding orientation angular 

velocity curve <bet) [rad/s] and the orientation angular accelerations <D(t) [rad/s2 
] are also shown in 

Figure 3.31. 
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Figure 3.31: Plots of the approximate orientation angle, orientation angular velocity and 
orientation angular acceleration versus time for the circular test curve. 

The unexpected spikes at the beginning- and endpoints of the angular acceleration curve, as opposed to 

the smooth behavior of both X(t) and yet) in the same regions, are probably due to the slight 

inaccuracies introduced in the calculation of the gradient angle via expressions (3.60) and (3.61). 

Expression (3.60) uses the approximated gradient, while expression (3.61) uses the approximated x- and 

y-velocities to find the gradient angle e. 

For the circular test curve under consideration, the exact gradient angle e (and orientation angle ~) 

corresponding to a given sweep angle J3 may be determined (see Figure 3.32). 
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Figure 3.32: Exact gradient angle for a given sweep angle. 

The figure clearly shows that the relationship tan/3 =1. applies, from which it follows that the exact 
x 

gradient angle is e= /3 90°, which also allows for the exact determination of <p. With this information 

available a comparison can be made between the approximated and exact orientation angle at any point 

along the curve. 

Corresponding to the determination of the absolute radius error, the absolute difference between the 

approximated orientation angle, and the exact orientation angle is referred to as the orientation angle 

error. For the circular test curve, the maximum absolute orientation angle error over all the 781 division 

points is 5.714 x 10-4 rad, i.e. 0.03274° with an average error 3.742 x 10-5 rad, i.e. 0.00214°. 

3.5.4 Logarithmic spiral test curve 

The final analytical test curve is the logarithmic spiral taken from [69]: 

(3.69) 

which specifies the relationship between the polar coordinates (p, 13) of any point on the curve. 

As in the case of the circular curve of Section 3.5.3, the spiral curve can also not be expressed as a 

function of one coordinate variable in terms of the other. The nodal points {PI = (XpYi)' i == O,l, ...N} are 

generated via (3.69) where the polar angle plays the role of a sweep angle Pi' For the spiral test curve 

the sweep angle ranges from n to 5n , i.e. 13 E [ -n, - 5n]. Note that the sweep angle is incremented 

such that the logarithmic spiral curve is traced in a CW manner, as opposed to the CCW -tracing of the 

circular test curve (see Section 3.5.3). The 79 nodal points specified are shown in Figure 3.33 
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Figure 3.33: Nodal points used to approximate the spiral test curve. 

Using the same procedure as outlined before, the x-y profile may be mapped at 781 division points as 

shown in Figure 3.34. For each interpolated point the x and y coordinates yield an interpolated radius, 

i.e. 	r =~x 2 + y2 . Furthermore, for each interpolated point the relationship tan 13 applies as it does 
x 

for the circular test curve (see Figure 3.32). The calculated l3-angle is used in a special procedure similar 

to the one explained in Section 3.4, to determine the exact l3-polar coordinate associated with the 

interpolated point. Hence, by substituting the exact l3-polar coordinate into expression (3.69), the p-polar 

coordinate as well as the absolute radius error Ip - rl associated with the interpolated point may be 

determined. The maximum absolute radius error for the spiral test curve over the 781 division points is 

1.361 x 10-5 with average error 7.258 x 10-7 
• 

x 

Figure 3.34: OCAS-approximation of spiral test curve. 
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Here the bound on the maximum allowable acceleration is 0.7 meter per second square, and a central 

speed of v' =1mls is specified. The resulting LSCB motion is shown in Figure 3.35, for which the 

respective blend times are T I = 2.968 s and =4.275 s with total path time Till =7.224 s. TheT Il 

tangential accelerations are within the specified limits, SInce s(O) = 0.674 < 0.7 and 
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Figure 3.35: LSCB-motion for the spiral test curve with its accompanying speed and 
acceleration curves. 

The corresponding approximated x- and y-positions X(t) and yet) (with start point (-0.730,0) at 

t 0 and end point (-0.208,0) at t 7.224s), x- and y-velocities X(t) and yet) (designated as Vx 

and Vy), and x- and y-accelerations X(t) and V(t) (designated as Ax and Ay ) computed at the 781 


division points are plotted in Figure 3.36. 
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Figure 3.36: Plots of the approximate coordinates, velocities and accelerations versus time for 

the spiral test curve. 


As for the circular test curve, the orientation angles of the spiral test curve are determined using the 

monitoring procedure outlined in Section 3.4. The end-effector orientation angle of the spiral test curve 

varies between 84.29° and 635.71° as shown in Figure 3.37. 
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Figure 3.37: Plots of the approximate orientation angle, orientation angular velocity and 
orientation angular acceleration versus time for the spiral test curve. 

The orientation angular velocities [rad/s] and the orientation angular accelerations [rad/S2] are also 

shown in Figure 3.37. Again the spikes at end point of the angular acceleration curve are probably due 

to slight inaccuracies in the detennination of the orientation angle (see Section 3.5.3). 

Although specifYing an angular offset <Poffset = -45° shifts the orientation angle curve down as shown in 

Figure 3.38, the orientation angular velocity and orientation angular acceleration curves remain 

unchanged. In particular, the offset orientation angle of the spiral test curve varies between 39.29° and 

-680.71° . 
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Figure 3.38: Plots of the approximate offset orientation angle, orientation angular velocity and 
orientation angular acceleration versus time for the spiral test curve. 

3.5.5 Non-analytical test curve 

The final test curve is the non-analytical treble clef shown in Figure 3.39. The particular curve is a Non­

Unifonn Rational B-Spline (NURBS) generated with commercial Computer Aided Design (CAD) 

software, and fitted through the 42 nodal points also indicated in Figure 3.39. For trajectory planning 

purposes, the start- and end points are as indicated in Figure 3.39. 

This illustrative example is typical of a real life situation where the prescribed curve is an arbitrary 

smooth curve for which no analytical expression exists. 
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Figure 3.39: CAD-spline drawing through specified points of the treble clef test curve. 

The OCAS trajectory planning methodology is tested by specifying different sets of nodal points, where 

the nodal points of each set are differently spread along the CAD spline treble clef. In particular, three 

different sets of nodal points are chosen with respectively 22, 31 and 49 nodal points. The approximated 

OCAS x-y profiles computed at respectively 211, 301 and 481 division points are shown in Figure 3.40. 
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Figure 3.40: Three OCAS approximations of treble clef test curve. 
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By comparing Figure 3.40 with Figure 3.39, it is evident that the approximation capability of the OCAS 

trajectory planning methodology is accurate with relatively few specified nodal points. Using only 31 

nodal points yields a reasonably accurate fit, while using 49 nodal points yields an approximation which 

by inspection shows no deviation from the original CAD-spline treble clef. However, specifYing too few 

nodal points, and in an injudicious manner, results in a poor approximation as can be seen from the x-y 

profile computed for the 22 chosen nodal points in Figure 3.40. 

The results presented in Figure 3.40 also emphasize the importance of clustered distributions of nodal 

points near the extreme points (especially the end point) of the prescribed curve, which ensure accurate 

approximations to ~~ at Po and PN • 

Since the choice of 49 nodal points gives the best approximation, its associated trajectory planning 

results are also shown. Here the bound on the maximum allowable acceleration is 5 mm/ S2 , and a 

central speed of v' =10mm/s is specified. The resulting LSCB motion is shown in Figure 3.41, for 

which the respective blend times are T,::=5.l26s and TI/=40.1435s with total path time 

T III =44.693 s. The tangential accelerations are within the specified limits, since Sf (0) =3.834 < 5 and 
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Figure 3.41: LSCB-motion for the treble clef test curve with its accompanying speed and 
acceleration curves. 

The corresponding approximated x- and y-positions X(t) and yet) (with start point (27.0,44.0) at 

t 0 and end point (13.0,13.0) at t=44.693s),x-andy-velocities X(t) and yet) (designated as Vx 

and Vy), and x- and y-accelerations X(t) and yet) (designated as Ax and Ay) computed at the 481 

division points are plotted in Figure 3.42. 
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Figure 3.42: Plots of the approximate coordinates, velocities and accelerations versus time for 
the treble clef test curve. 

The treble clef prescribed curve is traced with the end-effector in a fixed horizontal orientation <jl 

hence the orientation angle curves are omitted here. 
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Chapter 4 

4 THE DETERMINATION OF OPTIMUM PLATFORM 

GEOMETRIES FOR PRESCRIBED MACHINING TASKS 

4.1 Introduction 

Du Plessis et al. [70] introduced the unique concept of an adjustable geometry planar Gough-Stewart 

platfonn machining center, where the geometry of the planar machining center is optimized using the 

LFOPC-algorithm [64]. The geometry was optimized with respect to the static actuator forces required 

to hold the mechanism in static equilibrium at each instant along the prescribed path. The dynamic 

actuator forces were also taken into account in the work by Snyman and Smit [71], in which the 

manipulator dynamics were simulated using the Dynamic Analysis Design System (DADS v. 9.0) [72]. 

They found that optimizing the platfonn geometry using the DADS software for the dynamics was 

computationally expensive if excessive numerical noise in the objective functions was to be avoided. 

This chapter now explains how the LFOPC-algorithm [64] may be used to optimize the adjustable 

geometry of the planar Gough-Stewart platfonn machining center for any reasonably prescribed path 

using the stand-alone and fundamentally based inverse dynamic analysis procedure developed in 

Chapter 2. Here the actuator forces are detennined as the manipulator moves in a prescribed manner 

along the specified path. In this study, the path specification is done using to the OCAS trajectory­

planning methodology as explained in Chapter 3. 

Minimizing the dynamic actuator forces required for executing the prescribed path with respect to the 

geometry, results in the avoidance of the very large actuator forces associated with singularities. 

Furthennore, as a by-product of the constrained optimization procedure, a positioning of the planar 

Gough-Stewart platfonn relative to the prescribed path is obtained that automatically ensures that the tool 

path is feasibly placed within the workspace of the mechanism. If it is not possible to place the 

prescribed path inside the workspace of the manipulator, the optimization algorithm yields an optimum 

compromised design geometry which allows the user to intervene in a rational manner. 
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Section 4.2 explains the fonnulation of the basic constrained optimization problem, while Section 4.3 

gives details regarding the evaluation of the objective and constraint functions. The procedure for 

solving the optimization problem is explained in Section 4.4. Finally, the results of a representative 

optimization test run are shown and discussed in Section 4.5. 

4.2 	 Formulation of the constrained optimization problem 

In general, any conceptual design, dependent on n real design variables X = [XI'X2,X3 , ••• ,X n r, can be 

optimized by firstly defining an appropriate objective function F(X), and where applicable, additional 

inequality constraints Cj(X)~O (j=I,2,3, ... m) and equality constraints Hk(X) 0 

(k = 1,2,3, ... P < n). The optimum design X· and optimum objective function value F(X') can then be 

found by applying anyone of several available optimization techniques or algorithms, to solve the 

following mathematically fonnulated (constrained) optimization problem: 

minimize F(X) 
x 

(4.1) 


such that C/X)~O j=1,2,3,... m and Hk(X) 0; k=1,2,3, ... p<n 

The selection of the design variables must be such that the objective function F(X), the inequality 

constraint functions Cj(X) (j = 1,2,3,... m) and the equality constraint functions Hk(X) 

(k = 1,2,3, ... p < n) are all dependent on X = [XI'X2,X3, ... ,XJT. 

4.2.1 	 Design variables describing the adjustable geometry of the planar 

Gough-Stewart platform machining center 

With reference to Chapter 2, where the planar Gough-Stewart platfonn machining center was 

introduced (see Figure 2.2 and 2.5), the positioning of the actuator joints on the base and on the moving 

platfonn may easily be adjusted. This feature is also incorporated in the practical design of the planar 

Gough-Stewart platfonn test-model with continuously adjustable geometry (see Appendix D). In 

particular the five design variables X [XpX2,X3,X4,XSr, indicated by the arrows in Figure 4.1, are 

used to describe the proposed adjustable geometry. 
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y 

o 

Xs 

Figure 4.1: Five design variables describing the adjustable geometry planar Gough-Stewart 
platform machining center. 

The two design variables X3 and X4 represent the coordinates of the left most revolute joint C on the 

horizontal base relative to the fixed global reference frame. In practical terms this implies that the 

position of point C on the base of the planar Gough-Stewart platform must be adjustable. This required 

positional adjustment may of course also be accomplished in practice by shifting the position of the 

global origin 0 relative to the fixed horizontal base (see Figure 2.8 and 2.10 for theflXed workpiece and 

fixed cutting tool cases respectively). The tool path is described relative to the global origin 0, and the 

kinematic and kinetic analysis of the mechanism is also done relative to its position (Chapter 2). 

The remaining three design variables XI' X 2 and Xs indicate the relative distances between the 

linearly adjustable revolute joints of the fixed base (X2 and Xs ) and the moving platform ( X I ). 

In summary, and with reference to Figure 4.1, 

(4.2) 

x 
E = X 4 +X2 +Xs 

(4.3) 
yE =X3 

and 
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In order to solve for expression (4.2), one of the two local coordinates ~t or ~~ must be known. If the 

center of mass of the moving platform is midway between revolute joints A and B, expression (4.2) 

reduces to I~t I=~~ = ~I • 

4.2.2 	 Objective function used to optimize the planar machining center 

geometry 

The objective function used here, is the overall maximum magnitude ofthe individual actuator forces f k , 

k 1,2,3 (see expression (2.124)), as the planar Gough-Stewart platform moves along a prescribed tool 

path. 

Using to the OCAS trajectory-planning algorithm, the prescribed path is specified by a set of nodal 

points {PI (xpy/),i O,I,...,N} (see Section 3.1). Time instants are then allocated to the consecutive 

nodal points according to the specified tangential "cutting speed", as well as the magnitude of the 

maximum allowable tangential acceleration. Each consecutive time span [t l , t l+1], i =:; 0,1,... ,N -1, with 

associated magnitudes ~tl =t;+1 - t; is then subdivided into an additional number of equally spaced 

intermediate time instants, using the parameter (see Appendix B). This intermediate time n time 

parameter is used in the OCAS-algorithm for the graphical representation of the results as is explained in 

Section 3.5.1. 

In determining the overall maximum magnitude of the individual actuator forces f k , k 1,2,3, for a 

specific prescribed tool path, the additional time discretization parameter n time is again utilized. This 

... 	 J
tl't;+1 tIme 	

A
allows 	 for a further discretization 0 f the interval [] mto Instants t;,j =t; +--uti' 

n time 

i =0,1,2,...,N -1, j :::: 0,1,2,... ,n time • Hence, for a sufficiently refined time discretization 

{t l ,;, i:::: 0,1,2, ..., N -1; j =0,1,2" .. , n,jme} * over [0, T] [0, tN_1,n._ ], the objective function may be taken 

as 

F(X) =:; f!1ax{maxlfk (t;)1 ' i 0,1,2, ...,N -1; j 0,1,2, ...,ntimJ (4.4)
k-l,2,3 ',J 

The occurrence of singularities inside the workspace of Gough-Stewart platforms is associated with 

dramatic increases in actuator forces [59]. Minimizing the above objective function will push the design 

* note that t;o =tl-1n. 
, , timll' 
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towards an optimum platform geometry which avoids close proximity to singularities as a specific 

prescribed path is traced. 

Apart from the fact that the objective function is dependent on the prescribed path, it is also shown in 

Section 4.3 that expression (2.124) is indeed an implicit function of the vector of design variables 

X [XI'X2,X3'X4 ,XJ, and that the objective function is therefore well defined. 

4.2.3 Constraints applicable on the planar machining center 

With reference to Figure 4.1, the allowable relative distances between the linearly adjustable revolute 

joints of the fixed base (X2 and Xs) and the moving platform (XI) are subject to physical lower ( 

i =1,2,5 ) and upper (Xi, i 1,2,5 ) bounds, i.e. 

(4.5) 


Similarly, the actuator leg lengths ( f! i , i = 1,2,3 ) are bounded by minimum (L, i =1,2,3 ) and maximum 

(f!i' i = 1,2,3) leg length limits: 

(4.6) 


These bounds are defined as the mechanism configurational constraints, and determine its working 

capability, since for any specific operational geometry X [Xl,X2,X3,X4'XsY to be feasible, the 

mechanism configurational constraints (4.5) and (4.6) must be satisfied. 

The formulation of the constrained optimization problem (expression (4.1)) allows for the easy 

imposition of the above configurational constraints, since they may readily be expressed as general 

inequality constraints ofthe form C j(X) ::; 0, (j 1,2,3, ... ,m). 

In particular, expression (4.5) represents the first six inequality constraints C j(X) ::; 0, (j =1,2,3, ... ,6) : 

C1(X)=XI-Xl ::;0 

C 2(X)=X1 X1::;0 

C (X) X -X ::;0
3 2 2 

(4.7) 
C4 (X) == - Xl ::; 0 

Cs(X) == Xs Xs::; 0 

C 6 (X) Xs Xs::; 0 
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The leg length limits g; 5.£; 5.£;, i=I,2,3 (expression (4.6» represent an additional six inequality 

constraints C j+6 (X) 5. 0, (j =1,2,3, ... ,6). As with the objective function (4.4), these six inequality 

constraints are dependent on the prescribed path, as well as the design variables 

X =[XpX2,X3,X4'XSY (see Section 4.3). Monitoring the prescribed path and corresponding platform 

geometry at discrete time instants tl,j' the overall maximum and minimum actuator leg lengths may be 

obtained. They are respectively given by £;:-(X)=max[£k(t;,j'X)] and £;in(X)=min[£k(t;,j'X)] 
; ,j t,j 

for k 1,2,3 and {t;,], i 0,1,2, ... , N -1; j =0,1,2, ... , n time } suitably small monitoring time intervals as 

previously defined in Section 4.2.2, The allowable maximum and minimum actuator leg lengths are 

respectively denoted by £k and gk' k =1,2,3 , resulting in the following six mathematically expressed 

inequality constraints: 
-

Ck+6(X) == £;:- (X) - £k 5. 0, k =1,2,3 
(4,8) 

and Ck+9(X) == gk - £'t (X) 5. 0, k 1,2,3 

4.3 Evaluation of the constrained optimization problem 

The formulated constrained optimization problem (Section 4.2) is evaluated for a specific prescribed 

path, given any arbitrary design X [XI'X2'X3 ,X4 ,XJ. The design vector X fixes the operational 

geometry of the platform. 

4.3.1 Evaluation of the objective function 

Evaluating the objective function (4.4), involves performing a kinematic and kinetic analysis of the 

planar Gough-Stewart platform as explained in Chapter 2. ill particular, for any time instant along the 

prescribed path, the position (xl'Y I) and orientation (~I) of the moving platform (body 1 in Figure 2.5) 

are known (see Section 2.4). Furthermore, with the operational geometry (X) fixed, expression (4.2) 

yields the local ~~- and ~~-coordinates while expression (4.3) yields global coordinates (XC,yc), 

(x D, yD) and (x E , yE). Note that since the coordinates (x\ yA) and (x B , yB) follow from (xl' y l' ~l) , 

~~ and ~~ in expression (2.57), expressions (2.58) - (2.61) may be solved for. Expressions (2.57) 

(2.61) uniquely define the coordinate vector q =[xI'Yl'~I'X2'Y2'~2, ...,x8'Y8'~8r, which uniquely 

defines the Jacobian matrix of the planar Gough-Stewart platform given by expression (2.62). The 

Jacobian matrix is used to find the accelerations of the individual bodies (expression (2.56». With these 
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accelerations known, the Jacobian matrix is again used to solve the inverse dynamic equations of motion 

(expression (2.124)) for the unknown LaGrange multipliers}., and actuator forces ff. 

The sensitivity of the objective function (4.4) to each of the design variable Xi' i =1,2,... ,5 may also be 

graphically determined. This is done by fixing four of the five design variables, and varying the fifth 

while evaluating the objective function value. 

As an example, the sensitivity analysis is done for a path where the center of mass of the moving 

platform follows a straight-line prescribed path inclined at 60° to the horizontal as shown in Figure 4.2. 

Five equally spaced nodal points are used to specifY the path, and using the OCAS-algorithm, the 

trajectory-planning is done for a specified constant tangential speed of 0.01 m/ s. Furthermore, the 

default time discretization parameter, n time =10, is used resulting in a total of 41 monitoring time 

intervals. 

The direction of travel is such that the initial configuration of the mechanism corresponds to the one 

shown in dashed lines in Figure 4.2 and the final configuration to the one in solid lines. Furthermore, the 

moving platform remains horizontal as the straight-line path is traced. The fixed values of the respective 

design variables are 

X3 =-O.4m (4.9) 

and the mass matrix of this example platform is given by expression (2.132). 
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Figure 4.2: Straight-line prescribed path. 
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The sensitivity of the objective function to design variable Xl is shown in Figure 4.3. Here Xl is varied 

with a step size of 0.0025 m between 0.1 m and 1.0 m, while design variables X
2 

, X3 , X
4 

and Xs 

remain fixed (see expression (4.9». 

Objective function value 
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0.2 0.4 0.6 0.8 

Figure 4.3: Objective function (4.4) versus design variable Xl' 

Figure 4.3 consists of a single smooth curve, indicating that as X I varies, a single actuator is responsible 

for carrying the maximum magnitude actuator force. For the example prescribed path considered here 

(Figure 4.2), actuator leg £1 (see Figure 4.1) carries the maximum magnitude actuator force. 

Evaluating the objective function while varying design variable Xl with a step size of 0.000001 m 

between 0.5756 m and 0.576 m, magnifies the curve as shown in Figure 4.4. This curve demonstrates 

the effective absence of any numerical noise in the analysis. 

Objective function value 
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0.57555 0.5756 0.57565 0.5757 0.57575 0.5758 0.57585 

Figure 4.4: Close-np of objective function (4.4) versus design variable Xl' 
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This absence of noise is due to the fact that the objective function (expression (4.4)) is determined with 

high accuracy using the fundamentally based inverse dynamic analysis procedure explained in Chapter 

2. 

The sensitivity of the objective function to X 2 is shown in Figure 4.5. Here design variables XI' X 3 , 

and Xs remain fixed (see expression (4.9)) while Xl is varied with a step size of 0.0025 m X4 

between 0.1 m and 1.0 m . 
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Figure 4.5: Objective function (4.4) versus design variable Xl' 

In contrast to Figure 4.3 which consists of a single smooth curve, Figure 4.5 consists of four smooth 

curves linked to each other at three points where discontinuities in the slope (kinks) occur. Each of the 

three kinks in the above graph is due to a switch in the actuator leg responsible for the maximum 

magnitude actuator force. 
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Figure 4.6: Close-up of objective function (4.4) versus design variable X 2 • 
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Figure 4.6 shows a close-up view of the first two kinks, where the left most smooth curve represents 

actuator leg il 2 (see Figure 4.1) carrying the maximum magnitude actuator force, the middle smooth 

curve represents actuator leg il 3 carrying the maximum magnitude actuator force, and the right most 

smooth curve represents actuator leg il I carrying the maximum magnitude actuator force. The isolated 

discontinuity in Figure 4.5 occurring near X 2 =0.8 m is due to the switch between actuator legs il I and 

il 2 in carrying the maximum magnitude actuator force. 

The respective sensitivities of the objective function (4.4) to design variables X 3 , and Xs are as X 4 

shown in, Figures 4.7 4.9. 

Objective function value Objective funcllon v.lue 

250 

200 

00 ., 2 ., -0 e -0.8 ~OA -0.2 

Figure 4.7: Objective function Figure 4.8: Objective function (4.4) 
(4.4) versus design variable X 3 • versus design variable X 4 • 

4.3.2 Evaluation of the inequality constraints 

Inequality constraints (4.7) may, of course, be explicitly evaluated. The evaluation of the inequality 

constraints (4.8) follow from the kinematic and kinetic analysis mentioned in Section 4.3.1. With the 

global coordinates of points A, B, C, D and E known at any time instant t, actuator leg lengths il I eX, t) , 

il 2 (X,t) and il 
3 
(X,t) are the magnitudes of respective vectors CA, DA and ED (see Figure 4.1): 

il1(X,t) =ICAI ~(XA _XC)2 +(yA _yC)2 

il 2(X, t) =IDAI =~(XA - XD)2 + (yA _ yD)2 (4.l0) 

il 
3 
(X,t) IEDI ~(XB _X E)2 +(yB _yE)2 

Objective function vaiue 

020 040 OBO 

Figure 4.9: Objective function 
(4.4) versus design variable XS' 

Note that mechanism configurational constraint (4.6), not only fixes the allowable maximum and 

minimum actuator leg lengths, but also influences the kinematic and kinetic performance of the planar 
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Gough-Stewart platfonn. This follows from the relationship existing between the physical dimensions of 

the two bodies comprising an actuator leg, and the allowable relative actuator displacement. 

Consider translational joint 2 - 5, which is the left most actuator leg of the planar Gough-Stewart 

platfonn as shown in Figure 2.5 (actuator leg f) in Figure 4.1). The physical dimensions of bodies 2 

and 5 detennine the allowable actuator displacement of leg 1. Furthennore, the local 02 ~2 112 and 

05~5115 coordinate systems are chosen with 02 and Os respectively coinciding with the centers of mass 

of bodies 2 and 5, the positions of which are also determined by the physical dimensions of these two 

bodies. With the positions of the respective centers of mass of bodies 2 and 5 known, local coordinates 

~~ and ~; are also known. Similar arguments apply for translational joints 3 - 6 and 4 - 7 . 

With reference to Figure 2.5, local coordinates ~~ and ~~ of translational joint 3 

translational joint 4 - 7 , together with local coordinates ~: and ~; of translatio

required to solve for expression (2.61). 

- 6, ~: and 

nal joint 2 

~~ of 

5 are 

4.4 Solving the constrained optimization problem 

As mentioned in Section 4.1, the LFOPC-algorithm [64] is used here to optimize the adjustable geometry 

of the planar Gough-Stewart platfonn machining center for any specific prescribed path. The 

optimization procedure is schematically represented in Figure 4.10. 

Initial design Optimum design 
XO X· 

Is anyone of the 
convergence criteria 

satisfied? 

LFOPC adjusts 
Prescribed path the design X 

.----- .,) 
Simulation of the planar 
Gough-Stewart platfonn 

L-__________________~ ~ D 

Figure 4.10: Optimizatiou of the adjustable geometry of the planar platform machining center. 
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The user specifies the initial design XO as well as the prescribed path. The simulation of the planar 

Gough-Stewart platform involves the OCAS trajectory-planning algorithm presented in Chapter 3, as 

well as the kinematic and kinetic analysis of Chapter 2. 

The LFOPC optimization algorithm [64] used here is a gradient-based method for unconstrained 

minimization applied to a penalty junction formulation of the constrained optimization problem. A more 

detailed description of the LFOPC-algorithm is given in Appendix C. In short, a penalty function is 

created by combining the objective function (4.4) and the inequality constraint equations (4.7) and (4.8). 

Furthermore, the gradient vector of the penalty function determines the adjustment of the design vector 

X as the LFOPC-algorithm searches iteratively for an optimum design X'. These optimization 

iterations continue until one ofthe following two convergence criteria (see Figure 4.10) is satisfied: 

1. The norm of the penalty function gradient vector is below a specified value Eg 

2. The norm of the relative design vector, given by Ilx"current" X "Pre;;ous"II ' is below a specified tolerance 

In determining the gradient vector of the penalty function, LFOPC requires the gradient vector of the 

objective function with respect to the design variables, as well as the gradient vectors of each inequality 

constraint with respect to the design variables. 

The gradient vector of the objective function (4.1) with respect to the design variables is obtained by 

differentiating numerically using forward finite differences [55]. The components of the objective 

function gradient vector at any specific design X =[XI ,X 2 ,X3>X4 ,Xsf is approximated by 

(4.11) 


where AX, = [0,0, ... , Ep ... ,O]T with Ej > 0 in the i th position, and i =1,2, ... ,5 . 

With reference to the optimization flowchart given in Figure 4.10, six simulation runs of the planar 

Gough-Stewart platform are required per iteration. This is because at each design point forward finite 

differences are used in computing the gradient components of the objective function, requiring five 

perturbed objective function values, and one unperturbed objective function value as is apparent from 

expression (4.11). 

The appropriate values of E, to be used may be determined from an experimental sensitivity study of the 

approximate gradients with respect to different step sizes Ei of the five design variables. For any chosen 

design X, the objective function may be determined as the platform traces the prescribed path. The 
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sensitivity of, for example the variation of the approximation F[X + AX i' X] to a:~x) with respect to 
I 

different orders of magnitude of hi' may be represented by an exponential graph. The graph of 

F[X + AX" X] versus hi is expected to show a stable plateau, the mid B-value of which is the most 

suitable value to be used in expression (4.11). 

A sensitivity analysis of F[X + AX" X] versus hi is performed here for the example straight-line 

prescribed path shown in Figure 4.2. For this sensitivity analysis, a constant tangential speed of 0.1 mls 

is specified, and the moving platform remains horizontal as the prescribed path is traced. The fixed 

design of the adjustable geometry planar Gough-Stewart platform at which the sensitivity analysis is 

performed is X [0.4,0.4, -0.4, -0.4, 0.2f (see Figure 4.2) and the mass matrix of this example 

platform is given by expression (2.132). 

The computed approximations F[X+AXi'X] (denoted by F[X+AX_i,X]) to the gradients a~~x) , 
I 

i =1,2,... ,5 are plotted versus B in Figure 4.11. 

I 
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Figure 4.11: Sensitivity of F[X + AX i' X] to step size E, for i =1,2,... ,5 . 

The above sensitivity analyses show that the choice hi == B 10-8 
, i = 1,2,... ,5 will result in reliable 

computed gradients. 
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The components of the gradient vectors of each inequality constraint function in (4.7) are, of course, 

analytically known and given by: 

OC1(X) OC1(X) = 0 OC1(X) 
0 OCl(X) =0 OCl(X) =0 

aX l aX 2 ax) aX4 aX 5 

ac 2 (x)OC 2 (X) =-1 ac 2 (x) =0 ac 2 (x) =0 ac 2 (x) = 0 0 

aXl aX 2 ax] aX4 aX 5 


ac 3 (x) OC 3 (X) ac 3 (x) ac 3 (x) (X)
0 =1 0 =0 =0 

aX l aX 2 aX 3 aX4 aX 5 

(4.12) 
OC 4 (X) OC 4 (X) OC 4 (X) OC 4 (X) OC 4 (X) = 0 =0 =0 0 


aXl aX 2 ax) aX4 aX 5 


OC 5 (X) ac 5 (x) == 0 acs(X) acs(X) OCs(X)0 0 =0 1 
aX l aX2 aX3 aX 4 axs 


ac 6 (x) ac6 (x) == 0 ac 6 (x) == 0 OC6 (X) = 0 OC6 (X)

=0 -1 

ax, aX 2 ax) aX4 axs 

On the other hand, the forward finite difference formula is again used to numerically approximate the 

derivatives of the inequality constraint functions in (4.8) at any given design X == [XPX2,X3'X4,XS]T : 

(4.13) 

where AXi =[O,O, ... ,Ep...,of with Ei > 0 in the i lll position, and j ::: 1,2,...,6 . 

The same six simulation runs of the planar Gough-Stewart platform required to determine the objective 

function gradient vector, are utilized to evaluate expression (4.13). 

The gradients of the inequality constraint functions are expected to have similar sensitivities with respect 

to the order of magnitude of Ei as the objective function gradients (see Figure 4.11), hence Ei == E ::: 10-8 

is used in expression (4.13), for allj. 

4.5 Discussion of optimization results 

The prescribed straight-line path ofFigure 4.2 is used here to illustrate the determination of the optimum 

geometry of the planar Gough-Stewart platform machining center for a given task path. Using the 

general OCAS trajectory-planning methodology (see Chapter 3), the straight-line path is prescribed by 

specifying 5 nodal points as shown in Figure 4.12. Again the default value of n time ::: lOis used for the 

discretization parameter in the analysis of the straight-line path. 
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x 

Figure 4.12: Nodal points specified for the straight-line prescribed path. 

For this illustrative example, the "fixed workpiece" mode of operation of the machining center, as 

explained in Sections 2.4.1 and 2.6.4.2.1, is used with a zero tool length rl~ 0.0. Specifying a zero 

tool length enforces the center of mass of the moving platform to trace the prescribed straight-line path, 

as was done for the sensitivity analysis explained in Section 4.3.1. Furthermore, a fixed moving 

platform orientation ~I == 0 (see Figure 4.2) is maintained with a constant tangential cutting speed of 

0.01 m! s and a "cutting force constant" Ceu ! 10000 Nsjm (see expression (2.107)). Since the length 

ofthe prescribed straight-line path is 0.4 m, the motion takes 40 s to complete. 

With reference to Figure 4.1 the initial configuration of the planar machining center is 

XO =[0.4, 0.4, - 0.4, 0.4, 0.2 Y, where the design variables X~, X~ and X~ (given in m) are in 

scaled agreement with the geometry of Haug et al.'s [73] planar Gough-Stewart platform. The initial 

coordinates (X~; X~) of the left- most revolute joint on the horizontal base are arbitrarily chosen as 

(-0.4; 0.4). Figure 4.2 is a scaled schematic representation of the machining center fixed to these 

initial geometry settings XO =[0.4, 0.4, 0.4, 0.4, 0.2 Yat the start and end points of the prescribed 

straight-line path. The mass matrix ofthis platform is again given by expression (2.132). 

Figure 4.14 shows the variation in the respective actuator lengths (designated by Lt, L2 and L3) as the 

prescribed path is followed using the initial design, while Figure 4.16 shows the variation of 

corresponding actuator forces fk , k 1,2,3 (designated by f1, f2 and f3) for the prescribed path. 
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It is important to note that the allowable maximum actuator lengths £k = 0.525 m, k 1,2,3 designated 

by Lmax in Figure 4.14 are violated if the initial design is used to trace the prescribed path. These 

violations imply that the specified tool path lies outside the workspace of the platform and that the initial 

geometry settings are therefore infeasible for carrying out the prescribed task. The specific bounds of the 

mechanism configurational constraints, given in meters, (see Section 4.2.3, expressions (4.5) and (4.6», 

are 

0.1::; XI ~ 0.45 

0.113 ~ X2 ~ 0.465 (4.14) 

0.113 ::; X5 ~ 0.27 

and 

0.075 ~ ( ~ 0.525, i =: 1,2,3 (4.15) 

In particular, the inequality constraint function values for tracing the straight-line prescribed tool path 

using the initial design XO, are 

C (XO) -0.05 C (Xo) =-OJ C (XO) =: -0.065I 2 3 

C
4 
(Xo) =: -0.287 Cs(XO) =-0.07 C

6 
(Xo) -0.087 

~ (Xo) =0.21202 ~ Cg(Xo) 0.15559 ~ C (XO) = 0.15559 C7 9 

CIO(XO) -0.26675 Cli (Xo) ~0.36862 C 
I2 

(XO) = -0.26675 

where the violated inequality constraints associated with the initial design XO have function values 

greater than zero, and are indicated by a single arrow ~. 

The optimized geometry settings for the straight-line prescribed path are: 

X· =[0.44978, 0.34151, -0.14924, 0.38010, 0.13973Y. Figure 4.13 shows a scaled schematic 

representation of the machining center fixed to these optimal geometry settings at the start and end points 

of the prescribed straight-line path. Figure 4.15 shows the variation in the actuator lengths for the 

optimum platform design. The varying actuator lengths lie well within the minimum and maximum 

bounds specified, demonstrating the feasibility of the optimum design X'. The particular inequality 

constraint function values for tracing the straight-line prescribed tool path using the optimum design X· , 

are 

C (X') = -0.223 X 1O~3 C (X')::::: -0.34978 C (X') =-0.12349I 2 3 

C4 (X') = -0.22851 C
5 
(X') =: -0.13027 C6 (X') =: -0.02673 

C7 (X') =: -0.03145 Cg (X') =: -0.09383 C9 (X') =-0.04696 

CIO(X') =~0.01897 CII (X') -0.21098 CI2 (X') =-0.00466 
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Note that since all the above inequality constraint function values are less than zero, the optimum design 

found by the LFOPC·algorithm is referred to as an unconstrained optimum. In the event that the 

optimum solution corresponds to a design where one or more inequality constraint function values are 

equal to zero, the associated constraints are considered active, and the design X· is known as a 

constrained optimum. In the actual practical numerical identification of active constraints, the condition 

equal to zero is relaxed to approximately equal to zero. 

0.4498 

Tp 

(0.1,0.273) 

D (-0.038, -0.149) 


Figure 4.13: Scaled schematic representation of optimum machining center geometry settings. 
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Figure 4.14: Initial design: variation of actuator Figure 4.15: Optimum design: variation of 
lengths along tool path. actuator lengths along tool path. 
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Initial design Optimum design 
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Figure 4.16: Initial design: variation of actuator 
forces along tool path. 

The effectiveness of the optimization procedure is further borne out by comparing Figure 4.16, with 

Figure 4.17, showing the variations in actuator forces for the optimum and initial designs respectively. 

For this simple illustrative example, the objective function value (expression (4.4)) is reduced by 

approximately 35% by optimizing the geometry of the platform. The initial objective function value is 

F(Xo ) =:110.28 N in actuator leg 1, compared to the optimum objective function value of 

F{X')= 71.32 N ,also in actuatorleg 1. 

The objective function convergence history is depicted in Figure 4.18. 

Figure 4.17: Optimum design: variation of 
actuator forces along tool path. 
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Figure 4.18: Objective function convergence history. 
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The labels <D @ in Figure 4.18 are used in Table 4.1 to relate the iteration number and phase of the 

LFOPC-algorithm (see Appendix C) to the actuator leg responsible for the maximum magnitude 

actuator force (see Section 4.2.2) and the violated inequality constraints at the indicated regions of the 

convergence curve. 

I 

I 

Labels 
I 

Iter. LFOPC- Act. I Violated Inequality Constraints 

i 
No. Phase Leg. 

XO 0 0 f1 C 7 Cg C 9 

25-26 0 f, None 
i i 

27 0 f1 1 None 
I 

<D I 28 0 f3 I None 

I 
29 0 £) None 

, 30-32 0 f, None 

33 0 fl CI CIt 

34 0 f, I C 
) C I2 

@ 
i 35 0 f[ C, C I2 

36 0 fl i CI C l2 

39 0 fl CI 

40-42 0 f3 C, 

43 0 fl C1 
@ 

I 
44 0 f3 I C, 

45 0 f3 i C, 
i 

46 0 fl C, 

64 0 f) C, 

LFOPC­ C 1 

65 0 £) 
phase violated constraint value C[ (X65) 0.570 X 10-3 

change I 65 1 f1 CI 

I 66 1 fl C I 

80 1 
I 

f) None 

X· 81 1 i f1 None 
i 

Table 4.1: Comparative table for the parabolic tool path objective function vs. iteration number 
curve (see Figure 4.18). 

I 

i 

i 

! 

i 
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Note that there are sv.ritches between actuator legs £I and £3 in being responsible for the maximum 

magnitude actuator force at labels <D and @. The discontinuities in the objective function gradient vector 

(4.11) associated with these switches (see Section 4.3.1) are responsible for the unsmooth behavior of 

objective function convergence graph in these regions. The slight spiked behavior occurring at label ® 

can be attributed to inequality constraints C1 and C I2 being violated during iterations X 
33 

- X38. 

Figure 4.19 shows the corresponding convergence histories for the design variables Xi' i == 1,2, ... ,5 . 

Design variables 

'-===-'X1 -=-X2 ~- X3 -X4-___xsl 
................................. 


I 
i 

I 

20 40 60 80 

iteration number 

Figure 4.19: Convergence histories of design variables Xi' i = 1,2,...,5. 

When comparing Figure 4.18 with Figure 4.19, it is evident that the LFOPC optimization algorithm [64] 

used here effectively converges to the optimum solution after only 50 optimization iterations. In 

particular, Table 4.1 shows that the end of phase 0 of the LFOPC-algorithm, the only violated constraint 

is C
1 

with an associated constraint function value of C 1(X65 
) 0.570xlO-3 m (0.570mm). This 

violation is of such small magnitude that it is negligible. 

The optimum solution, corresponding to the specification of extremely accurate convergence tolerances 

(Eg 10-5 for criterion 1; and Ex 10-5 for criterion 2 in Section 4.4), is found after 81 optimization 

iterations and utilizing 53 seconds computational time on a Pentium IV 1.5 GHz computer with 

640 MB DDRAM . The specific criterion that the LFOPC-algorithm terminated on is criterion 2, 

Ex ::; 10-5 (see Section 4.4). Throughout the choice DELT 0.01 was used for the LFOPC maximum 

stepsize parameter (see Appendix C). 
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Chapter 5 

5 DEMONSTRATION OF THE OPTIMUM EXECUTION 

OF REPRESENTATIVE PRESCRIBED MACHINING 

PATHS 

5.1 Introduction 

In this chapter, optimum platform geometries of the re-configurable planar Gough-Stewart platform test­

model are determined for different prescribed machining tasks. 

The determination of the optimum platform geometries is done using the simulation-based optimization 

methodology developed in Chapter 4. The feasibility of this approach was illustrated in Chapter 4 by 

optimizing the geometry of a hypothetical planar Gough-Stewart platform for a simple straight-line 

prescribed path, taking into consideration the mechanism's configurational constraints. In applying the 

methodology to a physically real platform, however, the physical operational constraints specified in 

Section D.3 are required to prevent mechanical interference. The respective masses and moments of 

inertia of the seven bodies comprising the physical test-model are also determined in Appendix D 

(Section D.2.3). These seven bodies are numbered below in Figure 5.1 which corresponds to Figure 2.5 

and Figure D.2 . 
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5.4.4 Execution of the circular tool path 

The series of photographs shown in Figure 5.18 is of different instants during the execution of the first 

revolution of the circular tool path. 

Figure 5.18: Execution of the circular tool path. 

Figure 5.19 is a close-up of the traced circular tool path, showing that the diameter of the traced circle is 

approximately 350 mrn (35 cm), and that the circle is smoothly traced. 
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5.19: view of the executed circular tool path. 

path 5.5 

5.5.1 nfUU"'" points and orientation angle 

The spiral tool path is a the logarithmic spiral test curve p::= 

Using a of the 79 spiral tool path nodal points are as m 

The motion time the tool is 93.24 with the 

1.0 and n,jme 5 the use the 

Section 3.5.4. 

5.20. 

0.01 
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Frame with 
C-.perspex plate 

Figure 5.1: Photograph of the physical planar Gough-Stewart platform test-model. 

The moving platform is in contact with the Perspex side panels via the Teflon stabilizers and the pen 

shown in Figure 5. L Section D.2 .3 shows how the resulting frictional force was experimentally 

determined. This external frictional force represents the cutting force incorporated in the kinematic and 

kinetic model of the planar Gough-Stewart machining platform. In fact, the test-model is used here to 

demonstrate the "fixed workpiece scenario" (see Sections 2.4.1 and 2.6.4.2.1), with specifically a zero 

tool length (T\ ~ = 0), since the pen is mounted to coincide with the assumed center of mass of the 

moving platform. 

Furthermore, in this chapter, non-trivial prescribed paths are specified for the physical test-model using 

the OCAS trajectory-planning technique described in Chapter 3. The five different test functions 

discussed in Section 3.5 are used as prescribed tool paths, to illustrate the application of the proposed 

optimization methodology to obtain optimum operational geometries. 

Once the simulation-based numerical optimization of the physical test-model is done for each prescribed 

path, the execution of each path follows through the control commands generated by the computer 

simulation for controlling the required variation of the actuator leg lengths. These lengths are found by 

solving the three closed-form inverse kinematic equations relating the position and orientation of the 

moving platform to the actuator leg lengths. The position and orientation of the moving platform follows 
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directly from the prescribed trajectory, and hence the required actuator leg lengths may easily be 

determined (see expression (4.10)). 

Since the purpose of the test-model is only to demonstrate the new technology, visual inspection is used 

to verifY that each executed path indeed corresponds to the prescribed path. Photographs are included in 

this chapter to show the successful execution of the prescribed paths, for the respective optimum and 

feasible settings of the planar machine. 

Sections 5.2 ~ 5.6 respectively deal with the five different prescribed paths all of which are scaled for 

continuous execution. Section 5.7 shows how the proposed optimization methodology may be applied in 

the piece-wise execution of the "bigger parabolic tool path". 

5.2 Parabolic tool path 

5.2.1 Nodal points and orientation angle 

2 

The parabolic test function used in Section 3.5.1, y(x) ~, was approximated over the x-interval, 
2 

X E [-2,2], using 29 nodal points as shown in Figure 3.16. Here a scaled mirror image of this quadratic 

function is used as prescribed path. The mirror image of the original parabola (expression (3.66)) is 

given by 

2x
y(x)=-- (5.1) 

2 

over the x-interval, x E [-2,2]. Substituting the unsealed x-values into (5.1) gives the unsealed y­

values. The scale factor used here is 0.075, and the resulting 27 nodal points are shown in Figure 5.2. 

-0.20 -0,15 -010 ·0,05 0,00 0,05 0,10 0,15 0,20 

• •
• ·0,02 • 

•• 
-0,04 

•• 
.Q,06 

·0,06 

-0.10 

• • 
·0,12 

•• 
-0.14 •• •• 

x 

Figure 5.2: Nodal points used to approximate the parabolic tool path. 
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For the OCAS trajectory-planning methodology (Chapter 3), the maximum allowable acceleration is 

limited to 0.01 meter per second square (Sallow =0.01m/s2), and a cutting speed of l.Om/min 

(v' = 1.0 m/ min) is specified. With these specifications, the simulated prescribed motion is completed 

in 29.46 s. The simulation is furthermore carried out with the number of additional intermediate time 

instants, n time 5 (see Appendix B). 

It is also required that the moving platform of the test-model be tangentially orientated with respect to 

the prescribed curve. With this specification the moving platform orientation angle varies from 63.430 

at the starting point (-0.15, 0.15), to -63.436 attheendpoint (0.15,-0.15) (see Figure 5.3). 

Orientation angle 
80.00,.......-----------------------------, 


60.00 ~---

40.00 

20.00 

0.00 --.....--,--------~---- -.+----.-----_-....----~-----.-__, 
O. 0 5.00 10.00 20.00 25.00 

·20.00 

1.40.00 

1·60.00 

t 

Figure 5.3: Variation in the orientation angle for the parabolic tool path. 

5.2.2 Optimization results 

A comparison between the initial test-model design and optimum test-model design for the parabolic 

prescribed tool path is given in Table 5.1, with figure insets l(a) 1 (d). 

162 


http:0.15,-0.15


DEMONSTRATION OF THE OPTIMUM EXECUTION OF REPRESENTATIVE PRESCRIBED MACHINING TASKS 

Initial design Optimum design 

XO :::: [0.4, 0.4, - 0.4, 0.4,0.2f x' [0.1,0.19387,-0.47769, 0.18012,0.113]T 

Inequality constraint values (see Section D.3): 

C I(XO) =-0.05 C 2 (XO) = -0.3 

C 
3 
(Xo)::::: -0.065 C 4(Xo):::: -0.287 

Cs(XO) -0.07 C
6 
(Xo)::::: -0.087 

-+ C 7 (XO) =0.10533 Cs(XO) -0.01481 

-+ C g (Xo) ::::: 0.00045 -+ C
lO 

(XO)::::: 0.07769 

-+ C II (XO) =0.07769 C 12 (XO) = -0.34542 

C 13 (Xo) =-0.14542 -+C I4 (XO) 0.00109 

CIS(XO) -0.00493 -+C I6 (XO) 0.01619 

-+ C (Xo)::::: 0.01727 -+ C (XO)::::: 0.04250n I8 

C (Xo) =-0.06220 (XO) =-0.0844919 C 20 

(XO)::::: -0.07149 -+ C (Xo)::::: 0.03098C 21 22 

-+ constraint violation 

(X') -0.35 =>C (X·) -0.363xl0-6C 1 2 

C 3 (X') -0.27113 C 4 (X')::::: -0.08087 

(X')=-0.157 => C (X") = 0.624 X 10-6C s 6 

=> C 7 (X');::: -0.784 X 10-6 (X')::::: -0.03374Cs 
(X')::::: -0.01780 => C (X") -0.616 x 10-6C 9 IO 

=> CII (X')::::: -0.616 X 10-6 (X') = -0.39888C I2 

C13(X') -0.22639 C 14 (X') :::: -0.04907 

CIS (X')::::: -0.22745 C 16 (X'):::: -0.05909 

C (X')=-0.01676 C (X·) -0.0531017 I8 

C I9 (XO)::::: -0.05754 C 20 (XO) -0.15073 

(X') -0.05200 C (X·) -0.11672C 21 22 

=> constraint active 

Variation of actuator leg lengths along the parabolic tool path: 

Initial design Optimum design 

0.7 

0.6 

:§: 0.5 

II) II)

iJ, OA 

.! .! 
50.3 
1;;e e .. 0.2 

0.1 

--L2-L3 --Lmin -Lmax 

0.6 

. :§: 0.5 1-=::::;:;;:=::;;~:::=-""""=:::::::::::::= 

iJ, OA 

1-.._- ! 0.3 . 

.. 0.2 

L...._____________~ 

0.1 1----------------
0.0 +----~--_----~---____1 0.0 +-------~-_--r__-_-__I 

0.0 5.0 10.0 15.0 20.0 25.0 0.0 5.0 10.0 15.0 20.0 25.0 

t [s) t[s) 

I (a) 1(b) 
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Variation of actuator forces along the parabolic tool path: 

Optimum design 

35.0 
l f1 ~- f2 - ..~ 

30.0 

25.0 25.0 

:!: 20.0 

......x: 15.0 

:!: 20.0 •• 
VI 
<I) 

I:! 15.0 
oS oS
i 10.0 S 10.0 ~.. 

I 

~~ .. 

l(c) 

5.0 • 

0.0 

00 5.0 10.0 15.0 20.0 
-5.0· 

-10.0 
t[s] t[s] 

I (d) 

F(XO) = 22.066 N F(X') 31.936N 

Actuator leg 3 Actuator leg I 

Table 5.1: Comparison between the initial and optimum designs for the parabolic tool path. 

Although the initial objective function value F(XO 
) =22.066 N is lower than the optimum objective 

function value F(X') = 31.936 N, the initial design is infeasible. In fact, nine of the 22 inequality 

constraints are violated when the parabolic test function is traced with the initial design XO. Table 5.1 

lists the initial values of the inequality constraint functions C;(Xo), i = 1,2,3,... ,22, as well as their 

optimum values C;(X') , i = 1,2,3,...,22. The violated inequality constraints associated with the initial 

design XU have function values greater than zero, and are indicated by a single arrow -+ in Table 5.1. 

Similarly, the active inequality constraints associated with the optimum design X· have approximately 

zero function values, and are indicated by a double arrow:::::? in Table 5.1. 

The variation in the actuator leg lengths depicted in figure inset lea) clearly show that both actuator legs 

£ I and £ 3 initially violate the allowable maximum leg length, explaining the positive constraint function 

values of C7 and (expression (D.11)). Inequality constraints corresponding to C and CC9 IO ll 

(expression (D.12)) are violated even though the allowable minimum leg length is not violated (see 

figure inset 1 (a)). Indeed, these two inequality constraints are violated as a result of the specification of 

tangential orientation of the moving platform with respect to the parabolic tool path (see Figure 5.3). 

The remaining violated inequality constraints, corresponding to the positive function values of C 14' C 16 , 
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, and C 22 , indicate that the parabolic tool path cannot be followed with the initial design XO,C 17 C I 8 


due to mechanical interference (see respective expressions (D.15), (D. 17), (D.18), (D .19) and (D.23». 


On the other hand, figure inset 1 (b) clearly shows that for the optimum design X·, the variation in 


actuator leg lengths as the parabolic tool path is followed, lies within the minimum and maximum 


allowable lengths. The feasibility of the optimum design X· is further borne out by the fact that the 


optimum inequality constraint function values Cj(X') , i =1,2,3,.. . ,22 are all less than, or approximately 


equal to zero. In particular, the inequality constraints corresponding to C 2 , C 6> C 7 , C IO and CII are 


considered to be active (see expressions (D.1 0), (D. 11 ) and (D.12». The optimum solution is found after 


227 optimization iterations and utilizing 6 minutes and 58 seconds computational time on a Pentium N 


1.5GHz computer with 640MBDDRAM. LFOPC terminated on criterion 2 (E x ~1O-5 ) listed in 


Section 4.4. 


5.2.3 Analysis of convergence to optimum 

Figure 5.4 shows the convergence history of the objective function . 

Objective function value 
34.0 -,-------------------------, 

­

32.0 ®® I 
30.0 Start phase 2 

Start phase 1 28.0 

26.0 

24.0 

22.0 

20.0 -1-- - - --,.---- -,....-------,----- --,-- -' 

o 50 100 150 200 

iteration number 

Figure 5.4: Convergence history of the objective function for the parabolic tool path. 

The behavior of the above objective function vs. iteration number curve is of course dependent on the 

iterative search generated by the LFOPC algorithm in the five dimensional design space (see Figure 

4.10). The choice of the initial design XO obviously plays an important role in the nature of the 

convergence history of the objective function. In correspondence with Section 4.5 , the initial 

configuration of the planar machining center is chosen as XO =[0.4, 0.4, - 0.4, - 0.4, 0 .2f for all the 
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machining paths investigated in this chapter. Initial design variable values x ~ =OA m , x ~ =OA m and 

x ~ = 0.2 m are in scaled agreement with the geomeh-y of Haug et al. ' s [73] planar Gough-Stewart 

platform. Setting design variables x ~ = -OA m and x ~ =-OA m corresponds to a random choice for 

the position of the origin of the global Oxy-coordinate system, relative to which the tool path is 

described, and the kinematic and kinetic analysis (Chapter 2) is done. 

X O = OAm
I 

y 

Figure 5.5: Photograph of the initial test-model design XO = [OA, OA, - OA, - OA, 0.2f . 

With specific reference to Figure 5A, the labels CD - ® are used in Table 5.2 to relate the iteration 

number and phase of the LFOPC-algorithm (see Appendix C) to the actuator leg responsible for the 

maximum magnitude actuator force (see Section 4.2.2) and the violated inequality constraints at the 

indicated regions of the convergence curve. 
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i 

i 

i 

I 

Labels Iter. LFOPC- Act. Violated Ineqnality Constraints 

No. Phase leg 

X O 0 0 £3 C7 C9 CIO CII CI4 C I6 CI7 CIS C 22 

7 0 £3 C 7 Cs C9 C IO CII C I6 CIS C 22 

CD 8 0 PI C7 Cs C9 C IO C II CIS C22 

9 0 PI C7 Cg C9 CIO ClI C I6 CIS C 22 

52 0 PI C6 C 7 CIO Cli Cl7 

CID 53 0 £1 C6 C 7 CIO CII Cp 

i 
54 0 PI C6 C7 CIO CII C l7 

60 0 PI C7 C IO CII 

® 
61 0 PI C 7 C IO CII 

63 0 PI C 7 C lO CII 

64 0 P2 C7 C IO CII 

65 0 £1 C 7 C lO CIl 

@ 66 0 PI C7 C lO CII 

67 0 P2 C7 CIO CII 

68 0 P2 C 7 CIO CII 

69 0 PI C7 C IO CII 

86 0 £1 C 7 CIO CII 

LFOPC C 7 CIO CII 
87 0 £2 

phase- maximum violated constraint value C7 (X87 
) 0.00496 

change 87 1 P2 C 7 C IO CII 

88 1 £1 C7 CIO CII 

121 1 PI none 

@ 122 1 PI none 

123 1 PI C2 C7 

LFOPC 215 1 £1 C z C 6 C7 CIO Cll 

phase-
i 215 2 PI C 2 C6 C7 CIO Cll 

change 

X· 227 2 £1 C 2 C 6 C 7 CIO CII (active) 

I 

i 

i 

I 
i 

i 

I 

Table 5.2: Comparative table for the parabolic tool path objective function vs. iteration number 
curve (see Figure 5.4). 
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The increase in the objective function value between labels @ and ® in Figure 5.4 is a result of the 

LFOPC phase-change occurring at iteration number 87 (see Appendix C) at which point the penalty 

parameter is increased. Furthermore, Table 5.2 shows that the actuator leg responsible for the maximum 

magnitude actuator force switches from actuator leg f 3 to f I at label CD. It was shown in Section 4.3.1 

that a switch in the actuator legs responsible for the maximum magnitude actuator force is associated 

with a kink in the objective function, and hence a discontinuity in its slope. This results in the spiky 

behavior of the objective function in these regions. 

The switches involving actuator legs f I and e2 that occur as the LFOPC-algorithm changes from phase 

oto phase 1 show that the associated design is close to the optimum. Consider figure inset led) showing 

the variation in actuator forces associated with the optimum design x'. The maximum magnitude of 

the force in actuator leg el' fl =31.936 N occurring at time instant t 3.97 s , is only slightly larger than 

the maximum magnitude of the force in actuator leg f 2' f2 = 28.774 N occurring at time instant 

t 29.46s. 

The fact that the final design ofphase 0 (iteration number 87 in Table 5.2) is indeed relatively close with 

respect to feasibility to the optimum design, is evident from the convergence histories of the respective 

design variables Xi' i 1,2,... ,5 as shown in Figure 5.6. It is of interest to note that for the design 

variables the convergence is considerably smoother. In practical terms, convergence is effectively 

achieved at the end ofphase 0 after only 87 iterations where the maximum violated constraint is C 7 with 

a function value of C 7 (X87) = 0.00496 m = 4.96 mm . 

Design variables 

--X2 lC--X4-XS] 
10.50 

10AO 

0 30 
1 . 

.0.10 

0 00 

1 
1 . 

50 100 150 200
-0·10 

·0.2o~-__ 

1-om i 
'-0_30 

1-OAO I 

1-0.50 i I 
,-0.60 L ________ ---------.-.----------,,'-~------------,--,.~---~-----.-~---- ___" _____________.______, 

iteration number l _____________, 
Figure 5.6: Convergence histories of design variables Xi' i = 1,2,... ,5 for the parabolic tool path. 
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5.2.4 Execution of parabolic tool path 

Figure 5.7 shows a series of photographs taken at different time instants as the parabolic tool path is 

traced. The tangential orientation of the moving platform along the curve is clearly visible from the 

photographs. 

Figure 5.7: Execution of parabolic tool path. 

A close-up view of the executed parabolic tool path is shown in Figure 5.8. Inspection shows that the 

actual executed tool path accurately resembles the prescribed tool path (see Figure 5.2). It is evident that 

the distance between the end points of the traced parabolic tool path is approximately 300 mm (30 cm ) 

and that the traced parabolic tool path is proportionally shaped and smooth in agreement with the 

prescribed path specified by Figure 5.2. 
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Figure 5.8: Close-up view of the executed parabolic tool path. 

5.3 Spike tool path 

5.3.1 Nodal points and orientation angle 

The test function of Section 3.5 

XE 27 nodal Note that initial and nodal points are 

3 was over 

and )= 

The tool path is a scaled version the test function a factor of 0.15, In 

particular, the initial and final nodal points are thus Po , Yo) = (0.3,0,03) 

) (-0.3,0.03) respectively. shows the 27 to 

the tool path. 
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~~ 0;16 

• •• 
• 0.12 

-
>­

• 
• 0.08 

.­.­ • - 0.04 • •••• 

-0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 DAD 
x 

Figure 5.9: Nodal points used to approximate the spike tool path. 

The OCAS trajectory-planning methodology (Chapter 3) is again used to approximate the spike tool 

path with sallow =0.Olm/s2 and v' =l.Om/min resulting in a total motion time of 41.95s. The 

simulation is again done with n time =5_ 

As in the case of the parabolic tool path, the moving platform of the test-model must maintain a 

tangential orientation with respect to the prescribed spike tool path. The variation of the orientation 

angle [degrees] as the moving platform traces the spike tool path, is depicted in Figure 5.10. 

Orientation angle 

Figure 5.10: Variation in the orientation angle for the spike tool path. 

5.3.2 Optimization results 

The initial and optimum test-model designs for the spike tool path are compared in Table 5.3, with 

graphical insets 2(a) - 2(d). 
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l ______I_ni_ti_al_d_e_Si_g_n_______-+-_______OPtimum design 

XO =[0.4,0.4,-0.4, O.4,O.2]T X' =[0.21174,0.29788,-0.17937,-0.27835,0.18509f 

Inequality constraint values (see Section DJ): 

CI(Xo) = -0.05 C
2 
(XO) == -OJ 

C](XO) -0.065 C
4 
(XO) -0.287 

C5(XO)=-0.07 C
6 
(Xo) = -0.087 

-7C
7 
(XO) 0.17403 -7CS(XO) ==0.11745 

-7 C
9 
(XO) 0.11302 Cia (XO) =-0.27092 

CII (Xo) -0.27092 C'2(XO) -0.08751 

-7 C13 (XO) 0.11249 C'4 (Xo) = -0.03529 

C I5 (XO) -0.05145 C16 (Xo) -0.02809 

C17 (XO) == -0.04628 CIS (XO) = -0.05358 

C I9 (XO) -0.05924 C20 (XO) -0.08094 

C 21 (Xo) =-0.08051 (Xo) == -0.05931C 22 

-7 constraint violation 

C, (X') = -0.23826 C 2 (X') = -0.11174 

C](X') -0.16712 C
4 
(X') = -0.18488 

Cs(X') == -0.08491 C6 (X') =-0.07209 

=>C
7 
(X·) =-0.51Ix 10-5 Cs(X*) = -0.05923 

C9 (X') -0.06545 CIO(X') -0.05029 

C (X') == -0.05029 (X') == -0.16093Il C I2 

=>C'3(X') 0.687 X 10-5 C
I4

(X·) -0.00220 

C (X') = -0.05317 => C (X') = 0.281 X 10-6 
I5 I6 

=> C
l7 

(X') -0.535 X 10-5 CIS (X') =-0.02511 

C (X·) =-0.01017 (X') = -0.02684I9 C 20 

(X') =-0.03971 C (X') == -0.10923C21 22 

=> constraint active 

Variation of actuator leg lengths along the spike tool path: 

Initial design Optimum design 

--L2-L3 --Lmin 
0.8 

0.70'7~1 
0.60.6 

:[ E 
ell 0.5 ell 0.5 

fj 

'"i 0.4 ~ ~ 04 

j .0.3 1°.3 

(Q~ 
0.2 0.2 

0.1
0.1 f-------------­
0.0 +----~.---_--------_,_-.- 0.0 

0.0 10.0 20.0 30.0 40.0 0.0 10.0 20.0 40.0 

t [sl t [sl 

2(a) 2(b)i 

0.8 -,-'::::==~=====::======~':""'--. 
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Variation of actuator forces along the spike tool path: 

~ 
40.0 40.0 

30.030.0 

20.020.0 ~ ~ 
.. 10.0 .. 10.0 


2 ~ i 
i ~ 


~ 
... 


~ 00 
 .s 

t! -10.0 '" 

'" I'" 


t [5] 

2(d)2(c) 

F(XO) =37.884 N 

Initial design 
-.-..~-

-f1-f2-f3-~-.....---. 

i 

r-------~~--_.",::;;.--

0.0 ;---.....--.~-~""-...~.... ---~....--~~-., 

30.0 

. 

t[s] 

F(X*) =35.160 N 

Actuator leg 2 Actuator leg 1 

Optimum design 

:-f1-=~ 

0l...:__---""'~~ 
----~~~ 

0.0 f..----~.-_:;"L----......~-~........--....~----' 
20.0 

t! -10.0 

-20.0 

Table 5.3: Comparison between the initial and optimnm designs for the spike tool path. 

The violated inequality constraints associated with the infeasible initial design correspond to constraint 

functions C7 , C g , and C I3 (see expressions (D. 11) and (D.14)). Again looking at figure inset 2(a), C9 

it is evident that all three actuator legs f! I' f! 2 and f! 3 will violate the maximum allowable actuator leg 

length if the spike tool path is to be traced with the initial design XO, explaining why the inequality 

constraint function values C
7 

(XO), Cg (Xo), Cg (Xo) are greater than zero. The inequality constraint 

corresponding to C n prevents the excessive side way movement of the moving platform towards the 

right hand side as explained in Section D.3.3.4. 

Figure inset 2(b) shows that in the case of the feasible optimum design X· , the variation in the actuator 

legs lies within the specified minimum and maximum allowable bounds. The active constraints 

correspond to C7 , Cll' C I6 and C I7 (see respective expressions (0.11), (D.14), (0.17) and (0.18»). 

The optimum solution is found after 156 optimization iterations and utilizing 4 minutes and 53 seconds 

computational time on a Pentium IV 1.5 GHz computer with 640 MB DDRAM . LFOPC again 

terminated on criterion 2 (Ex S 10-5
). 
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5.3.3 Analysis of convergence to optimum 

Figure 5.11 shows the convergence history of the objective function. 

35.0 

i 

34.0 

33.0 

32.0 

1 
31 . 0 

Objective function value 

® 

® 

I 
Start phase 1 

I 
Start phase 2 

130.0 +--~~- ...-~--~--~--'--~---r----i 
. 0 20 40 50 80 100 120 140 15Q 

iteration number 

Figure 5.11: Convergence history of the objective function for the spike tool path. 

Labels CD - ® in Figure 5.11 are used in Table 5.4 to relate the iteration number and phase of the 

LFOPC·algorithm (see Appendix C) to the actuator leg responsible for the maximum magnitude 

actuator force (see Section 4.2.2) and the violated inequality constraints in the respectively indicated 

regions. 

Labels i LFOPC- Act. I Violated Inequality Constraints i Iteration I 
IPhase legI No. 
I 

XO 0 0 £2 C 7 Cg C9 C I3 I

I i 

15 0 £2 C7 Cg C9 C n iI i 


i i
CD 16 0 £1 C7 Cg C I3 

I 

i
i 

I C0 £1 C7 
I 

30 ! 0 fl C7 C13 C I6 C I7 

<Zl 
! 

i 31 I 0 £1 C7 C I3 C I6 

39 0 fl C7I 
i 

40 0 fl C7 II i
® 

41 0 flI 
I42 0 fl 

I 
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64 0 £1 C7 C13 C16 C 17 I 

65 0 £2 C7 C13 C16 C17 I 

66 0 £1 C7 C]6 C]7 

@ 67 0 £] C7 C13 C16 C 17 

68 0 £1 C7 C 13 C16 C l7 
I 

i 
69 0 £2 C7 C13 C I6 I 

70 0 £1 C7 C16 C I7 
i i 

87 0 £1 C7 C l3 C16 C17 

I 88 0 £2 C7 C13 C16 C 17 I 
89 0 £1 C7 C I3 C I6 C I7 I 

90 0 £1 C7 Cl3 C16 C17 
LFOPC 

91 0 £1 C7 C13 C16 C17
phase-

change 
C7 Cn C I6 C I7 

92 0 £1 maximum violated constraint value: 

C7(X92) 0.00436 

i 92 1 £1 C7 C l3 C t6 C t7 I 
93 1 £1 C7 C l3 C I6 C17 

i 

i 112-114 1 £1 none 
J 

® 115 1 £1 C7 
I 

116 1 £1 C7 
I 

145 1 £1 C7 Cn C17 
LFOPC 

146 1 £1 C7 Cu C16 C 17 
phase-

change 
146 2 £1 C7 CD C I6 C l7 

i 

147 2 £1 C7 C13 C 16 C17 
I 

X· 156 2 £1 C7 C ll C16 C17 (active) 
I 

Table 5.4: Comparative table for the spike tool path objective function vs. iteration number 
curve (see Figure 5.11). 

The first LFOPC phase-change from phase 0 to phase 1 occurs at iteration number 92, hence the 

resulting increase in the objective function value between labels @ and ® in Figure 5.11 as the penalty 

parameter is increased at the start of phase 1. The spiky behavior of the objective function value at labels 

CD and @ can again be explained by the switch in the actuator leg responsible for the maximum 

magnitude actuator force, that occur in these regions. 
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The convergence histories of the respective design variables x i' i = 1,2, ... ,5 are shown in Figure 5.12. 

Again effective convergence with respect to feasibility is obtained at the end of phase 0 after only 92 

iterations with the maximum violated constraint value C7 (X92 ) = 0.00436 m = 4.36 mm. Note also, 

that there is a switch between actuator legs .e 1 and .e 2 responsible for the maximum magnitude actuator 

force at iteration number 88, just before the end of phase O. This corresponds to the behavior of the 

actuator leg forces associated with the optimum design X· (figure inset 2(d)). The maximum magnitude 

of the force in actuator leg .e l' f1 = 35.160 N occurring at time instant t = 41.95 s , is only slightly larger 

than the maximum magnitude of the force in actuator leg .e 2' f2 = 33.838 N occurring at time instant 

t=1.71s . 

Design variables 

!--X1--X2 ....... ....... X3 ............. X4--X5 ! 
0.50 ,----'===============:::!------, 

::: +-::::~-------- ----------------
0.20 t-----::=::::::=::::;;;;;;;;;:;;:;;;:;;:;;;:;;:;;;:;;:;;;:;;:;;;:;;:;;;;;;;;;;::;;;;;;;:;;;;;;;;;;;:;;;;: 

0.10 

0.00 +-------r--~-~~-~--~------,------.---I 

20 40 60 80 100 120 140 10 
·0.10 

-0 .20 

-0 .30 

-0.40 

-0.50 -'--------------------------' 
Iteration number 

Figure 5.12: Convergence histories of design variables Xi ' i = 1,2, .. . ,5 for the spike tool path. 

5.3.4 Execution of the spike tool path 

Figure 5.13 shows a series of photographs taken at different time instants as the spike tool path is traced. 

Similarly to the parabolic tool path, the spike tool path is executed with a tangentially orientated moving 

platform (see Figure 5.10). 

'. -.... yJ 
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Figure 5.13: Execution of the spike tool path. 

The close-up view of the executed spike tool path (Figure 5.14) shows that the traced spike tool path 

closely resembles the prescribed spike tool path specified by Figure 5.9. 

Figure 5.14: Close-up view of the executed spike tool path. 
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5.4 Circular tool path 

5.4.1 Nodal points and orientation angle 

The diameter of the circular tool path is 0.35 m and the circle is centered at (x, y) 

path is defined by 

(0,0). Hence the 

(5.2) 

In agreement with the circular test cuflle of Section 3.5.3, the nodal points {Pi = (xpyJ, i = 0,1,2, ... , N} 

ofthe circular tool path are specified using corresponding sweep angles fji e [0' ,720'], where the sweep 

angle is measured clockwise from the positive x-axis. For any specific sweep angle ~i' i 0,1,2, ... ,N, 

the corresponding x- and y-values are given by Xi =O.l75cos!\, and y, =0.175sin~i respectively. 

The sequence of sweep angles {~i}' is chosen such that starting at fj = 0' , two CCW revolutions are 

followed. A total of79 nodal points cover the two revolutions. The first revolution where fj e [0',360'] 

is shown on the left-hand side of Figure 5.15, and the second revolution, where fje[360',nO'] is 

shown on the right-hand side ofFigure 5.15. 

(),20 0,20 1 

·0,15 t0.15 

0,10 0,10 j 

oJ 0.05 J 

-:-.--~ 

-0,15 -0,10 -0,05 0,05 0.10 0,15 -0,15 -0 10 -0.05 o,po 0.05 0,10 0,15 • 0.20 

-0,05 -0,05 

·0,10 -0,10 

-0.15 j ·0,15 , 
,(),20 J 

x x 

Figure 5.15: Nodal points used to approximate the two revolutions of the circular tool path. 

The total time required to complete the two revolutions is 135.61 s, using the OCAS trajectory-planning 

methodology with sallow =0.01m/s2, v' =1.0m/min and n time =5. 

Other than in the cases of the parabolic and spike tool paths, a fixed moving platform orientation ~I 0 

is maintained as the circular tool path is traced. 
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5.4.2 Optimization results 

A comparison between the initial and optimum test-model designs for the circular tool path is shown in 

Table 5.5, with figure insets 3(a) - 3 (d). 

Note that the kinematics and kinetics of the two revolutions are not identical. The distribution of the 

nodal points is specifically chosen to accommodate acceleration at the start of the first revolution, and 

deceleration at the end of the second revolution (see Figure 5.15). The effect of this on figure insets 3(a) 

- 3(d) are the slight differences between the respective curves at time instants t =0 sand t =135.61 s . 

Initial design Optimum design 

XO =[0.4, 0.4, 0.4, - 0.4, 0.2]T x' = [0.34476, 0.39829, - 0.28487, - 0.36676, 0.25238f 

Inequality constraint values (see Section D.3): 

CI(XO)=-0.05 

C3 (Xo) =-0.065 

Cs(XO) = -0.07 

~ C7(XO) 0.09721 

~ C9 (XO) =0.05 

C
2 
(XO) = -0.3 

C
4 
(XO) =-0.287 

C6 (Xo) =-0.087 

~ Cg(Xo) 0.09721 

CIO(XO) =-0.15 

CI(X') =-0.10524 

C3 (X') = -0.06671 

Cs(X') -0.01762 

C7(X') = -0.00514 

C9 (X') = -0.04408 

C 2 (X') = -0.24476 

C 4 (X') -0.28529 

C6 (X') =-0.13938 

:::::> Cs(X') =0.326 x 10-3 

C
IO 

(X') -0.03487 

CII (XO) =-0.15 C
12 

(XO) = -0.21 CII (X') = -0.03487 Cl2 (X') =-0.20608 

C 13 (XO) =-0.01 Cl4 (Xo) = -0.03130 CI3(X') -0.06916 CI4 (X·) -0.00157 

CIS (XO) = -0.04642 C I6 (XO) -0.03130 CIS(X') -0.00911 :::::> CI6 (X') =-0.114 X 10-4 

C I7 (XO) -0.05081 CIS(XO) -0.04334 C l7 (X') =-0.02786 CIS(X·) =-0.04462 

CI9 (XO) =-0.06975 C 20 (Xo) -0.09344 C I9 (X') = -0.01857 C 20 (X') -0.00119 

C
21 

(XO) = -0.08546 C2l (Xo) = -0.06502 C li (X') = -0.08240 C 22 (X') =-0.06527 

~ constraint violation :::::> constraint active 
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Variation ofactuator leg lengths along the circular tool path: 

Table 5.5: Comparison between the initial and optimnm designs for the circular tool path. 

Starting with the infeasible initial design XO (see the unallowable variation in actuator leg lengths in 

inset 3(a), and associated positive inequality constraint function values C 7 (Xo), Cs(XO) and C9 (Xo», 

the optimum design X· is found in 73 optimization iterations. This requires 6 minutes and 35 seconds 

computational time on a Pentium N 1.5 GHz computer with 640 MB DDRAM . The LFOPC-

algorithm again terminated on criterion 2 (E x ::; 10-5 
) listed in Section 4.4. 

0.7 

0.6 

g 0.5 

,~
I 01 0.4 

c: 
i .!!
•.9 0.3 
\~ 
~ 0.2 

Initial design 

--Ll--L2-L3--Lmin--L.llldX 

0.1 ·!-­_______________ 

Optimum design 

--L2-L3 --Lmin -Lmax 
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0.11-"-_______________ 

, 
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I 
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,~ 10.0 
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30.0· 

.e 
~ 
::I 
U .. 

-10.0 . 

t[5] 

, 3(c) 

Variation of actuator forces along the circular tool path: 

30.0 

0.00r--;~'O 

25.0 

20.0 

g 15.0 

~ 10.0 ~ .e 
~ 5.0·· 

~ 
-5.0 


-10.0 
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t [5J 
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Chapter 5 180 

.. , ,.'I 



DEMONSTRATION OF THE OPTIMUM EXECUTION OF REPRESENTATIVE PRESCRIBED MACHINING TASKS 

Note that the absolute values ofthe two active constraints, identified from the positive values of C g (X') 

and (X') (expressions (D.II) and (D.l7)) are at least one order of magnitude larger than the C 16 

absolute values of the active constraints for the optimization of the parabolic and spike test functions. In 

spite of the fact that inequality constraint Cg is violated by 0.326 x 10-3 m (0.326 rnrn), this violation 

lies well within the minimum safety margin of 5 rnrn that was used during the formulation of the 

inequality constraints. 

The effectiveness of the chosen "maximum magnitude actuator force" objective function (see Section 

4.2.2) is borne out by comparing figure insets 3(c) and 3(d). In figure inset 3(c) showing the actuator 

force variations for the initial design XO, actuator force f2 is predominant with significant elevations at 

time instants t =6.23 s, t 72.20 sand t 132.45 s. On the other hand, the actuator force variations 

associated with the optimum design X· in figure inset 3(d) shows a much more level distribution in 

terms of the maximum forces in all three actuator legs. 

5.4.3 Analysis of convergence to optimum 

Figure 5.16 shows the convergence history of the objective function. 

Objective function value 
28.0 

!27.0 

26.0 

25.0 

24.0 

23.0 

@ ® 
® t 

end ofphase 0 and phase 1 

10 20 30 40 50 60 70 

Iteration number 

Figure 5.16: Convergence history of the objective function for the circular tool path. 
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Labels CD - @ in Figure 5.16 are used in Table 5.6 to relate the behavior of the convergence curve of the 

objective function in the respective indicated regions to the iteration number and phase of the LFOPC­

algorithm, the actuator leg responsible for the maximum magnitude actuator force and the violated 

inequality constraints. 

Labels Iteration LFOPC- Act. I Violated Inequality Constraints 

No. Phase leg 
i 

XO 0 0 f!2 C 7 C g 

r-­ I 
i 14 0 £2 CIS 

CD 15 0 I £2 CIS 
I 

I 16 0 £2 CIS 
I 

! 23 0 f!2 i C s C I6 

24 0 el 

i 
Cs C l6 

I i 

I 25 i 0 
I 

f!1 I C g C I6 C zo 

® 
I 

26 0 
I 

f!1 I 
C g C l6 

27 0 i 
f!j C s C I6 C 20 

i i 
28 I 0 i £z C s C I6 C 20 

29 
I 

0 
! 

£2 C g C I6 C zoi 

30 0 I £2 
I 

C g 

® i 

I 
31 0 I f!2 

I 
Cg C I6 C zo 

i 39 0 I f!2 Cg C I6 C20
i I 

i 40 0 f!2 I C g C l6 

41 0 f!1 C g C I6 C 20 

@) C g C I6 

42 0 £2 maximum violated constraint value 

I 

i 

I 
! 

I 

I 

i 

I 

I 

I 
i 

I 
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i 

I 

60 0 £.2 C16 

61 0 £.1 C I6 

C I6 
62 0 £.2 

LFOPC C I6 (X62) =0.936 X 10-3 

I 

Phase­ 62 1 £.2 C]6 I 

changes 
C]6 (only active constraint) 

63 1 £.2 I 

see footnote -:..'r at the end of Table 5.6 
I 

63 2 £.2 CI6 

64 2 £.2 CI6 

67 2 €2 C g 

68 2 £.2 Cg C]6 
i 

69 2 £.2 Cg I
® 

70 2 £.2 Cg 

I 
71 2 £.2 Cs i 

72 2 £.2 Cg 

Cs C]6 (active) 
X· 73 2 £.2 

(only C 16 = 0 enforced in LFOPC- phase 2) 

* Note that at the end of phase 1 only one constraint, corresponding to C]6' is identified to be active. In 

the subsequent stringent enforcement of this constraint in phase 2, the constraint corresponding to C8 

also incidentally becomes active. This explains the relative large value (but nevertheless of insignificant 

magnitude) of Cs(X") in Table 5.5. A diagrammatical representation of the situation that arises is 

sketched below 

C6=O . C,=O 
X (OnlyC6 oenforced !) ~ 

I 7/// p lI 

true X·
As is evident from the convergence histories / / / / / / ~>O' /
of the X (i = 1,2,... ,5), this distance II X'- X 

62 
11 

/ Feasibl".gion, C" <1~ is extremely small (negligible) and does not ~ 
I Ijl Ii Iaffect the reliability and accuracy of the ' j / I 1 

computed solution. / ! 
X'

2
at the end of phase lis infeasible CI6 0 

C, 0 
because LFOPC is essentially an 
exterior penalty function method 

Table 5.6: Comparative table for the circular tool path objective function vs. iteration number 
curve (see Figure 5.16). 
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A switch in the actuator leg responsible for the maximum magnitude actuator force occurs in the vicinity 

of label @. This again explains the non-smooth nature of the objective function vs. iteration number 

curve in this area (see Figure 5.16). 

Note that since the initial design only violates the "allowable maximum leg length" inequality constraints 

(expression (D. 1 1 », it may be possible to intuitively adjust the position of the prescribed tool path 

relative to the position of the planar machine in order to achieve feasibility. In terms of the set of design 

variables, this implies that only two design variables, X3 and X 4 , need to be changed until the 

prescribed circular tool path is feasibly traced. Although this might seem to be an easier option, the 

inherent danger of this approach is the unknown occurrence of mechanical interference. This danger is 

evident from the fact that the optimum design X· found by LFOPC is associated with the two active 

constraints: 

• C an "allowable maximum leg length" inequality constraint (expression (D. 1 1», and s 

• C'6 a "mechanical interference" inequality constraint (expression (D.17». 

The convergence histories of the respective design variables Xi' i 1,2,...,5 are shown in Figure 5.17. 

Practical convergence (both with respect to feasibility and optimum objective function value), has 

already been achieved as early as iteration 42 with a maximum violated constraint function value of 

C'6(X 42 )=0.001l0m (1.l0mm), and with the associated design vector given by 

X 42 =[0.3490l,0.39819,-O.28277,-0.36638,0.25303]T. Note that no significant changes in the 

values of the design variables occur after iteration 42 as can be seen from the optimum values of the 

design variables, X· == [0.34476,0.39829, - 0.28487, - 0.36676, 0.25238]T . 

Design variables 

--><2 --XI --_.... X4 --xs 

~ 

: I 
~ ! 

10 20 30 40 50 60 70 ~ 

iteration number 

Figure 5.17: Convergence histories of design variables Xi' i = 1,2,... ,5 for the circular tool path. 
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5.4.4 Execution of the circular tool path 

The series of photographs shown in Figure 5.18 is of different instants during the execution of the first 

revolution of the circular tool path. 

Figure 5.18: Execution of the circular tool path. 

Figure 5.19 is a close-up of the traced circular tool path, showing that the diameter of the traced circle is 

approximately 350 mrn (35 cm), and that the circle is smoothly traced. 
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5.19: view of the executed circular tool path. 

path 5.5 

5.5.1 nfUU"'" points and orientation angle 

The spiral tool path is a the logarithmic spiral test curve p::= 

Using a of the 79 spiral tool path nodal points are as m 

The motion time the tool is 93.24 with the 

1.0 and n,jme 5 the use the 

Section 3.5.4. 

5.20. 

0.01 

186 
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• 

• 0.15 • 

•• .0.;1,0 

• 
• 0.05 • 

• 
f----.~,..., ­ • ml I ' 

-Ol25 -0.20 -0.15 • 0.10 -ll.05 O. 0 0.05 • 0.10 0.15 
I 

i • • 
• -0.05 

··1 ••• • 
• 

• 
• 

• 
-0.10 . 

• . , •, • • 
-0.15J 

X 

Figure 5.20: Nodal points used to approximate the spiral tool path. 

As for the circular tool path, the spiral tool path is traced with a fixed moving platform orientation 

~l == o. 

5.5.2 Optimization results 

The initial and optimum test-model designs for the spiral tool path are compared in Table 5.7 (with 

figure insets 4(a) 4(d». 

Initial design Optimum design 

XO = [0.4,0.4, 0.4, - 0.4, O.2]T X' = [0.32686, 0.34053, - 0.26l37, - 0.40930, 0.15538]T 

Inequality constraint values (see Section D.3): 

I 

CJXO)= -0.05 C
2 
(XO)=-0.3 

C 3 (XO) =-0.065 C 4 (XO) =--0.287 

C 
5 
(XO) --0.07 C6 (Xo) =-0.087 

~ C 7 (XO) =0.09323 ~ Cs(XO) =0.10988 

~ C9 (XO) =0.05420 C1O(XO) --0.19441 

CIl (XO) = --0.19441 C'2 (Xo) =-0.17684 

C 13 (XO) =-0.03220 C'4 (XO) =-0.03972 

C,s(XO) -0.05697 C 16 (XO) = -0.03865 

C17 (XO) = -0.061l3 C,s(XO) =-0.06216 

C
I9 

(XO) -0.06763 C 20 (Xo) = -0.09095 

C2l (Xo) = -0.09526 C 22 (XO) = -0.06325 

~ constraint violation 

C,(X') == --0.12314 C2 (X') --0.22686 

C3 (X') =-0.12447 C 4 (X') = -0.22753 

C5 (X') =-0.11462 C6 (X') =-0.04238 

=> C7 (X') =0.347 X 10-6 Cs(X') = -0.06128 

C9 (X') =--0.07828 C IO (X') -0.05578 

CII (X') =-0.05578 CI2 (X') =-0.28217 

=> C
13 

(X') 0.108xlO-5 => C'4 (X') =0.700 X 10-6 

C I5 (X') = -0.03094 C'6(X') =-0.03204 

C17 (X') =-0.02269 ClS(X') = -0.00256 

Cl9 (X') = -0.06875 C
20 

(X') -0.11837 

=> C2l (X') 0.345xlO-5 Cn (X') =-0.06792 

=> constraint active 
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i 

Variation leg lengths along the spiral tool path: 

Initial design Optimum design 

--L1 --L2-L3 --Lmin __Lm"X --L1 --L2-L3 --Lmin -Lmax: 
0.7 

0.6 0.6 

i ~05
IS 
• til 

. ;'0.4 

! 

gO.5 
til 

;'04 

! 
~ 03 ~ 0.3 

:e .. 0.2 
:e .. 0.2 

0.1 i----------------­ 0.1 i-------------------­
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 

t[51 

4(b) 

Variation of actuator forces along the spiral tool path: 

Initial design Optimum design 
r= 

--.-~---.-~-~ 

-f1-12-f3 
.~----.--~-~----.----..­

c-~--=--t2-:--'i:i] 

35.0 

30.0 

25.0 

~ 20.0 

~ 15.0 .e 
~ 10.0 
:::J 
1:> 5.0.. 

t [sl t [sl 
------.-.. -----~~.. 

, 4(c) 4(d) 

F(X*) := 

Actuator leg 1 

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 

t [51 

Table 5.7: Comparison between the initial and optimum designs for the spiral tool path. 

The initial design is again infeasible (see the variation in actuator leg lengths in inset 4(a) and the 

corresponding positive inequality constraint function values C 7 (XO), Cs(XO) and C 
9 

(XO)). The 

feasible optimum design (see figure inset 4(b)) is associated with active constraints corresponding to C 7 , 

C 13 ' C 14 and C 21 (see respective expressions (D.lO), (D.l4), (D. IS) and (D.22)). Note that 
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corresponding to the circular tool path, the optimum variation in actuator forces of figure inset 4( d) 

shows a level distribution in tenns of the maximum forces in all three actuator legs. 

The optimum design, X', is found in 133 optimization iterations and utilizing 11 minutes and 46 

seconds computational time on a Pentium IV 1.5 GHz computer with 640 MB DDRAM. As before, 

LFOPC tenninated on criterion 2 ( E x ~ 10-5) listed in Section 4.4. 

5.5.3 Analysis ofconvergence to optimum 

Figure 5.21 shows the convergence history of the objective function. 

122.0 ;J\ I
i21.0 

Start phase 1 Start phase 2 
20 0 IJ 

Objective function value 

26.0 

25.0 

24.0· 

i
123.0 . 

1 . 0 20 40 60 80 100 120 ,. 
iteration number 

Figure 5.21: Convergence history of the objective function for the spiral tool path. 

Table 5.8 with labels Q) ® relate the behavior of the convergence curve of the objective function to 

iteration number, the LFOPC phases, the actuator leg responsible for the maximum magnitude actuator 

force, and the violated inequality constraints in the respectively indicated regions of the curve. 
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Labels Iteration LFOPC- Act. Violated Inequality Constraints 

No. Phase ! eg ! 

I I 
XO i 0 0 ! RI C1 Cs C9 

! 

i i i i 

I 
18 0 I RI C I3 CIS I 

i 19 0 RI ! C I3 C I4 CIS 
CD i I 

I 
20 0 RI I CI3 C I4 CI8 

I 

I 
! 21 0 RI Cu CIS 

i 

® i 28-31 0 I RI i C7 C13 C[4 I 
i 

! 63 0 £1 
i 

C1 Cl3 C C 

I 64 0 £2 C7 Cn Cl4 C2l 
® 

65 0 £1 C7 CI4 C2l 

66 
i 

0 
I 

£1 C7 C I3 CI4 C 21 

78 I 0 £1 C1 C13 CI4 C 21 

C1 C13 C I4 C21 
LFOPC 

79 0 £1 maximum violated constraint value 
phase­

C21 (X79) =0.00316 
change 

79 1 £1 C7 Cu CI4 C 21 

80 1 £1 I C7 CI3 C I4 C 21 

! 87-89 1 £1 none 
® 

90 1 
I 

£1 C7 

I 
125 1 RI C7 C13 Cl4 

LFOPC I 

I 
126 1 i RI C7 C13 C I4 C21 i 

phase-
I 126 2 R[ C7 Cl3 C I4 C 21 

ichange 
i 127 2 Rl C7 C I4 C 21 I 

i 

i 
x· 133 2 Rj C7 C 13 Cl4 (: ~) 

Table 5.8: Comparative table for the spiral tool path objective function vs. iteration number 
curve (see Figure 5.21) 

Note that the actuator leg responsible for the maximum magnitude actuator force switches between R I 

and R2 in the vicinity oflabel ®. 

The convergence histories of the respective design variables Xi' i =1,2,... ,5 are shovvn in Figure 5.22. 

Again convergence (with respect to feasibility and objective function value), is effectively achieved at 
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the end of phase 0, after 79 iterations with the maximum violated constraint value 

C 2J (X 79 )=0.00316m (3.16mru). 

Design variables 

1--X1 --X2 --X3 --X4 --X51 
0.50 ,-----'=============-----------, 

0.40 -r=::::::=-================ 
0.30 

0.20 1 - ______ ____...._________­
0.10 

0.00 -1---..---..---..---..---..-----.----1 

20 40 60 80 100 120 


-0 ·10 

1-0.20 . 

------ ---- ---- --~ ------- ---- -------- ---- - JI 
-0.50 

iteration number 

Figure 5.22: Convergence histories of design variables X i ' i =1,2,... ,5 for the spiral tool path. 

5.5.4 Execution of the spiral tool path 

The series of five photographs in Figure 5.23 depicts the tracing of the spiral tool path with a 

horizontally orientated moving platform ( ~ 1 == 0 ). 
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Figure 5.23: Execution of the spiral tool path. 

The close-up view of the executed spiral tool path in Figure 5.24 shows its relative size and proportional 

shape. For all practical purposes the executed path corresponds accurately and smoothly to the spiral 

tool path prescribed by Figure 5.20. 

Figure 5.24: Close-up view of the executed spiral tool path. 
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5.6 Treble clef tool path 

5.6.1 Nodal points and orientation angle 

The treble clef tool path used here is a scaled version of the treble clef test curve of Section 3.5.5. Figure 

5.25 shows the 49 scaled nodal points generated with a scale factor of 0.00285. 

0.45 

0.40 

0.35 

0.30 

0.25 

>­

0.20 

• 

• 

• 
• 

• 
• 

• 
• 

i • 

• 
0.15 • 

0.10 ~ •• 

0.05 ' •
\ • 

0,00 • 
0.00 0,05 0.10 0.15 

x 

Figure 5.25: Nodal points used to approximate the treble clef tool path. 

The OCAS trajectory-planning methodology is again utilized here with the specification of 

SALLOW = 0.01 m/s 2 
, v' == l.Om/min and n time = 5, resulting in a total motion time along the treble clef 

tool path of73.28 seconds. 

The treble clef tool path is also traced with a fixed moving platform orientation (jll O. 
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5.6.2 Optimization results 

The initial and optimum test-model designs for the treble clef tool path are compared in Table 5.9. 

Optimum design 

== [0.42327, 0.34561, 0.08380, 0.30386,0.25886f i 

Inequality constraint values (see Section D.3): 

CI(XO)=-0.05 C 2 (XO) -0.3 


C
3 
(Xo) -0.065 C4(XO) == -0.287 


Cs(XO) -0.07 C
6 
(XO) -0.087 


~ C7(XO) = 0.33349 ~ C (X0) = 0.27978
s 

~ Cg(XO) 0.28228 C Io (XO) -0.32755 

C II (XO) == -0.32755 C ll (Xo) = -0.39335 

CI3 (XO) -0.0425 C I4 (XO) -0.05377 

CIS (XO) = -0.07431 C I6 (XO) = -0.07656 

C I7 (XO) -0.11291 CIS(XO) -0.10447 

CI9 (XO) == -0.09483 (XO) = -0.12035C lo 

C (Xo) -0.11013 C (XO) =-0.07064li l2 

~ constraint violation 

C,(X') -0.02673 C 2 (X') -0.32327 

C3 (X') = -0.11939 C4 (X') == -0.23261 

Cs(X') -0.01114 CJX') -0.14586 

=:> C7(X') = 0.221 X 10-5 (X') = -0.01996Cs 

Cg(X') -0.04101 ClO(X') -0.01136 

CII (X') == -0.01136 (X') == -0.33997Cil 

C13 (X') = -0.07261 CI4 (X') = -0.00315 

CIS(X') = -0.03426 =:> Cl6 (X') =-0.774 X 10-6 

C17 (X') == -0.03052 C 18 (X') = -0.00305 

C'9(X') -0.07222 C20 (X') -0.04259 

C 21 (X') = -0.13874 C 22 (X') =-0.04912 

=:> constraint active 

Variation of actuator leg lengths along the treble clef tool path: 

10,0 20,0 30,0 40,0 50,0 60,0 70,0 

t[s} 

Optimum design 

10,0 20,0 30,0 40,0 50,0 60,0 70,0 

t[s} 

5 (b) 
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Variation of actuator forces along the treble clef tool path: 

35.0 

30.0 

~ 20.0 
III 

~ 15.0 
.e 
.9 10,0 
::I'" 
'0 
'" 5,0 

0.0 

-5.0 

-10,0 

5(c) 

Initial deSign
1----··-····-------::::-1 
,-f1 -f2 -13. 
~.~--.....~.. ­

t [5] 

F(Xo) =29.586 N 


Actuator leg 2 


25.0 J 

: 

15.0 I 

20,0 30.0 40.0 50.0 

t [5] 

35,0 

30.0 

~ 
I~ 20,0 

III 

~ .e 
.9 10,0 
::I'" 
'0 5,0'" 

0.0 

-5.0 

-10.0 

5 (d) 

Optimum design 

':"""'- f1 =i2--13J
L ...__ "___ 

F(X·) =20.715 N 

Actuator leg 3 

Table 5.9: Comparison between the initial and optimum designs for the treble clef tool path. 

The initial design is severely infeasible (see the unallowable variations in actuator leg lengths shown in 

inset 5(a) and which correspond to the positive inequality constraint function values C 7 (Xo), Cs(Xo) 

and C9 (XO)). The optimum andfeasible (see inset 5(b)) design X· with active inequality constraints 

corresponding to C7 and C16 , and a level maximum magnitude actuator force distribution (see inset 

5(d)) is found in 127 optimization iterations and utilizing 6 minutes and 57 seconds computational time 

on a Pentium N 1.5 GHz computer with 640 MB DDRAM . Once again, LFOPC terminated on 

criterion 2 ( E x S 10-5 
) listed in Section 4.4. 
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5.6.3 Analysis of convergence to optimum 

Figure 5.26 shows the convergence history of the objective function. 

Objective function value 
1 30.0 -r---'---"~'-'--~-'---'--'-----'---"----'- "-----, 

29 0 
1 . . 

28.0 

27 0 
1 . 

26 0 
1 . 
25.0 

124.0 

123.0 . 
end ofphase 0 and phase 1 

22 0 
1 . 

21 0 J
1 . 

120.0 +----,---,----,---:----.-,---.-..,.--------,..-..,.-----1 

o 10 20 30 40 50 60 70 80 90 100 110 120 13O 
iteration number J

Figure 5.26: Convergence history of the objective function for the treble clef tool path. 

The relatively smooth convergence graph of the objective function value shown in Figure 5.26 relates the 

LFOPC phases, actuator leg responsible for the maximum magnitude actuator force, and violated 

inequality constraints as indicated in Table 5.10. 

Labels Iteration LFOPC­I! Act. I Violated Inequality Constraints 
\No. Phase leg i 

I 
XO 0 0 £2 C 7 C s C9 

I 
i35 0 £2 C 7 C I4 C I5 C I6 C I8I 

36 0 £2 C 7 C I4 C I6 CIS 
1 I
I 

37 0 £3 
i 
! C 

7 
C I4 CIS C I6 CIS 

1 

i 
i C038 £2 I C 7 C I4 15 

CD 39 C0 £3 C 7 C I4 

C 7 C I4 C I6 CIS 

40 0 £3 . maximum violated constraint value 

I 
i 41 0 £3 

CIS (X40) = 0.02568 

C 7 C I4 16 18 

i 

l 

1 
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LFOPC 

phase-

changes 

I 

84 

85 

85 

86 

0 

0 

I 

I 

i!3 

i!3 

i!) 

i!3 

C7 C I6 

C 7 C I6 

maximum violated constraint value 

C16 (X85) =0.00220 

C 7 C I6 

C7 C16 

I 

I 

I 

i 

86 2 i!3 C 7 C I6 

87 2 i!3 C7 C16 

X· 127 2 i!3 C 7 C I6 (active) 

Table 5.10: Comparative table for the treble clef tool path objective function vs. iteration 
number curve (see Figure 5.26). 

Note that a switch from i! 2 to i! 3 as the actuator leg responsible for the maximum magnitude actuator 

force occurs in the vicinity oflabel CD. 

The convergence histories of the respective design variables X j , i 1,2,... ,5 are shown in Figure 5.27. 

Here the convergence of the design variables is significantly more sluggish, requiring about 100 

iterations to converge, compared to the relatively fast and sharp convergence of the objective function 

value within 40 iterations. Even though, after 40 iterations the objective function value 

(F(X40) =20.747 N) is close to the optimum objective function value (F(X·) 20.715 N), the 

maximum violated constraint function value, CIS (X40) =0.02568 m , shows that this is still an infeasible 

design due to the occurrence of mechanical interference (see expression (D. 19)). The corresponding 

X40values of the design variables are =[0.41543, 0.39816, 0.08308, 0.33817, 0.21923]T. 

Significant further changes occur in the values of design variables X 2' X 4 and X 5 between iterations 

40 and 100 (X1OO =[0.42319, 0.34551, - 0.08406, 0.30402, 0.25886f). However, after phase 0 of the 

LFOPC-algorithm has terminated (iteration number 85), the maximum violated constraint function value 

is only 2.20mm (C I6 (X85 
) =0.00220 m), which is negligible for all practical purposes and X 85 may 

be taken as an effective optimum design. 
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LFOPC 

phase­

84 0 '-3 C 7 C'6 

85 0 e3 

C 7 C'6 

maximum violated constraint value 

C'6(X 
8S 

) = 0.00220 

changes 
85 I '-3 C 7 C'6 

86 I '-3 C 7 C'6 

86 2 '-l C 7 C'6 

87 2 '- 3 C 7 C'6 

X* 127 2 '- 3 C 7 C'6 (active) 

Table 5.10: Comparative table for the treble cleftool path objective function vs. iteration 
number curve (see Figure 5.26). 

Note that a switch from '- 2 to '- 3 as the actuator leg responsible for the maximum magnitude actuator 

force occurs in the vicinity oflabel CD. 

The convergence histories of the respective design variables Xi' i:=: 1,2, ... ,5 are shown in Figure 5.27. 

Here the convergence of the design variables is significantly more sluggish, requiring about 100 

iterations to converge, compared to the relatively fast and sharp convergence of the obj ective function 

value within 40 iterations. Even though, after 40 iterations the objective function value 

(F(X 4°)=20.747N) is close to the optimum objective function value (F(X *)=20.715N), the 

maximum violated constraint function value, C'8 (X 40 
) = 0.02568 m , shows that this is still an infeasible 

design due to the occurrence of mechanical interference (see expression (0.19)). The corresponding 

X40values of the design variables are =[0.41543,0.39816,-0.08308,-0.33817,0.21923r. 

Significant further changes occur in the values of design variables X 2 , X 4 and X s between iterations 

40 and 100 (X'oo = [0.42319, 0.34551, - 0.08406, - 0.30402, 0.25886r) . However, after phase 0 of the 

LFOPC-algorithm has terminated (iteration number 85), the maximum violated constraint function value 

X85 is only 2.20 mm (C'6(X85) = 0.00220 m), which is negligible for all practical purposes and may 

be taken as an effective optimum design. 
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Design variables 

1--X1--X2-- lO --X4--JG I 
0.50 '---'=====--'~--=l 

0.40 r-----===::::::::==::::::::=:::========- I 
0.30 - 1 
0.20 .1-------­
0.10 

0.00 ·I--,----,--~-_._-~--,-,-------~-__r_-l 
10 20 30 4050~ 80 90 1QQ 110 120 1t 

.{).10 

'{)20 

.{) .30 

-0 .40 ~---.-..-­

____I 
i'{)·50 

iteration number 

Figure 5.27: Convergence histories of design variables Xi' i = 1,2, .. .,5 for the treble clef tool 

path. 

5.6.4 Execution of the treble clef tool path. 

The four photographs grouped in Figure 5.28 were taken at different time instants along the actually 

traced treble clef tool path. Note that the moving platfonn remains horizontal (~l == 0) during the 

execution of the path. 

Figure 5.28: Execution of the treble clef tool path. 
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A close-up view of the executed treble clef tool path is shown in Figure 5.29, for comparison with the 

prescribed nodal points shown in Figure 5.25. Clearly the path is accurately traced with no practically 

significant differences in size and proportion between the executed and prescribed tool paths. 

Figure 5.29: Close-up view of the executed treble clef tool path. 

5.7 Bigger parabolic tool path 

All of the above tool paths are scaled down versions of those represented by the original test functions 

discussed in Section 3.5. In each instance, the proposed optimization approach detennined a feasible 

design of the adjustable planar machine, with which the (scaled) prescribed tool path could be 

continuously traced. In general, however, a feasible design may not exist for a particular prescribed path, 

and thus it cannot be continuously traced. In this event, user intervention is required to divide the 
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Orientation angle 
i 80.00 r---~~--~~'-'--~--'--~-----'·----~·--------, 

ii 60.00 r-""'-_ 

t 

Figure 5.31: Variation in the orientation angle for the bigger parabolic tool path. 

5.7.1.2 Optimization results 

Whenever the LFOPC-algorithm cannot find an optimum design that is feasible, it computes a ''best'' 

compromised design corresponding to that with least possible constraint violation, and presents it as the 

optimum solution. A comparison between the initial test-model design and the compromised optimum 

test-model design for the bigger parabolic prescribed tool path is given in Table 5.11, with figure insets 

6(a) 6(d). 

Initial design Optimum compromised design 

XO [0.4,0.4, - 0.4, - 0.4, O.2f X' [0.09643,0.11018, 0.51561, 0.10841,0.11015]T 

Inequality constraint values (see Section D.3): 

C l(XO) =-0.05 C 2(Xo) =-0.3 

C;(XO) -0.065 C 4 (Xo) :::: -0.287 

Cs(XO):::: -0.07 C6(XO) -0.087 

~ C 
7 
(XO) 0.11077 Cg(XO) =-0.02581 

C9(Xo) =-0.00648 ~ CIO(Xo) =0.12769 

~Cll(XO) 0.12769 C l2 (XO) =-0.29548 

C 
I3 

(Xo) -0.09548 ~ C 
I4 

(XO):::: 0.02800 

~ C1S(XO) =0.03046 ~ C I6 (XO) == 0.04159 

~ C 17 (Xo) =0.05454 ~Clg(XO) 0.08839 

C l9 (XO) = -0.03549 C 20 (XQ 
) -0.02495 

~ C 21 (XO) =0.06468 ~C22(XO) 0.04873 

~ constraint violation 

C 1(X') =-0.35357 ~C2(X') 0.00357 

C3 (X') = -0.35482 ~ C 4 (X') == 0.00282 

Cs(X') =-0.15985 ~ C6 (X') 0.00285 

~ C 7 (X') = 0.01264 ~Cs(X') 0.591 x 10-3 

~C9(X') 0.0l347 ~ClO(X') 0.01208 

~ CII (X') = 0.01208 C I2 (X') -0.36166 

C
13 

(X'):::: -0.16520 C l4 (X'):::: -0.05061 

CIS (X') -0.29681 C I6 (X') -0.04946 

C 17 (X') = -0.00670 CIS (X') =-0.04160 

C 
I9 

(X') -0.05005 C 20 (X') =-0.13960 

C 21 (X') =-0.04202 C 22 (X'):::: -0.17053 

~ constraint violation 
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Variation of actuator leg lengths along the bigger parabolic tool path: 

Optimum design Initial design 

0,70,7 

0,60,6 

:§: 0,5 :§: 05 

!II!IIt0.4 . tOA 
cc 
.! 


~ 03 


.! .s 0.3 

'" 
~~ 

'" 0,2 '" 0,2 

0,10,1 

0,00,0 
I

0,0 10,0 20,0 30,0 40,00,0 10,0 20,0 30.0 

t[S]t [s1 

6(b)6(a) 

60,0 

50,0 

40,0 

'~z 30,0 
!~ 

I SI 20,0 
,!:! 

i ~ 10,0 

I.e,!!i 0,0 
,1) 00 
I '" -10,0 

-20,0 

I -30,0 

I 40,01 

6(c) 

Variation of actuator f

t[5] 

orces along the bigger parabolic tool path: 

60.0 

50,0 

40,0 

l~ 30,0 
~ 

Optimum design ,_ ....­ .... ,--._, 
,-f1-f2--=~1 

....­ ,', ..........,._, .... _".._­

@ 20,0 

~ 10,0 L..'-----­

.sl!!i 0.0 .L.._______...__.~..--- ­

1 ~o 1~0 
I -10,0 1 
I -20,0 ~ 

-30,0 

-40,0 

t [51 

6(d) 

--~J 

I 

F(XO) = 23.121 N 

Actuator leg 2 

F(X') = 57.681 N 

Actuator leg I 

Table 5.11: Comparison between the initial and optimum designs for the bigger parabolic tool 
path. 

The infeasibility of the initial design XO is evident from figure inset 6(a), as well as from the violated 

inset 6( c) shows the variation in actuator forces for this initial design with an objective function value of 

F(Xo) 23.121 N , with actuator leg 2 responsible for the maximum magnitude actuator force. 
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Considering the compromised optimum design X· , the constraints corresponding to C 2 , C 4 , C 6 , C 7 , 

Cg , C9 , CIO and CII are violated by the LFOPC-algorithm in its search for a best compromised 

solution. The variation of the actuator legs for this compromised optimum solution is shown in figure 

inset 6(b), where the violation of the maximum allowable actuator leg length by actuator legs I! I and I! 3 

is clearly visible. In correspondence with Section 5.4.2, the magnitude of constraint function value 

Cg (X·)::::: 0.591 x 10-3 m (0.591 mm) is indeed negligibly small, and from a practical point of view, the 

inequality constraint associated with Cg can be considered active rather than violated (see expression 

(D.ll». 

The violated inequality constraints associated with C 2' C 4 and C 6 (expression (D. 1 0» imply that the 

linearly adjustable revolute joints are positioned outside their allowable ranges. In particular, C 2 has the 

largest constraint function magnitude of the three with (X·) 0.00357 m == 3.57 mm . AlthoughC 2 

substantial, these violations are not critical, since they lie within the minimum safety margin of 5 mm 

that was used during the formulation of the inequality constraints (see Appendix D). 

Apart from the critically violated actuator leg length inequality constraints C 7 and C 9 (expression 

(D.!l», violated constraints CIO and CII resulting from the tangential orientation of the moving 

platform, cannot be ignored. More specifically, of these four inequality constraint functions, the smallest 

magnitude IS C 
lO 

(X"):::::C ll (X·):::::0.0121m (l2.1mm) and the largest magnitude is 

C9 (X")=0.0135m (13.5mm). 

The above analysis of the violated inequality constraints is used in the next subsection where the 

prescribed parabolic tool path is rationally divided into different segments. For the sake of 

completeness, however, the convergence histories of the objective function (Figure 5.32) and design 

variables (Figure 5.33) in arriving at the compromised solution, are also included here. 
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Objective function value 
i60.0 ,--~--~-----------"--"----~'------I 

155.0 

1 
50 . 0 

45.0 

40.0 

35.0 
1 

1 
30.0 

phase 2 

I 
Start phase 1 

I 
~0-------5~0 ------1o'o-----~15-0------2~00-----~25~ 

iteration number ~[ 
__...J 

Figure 5.32: Convergence history of the objective function for the bigger parabolic tool path. 

Design variables 

10,60 1 

:::~~~~""""""'" 

Iteration number 

Figure 5.33: Convergence histories of design variables Xi' i =1,2,... ,5 for the bigger parabolic 
tool path. 

Note that the compromised optimum solution X· is found in 238 optimization iterations requiring 7 

minutes and 29 seconds computational time on a Pentium N 1.5 GHz computer with 

640 MB DDRAM. The LFOPC-algorithm here also terminated on criterion 2 (B x S; 10-5 
) listed in 

Section 4.4. 
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5.7.2 Dividing the prescribed path into segments 

5.7.2.1 Nodal points and orientation angle 

In the case of a compromised solution the user may intervene in a rational manner in order to execute the 

path. This is done by firstly analyzing the constraints violated by the compromised design. Note that for 

the example under consideration, the critically violated inequality constraints are the maximum 

allowable actuator leg lengths III and 113 (C 7 and C9 given by expression (D.ll» and the lower frame 

boundary constraints and C ll as explained in Section DJJ.2. This implies that the "vertical C IO 

motion" of the moving platform that is required for the complete continuous tracing of the prescribed 

parabolic tool path shown in Figure 5.30, cannot be accommodated. 

-0.20 -0,15 -0.10 -0.05 0.00 0,05 0.10 0.15 0,20 

• -004 i 
• 

i 

• 
-0.08 

x 

(a) 

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.00 0.05 0.10 0.15 0.20 0.25 

0.00 

-0.05 

•• -0.10 

• 
• 

• -0.15 

• 
-0.20 

••• 
• 

• 
• 

• 
•
•• 

0.00 

-0.05 

-0.10 

-0.15 

-0.20 

-0.25 
x x 

(b) (c) 

Figure 5.34: Three sets of nodal points used to approximate the bigger parabolic tool path: (a) 
upper middle segment, (b) bottom left segment and (c) bottom right segment. 

The prescribed parabolic tool path is symmetric about the y-axis, hence the "bounds of vertical motion", 

associated with the execution of the left-hand side of the tool path correspond exactly to the "bounds of 

vertical motion" associated with the execution of the right-hand side of the tool path. This implies that 
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dividing the prescribed parabolic tool path into two symmetric segments, will not remedy the problem. 

An alternative strategy is to divide the prescribed tool path into three seperate segments as shown in 

Figure 5.34 (a) - (c). 

The sequential execution of firstly segment (b), then segment ( a) and finally segment (c), is one possible 

strategy that can be followed to execute the prescribed bigger parabolic tool path. The assumption is 

made here that the workpiece can be repositioned after each segment is executed. This assumption is 

justified not only because repositioning is common practice in the machining of larger workpieces, but 

also because the two "repositioning parameters" correspond to chosen design variables of the 

constrained optimization problem. In particular, design variables X3 and X 4 determine the position of 

the workpiece relative to the base of the planar Gough-Stewart machining platform (see Figure 5.5). 

For demonstration purposes it is further assumed that the planar "workpiece" on which the prescribed 

tool path is to be traced, can be rotated through 180· about the vertical y-axis of the prescribed parabola. 

This assumption implies that a second possible strategy for the execution of the prescribed bigger 

parabolic tool path, is to sequentially trace segments (b) and (a) ofFigure 5.34, then rotate the workpiece 

through 180' about its vertical symmetry axis, and finally trace segment (b) of Figure 5.34 once more. 

The advantage of the latter strategy is that for the optimization based operating system of the planar 

Gough-Stewart platform as proposed in this study, only two of the three segments shown in Figure 5.34 

have to be optimized for. In practice segments (b) and (a) are treated as two separate tool paths, each 

requiring its own optimization run. The subsequent optimization results of the respective prescribed tool 

paths are presented in sub-sections 5.7.2.2 and 5.7.2.3. 

For both prescribed tool paths, the OCAS trajectory-planning methodology (Chapter 3) is applied with 

the maximum allowable acceleration limited to 0.01 meter per second square (Sallow =0.01 m/s 2 
), and a 

specified cutting speed of 1.0 mjmin (v' = 1.0 mjmin ). With these specifications, the simulated 

prescribed motion along segment (b) in Figure 5.34 is completed in 10.07 s, and the simulated 

prescribed motion along segment (a) in Figure 5.34 is completed in 24.16 s . 

The original specification that the moving platform of the test-model be tangentially orientated with 

respect to the prescribed curve, is also incorporated here. In particular, the moving platform orientation 

angle now varies from 63.4' at the starting point (-0.2, 0.2) of segment (b) to 54.5' at the end point 

(-0.14, - 0.098) of segment (b) as shown in Figure 5.35. 
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Orlenlatlon angle 

0.00 2.00 4.00 6.00 8.00 

Figure 5.35: Variation in the orientation angle for segment (b) of the bigger parabolic tool path 
(see Figure 5.34). 

For segment (a) in Figure 5.34, the moving platfonn orientation angle varies from 54.5" at the start point 

(-0.14, - 0.098), to 54.5" atthe end point (0.14, - 0.098) (see Figure 5.36). 

Orientation angle 

5.00 20.00 25.00 

i 
'-20.00 

j-40.00 

Figure 5.36: Variation in the orientation angle for segment (a) of the bigger parabolic tool path 
(see Figure 5.34). 
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5.7.2.2 Optimization results for segment (b) of Figure 5.34. 

A comparison between the initial test-model design and the optimum test-model design for segment (b) 

of the bigger parabolic tool path (see Figure 5.34) is given in Table 5.12 with figure insets 7(a) -7(d). 

Initial design Optimum compromised design 

XO = [0.4,0.4, -0.4, -0.4, 0.2]T [0.21606,0.23581, - 0.52924, - 0.38758, 0.11917]T 

Inequality constraint values (see Section D.3): 

C 
I 
(Xo) = -0.05 C

2 
(XO)=-0.3 

C 3 (Xo) =-0.065 C
4 
(Xo) = -0.287 

Cs(Xo) = -0.07 C
6 
(XO) -0.087 

C 7 (XO) = -0.32486 C s (XO) = -0.23336 

C9 (XO) = -0.00911 ~ CIO(XO) =0.12770 

CII (Xo) -0.38212 C
l2 

(XO) = -0.29556 

Cu (Xo) = -0.40876 ~ CI4 (Xo) =0.02801 

~ CIS(XO) = 0.03048 ~ CI6 (XO) =0.04160 

~ CI7 (XO) 0.05455 ~ CIS (XO) = 0.08839 

CI9 (XO) -0.04946 C20 (XO) -0.06903 

C 21 (XO) = -0.05174 C22 (Xo) = 0.04874 

CI (X') =-0.23394 C2 (X' ) -0.11606 

C3 (X') =-0.22919 C 4 (X') = -0.12281 

Cs(X') -0.15083 C6 (X') =-0.00617 

C 7 (X') = -0.13510 Cg (X') =-0.17790 

C9 (X') -0.00394 CIO (X'):::: -0.00154 

C II (X') = -0.51136 C I2 (X') -0.48845 

CI3(X') -0.31045 CI4 (X') = -0.06274 

CIS (X') = -0.22601 CI6 (X') -0.07416 

C17 (X') =-0.03509 C I8 (X·) = -0.05569 

C 19 (X') = -0.08209 C
20 

(X') = -0.18538 

C 21 (X'):::: -0.06039 Cl2 (X') = -0.01225 

~ constraint violation 

Variation of actuator leg lengths along segment (b) of the bigger parabolic tool path (see Figure 5.34): 
__.._ ....._ ...._.__._._..~._._ .==--.-=:-==-=:--:-=:c----..-----.---! 

Initial design Optimum design 

-=='L2 -L3 --Lmin --Lm;~ L1 --L2-L3 --Lmin -Lmax 
0.6 1 

I I 
I 0.5 .Jt============= 
Ie J 1...-----::::== 

li

04 

1 

i. ~ 0.3 -jl 
!~ 

I~ 0.2 

i I'U : 

i 0.1 

0.0 i---..-~-.~_--_-__,_-_~...-_....J 

0.0 2.0 4.0 6.0 8.0 10.0 2.0 4.0 6.0 8.0 10.0 12.d 
t[s] t[s] 

7(a) 7 (b) 
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Variation of actuator forces along segment (b) ofthe bigger parabolic tool path (see Figure 5.34): 

20.0 r 
15.0 

10.0 ~l....-----::~-------

~ 50 1 
~ 0.0 -.---,h--~-~-·---r·---c-···--I

sOlo 6.0 8.0 10.0 
... -5.0· 
.s 
~ -10.0 . 

.. -15.0 

-20.0 

-25.0 

t[s] 

Optimum design 
····~·-·····l-f1-f2-f3~ ..._.J.~... 

~ 
~ 
::l 
§ 
... .s 
~ 

.. 

t [5] 

7(c) 7(d) 

20.0, 

15.0 1::::= 
10.0; 

5.0 

I 

0.0 r---···~--···"'---'·-···-~-····--~--···l 

2.0 4.0 6.0 8.0 10.0 

-10.0 

-15.0 

-20.0 

-25.0 

F(X') 17.238 N 

Actuator leg 2 Actuator leg 3 

Table 5.12: Comparison between the initial and optimum designs for segment (b) ofthe bigger 
parabolic tool path (see Figure 5.34). 

The initial design XO is infeasible as can be seen from the positive inequality constraint function values 


CIO(XO), C (XO), C1S(XO), C (XO), C (XO) and C (XO) in Table 5.12. The (allowable) initial 
I4 I6 17 I8 

variation of the actuator leg lengths along segment (b) of the bigger parabolic tool path (see Figure 5.34) 

is shown in figure inset 7(a). 

The LFOPC-optirnization algorithm finds the feasible optimum design X· in 122 optimization iterations 

requiring 1 minute and 32 seconds computational time on a Pentium IV 1.5 GHz computer with 

640 MB DDRAM . 

The optimum design X· found is an unconstrained optimum as can be seen from the negative inequality 

constraint function values C,.(X·) , i:;= 1,2,3,... ,22 listed in Table 5.12, and the optimum variation of the 

actuator leg lengths shown in figure inset 7(b). The optimum variation of the actuator forces along 

segment (b) of the bigger parabolic tool path shown in figure inset 7( d) is significantly different when 

compared to the initial variation shown in figure inset 7( c). In particular, the initial objective function 

value is F(XO):::: 23.078 N in actuator leg f 2' while the optimum objective function value is 

F(X'):::: 17.238 N in actuator leg f 3' 
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The convergence histories of the objective function (Figure 5.37) and design variables (Figure 5.38) are 

shown below. Note that since no active constraints were identified as the LFOPC-algorithm progressed 

along phase 0 (see Appendix C), the iterative search tenninated on criterion 2 (E x ~ 10 ~5) listed in 

Section 4.4 before the end ofphase O. 

h6.0 .. 

114.0 

I 
'12.0 

Objective function value 

i 

~------~--~--~--~~-----~~I 
14112020 40 60 80 

iteration number 
100 

Figure 5.37: Convergence history of the objective function for segment (b) ofthe bigger 
parabolic tool path (see Figure 5.34). 

Design variables 

lo.eo] 

i I 
1 

0
.40 ii---=====:=,~= 

; I ------_====0 20 
1 . 'I 

. I -------------­
I0.00 ~,-~.~,~. 

1.Q·20 

iteration number 

Figure 5.38: Convergence histories of design variables Xi' i 1,2,... ,5 for segment (b) of the 
bigger parabolic tool path (see Figure 5.34). 
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5.7.2.3 Optimization results for segment (a) of Figure 5.34. 

A comparison between the initial test-model design and the optimum test-model design for segment (a) 

of the bigger parabolic tool path (see Figure 5.34) is given in Table 5.13 with figure insets 8(a) - 8(d). 

Initial design Optimum compromised design 

XO == [0.4,0.4, 0.4, 0.4,0.2]T x" [0.28698,0.27183, - 0.40319, 0.25524,0.13241]T 

Inequality constraint values (see Section D.3): 

C I (XO) == -0.05 

C 3 (XO) -0.065 

Cs(XO) =-0.07 

--* C 7 (XO) == 0.10390 

C g (Xo) == -0.00651 

--* C lI (XO) 0.00321 

CD (XO) == -0.12872 

CIS (XO) == -0.05491 

C
17 

(XO) -0.01806 

Clg(XO) == -0.07006 

C 21 (XO) -0.08689 

C
2 
(XO) = -0.3 

C 4 (XO) == -0.287 

C 6 (XO) -0.087 

Cg(XO) = -0.02582 

--* C IO (Xo) = 0.00321 

C 12 (XO) = -0.32872 

C I4 (XO) = -0.03807 

C I6 (XO) = -0.00827 

CIS(XO) = -0.00218 

C 20 (XO) == -0.09382 

C 
2l 

(XO) == -0.01093 

--* constraint violation 

CI (X") =-0.16302 

C3 (X') -0.19317 

Cs (X·) == -0.13759 

~ C 7 (X') =0.375 x 10-4 

Cg(X') == -0.04699 

~CII(X") 0.158xl0-4 

C I3 (X") =-0.17817 

CIS (X") -0.17787 

C 17 (X") = -0.00307 

C I9 (X") =-0.06970 

C 21 (X') = -0.03715 

C 2 (X") == -0.18698 

C 4 (X") == -0.15883 

C 6 (X") -0.01941 

Cs(X') == -0.05909 

~CIO(X') 0.158xlO-4 

C 12 (X") == -0.34499 

C I4 (X") == -0.05417 

C I6 (X') -0.02705 

~ CIS (X") == 0.108 X 10-3 

C 20 (X') -0.15416 

C22 (X') == -0.07894 

~ constraint active 

Variation of actuator leg lengths along segment (a) of the bigger parabolic tool path (see Figure 5.34): 

Initial design Optimum design 

--L2-L3 --Lmin --L1--L2-L3--Lmin 

Ig05 I----------~----
en 
~0.4 
.! 
~ 0.3 

i ~ 0.2 

0.1 1--­______________ 

0.0 +-.-----:------r-----_----1 
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. E 0.5 r---....::::::::::::---:~:::::=::::::---

0.6 

!~ , en 
~0.4 
.! 
~ 03 


~ 
.. 0.2 
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0.0 

~_____________ 

0.0 +---.--..,.-----.,----,----,------1 

5.0 10.0 15.0 20.0 

t [5] 

8(b)8(a) 
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Variation of actuator forces along segment (a) ofthe bigger parabolic tool path (see Figure 5.34): 

Optimum design 

-=f1-12 =131 
30.0 

25.0 

I 

li 200 ~ 20.0 

~Q 

i.2 150 
: (; , 

~ 15.0 
.el­

It'll t'II 
..a 
I !;I 10.0 ~ 10.0 

. 8(c) 

5.0 

.--~,--.--.-.--,----,-----1 

0.0 5.0 10.0 15.0 20.0 0.0 5.0 

t [5) 

8(d) 

Actuator leg 1 

Table 5.13: Comparison between the initial and optimum designs for segment (a) of the bigger 
parabolic tool path (see Figure 5.34). 

To start off with, the initial design XO is again infeasible as can be seen from the positive inequality 

constraint function values C 7 (Xo), C (XO) and C (XO) in Table 5.13. Figure inset 8(a) also shows lO il 

that actuator leg eI violates the maximum allowable actuator leg length (inequality constraint C 7 ) as 

segment (a) of the bigger parabolic tool path (see Figure 5.34) is traced with the initial design. The 

lower frame boundary inequality constraints CIO and CII (expression (D.12» are also slightly violated 

by the initial design. 

For the feasible optimum design X', the active inequality constraints corresponding to C 7' C 10' C II 

and C 18 (see Table 5.13) exhibit a behavior similar to that detected for the circular tool path of Section 

5.4, and explained in detail with reference to Table 5.6. The LFOPC-optimization terminated on 

criterion 2 (E x ::::;} 0 5 
) listed in Section 4.4 after 144 optimization iterations requiring 3 minutes and 40 

seconds computational time on a Pentium IV 1.5 GHz computer with 640 MB DDRAM . 

The optimum variation of the actuator forces along segment (a) of the bigger parabolic tool path shown 

in figure inset 8(d) is fairly similar to the initial variation shown in figure inset 8(c). In particular, the 
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initial objective function value is F(Xo) =19.554 N in actuator leg 1! I' while the optimum objective 

function value is F(X') 24.347 N , also in actuator leg 1! I' 

The convergence histories of the objective function (Figure 5.39) and design variables (Figure 5.40) are 

shown below. Note that both these graphs indicate that in this case, effective convergence is only 

reached after only 120 iterations. 

Objective function value 

27.0 

26.0 

25.0 

24.0 

23.0 

22.0 

21.0 

20.0 

end ofphase 0 and phase 1 

19.0 

18.0 +----,----,---~---r--_,__-___,--__r_--' 
o 20 40 60 80 100 120 140 

iteration number 

Figure 5.39: Convergence history of the objective function for segment (a) ofthe bigger 
parabolic tool path (see Figure 5.34). 

Design variables 
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0.40t-_~~_ 
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0.20 -l----__ 
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i.(l.10 

.(l.ZO 

.(l.30 

i.(lAO 

X3--~ 
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Figure 5.40: Convergence histories of design variables Xi' i =1,2,... ,5 for segment (a) of the 
bigger parabolic tool path (see Figure 5.34). 
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7.3 Execution of the prescribed bigger parabolic tool path 

senes on()tolrraJJns grouped in 5.41 the initial and time instants during the first 

("upward") execution of segment (b) the prescribed parabolic curve (see 5.34). The 

tangential orientation of the platfonn is clearly visible from these photographs. 

Figure 5.41: First execution of segment (b) of the 

A close-up view 

parabolic tool path (see .. ,m" ..", 5.34). 

is shown in 

5.42. 


view of the executed segment (b) of the parabolic tool path 
5.34). 


5 
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Once c,c.(Tn-\,c.,,,t (b) has been traced, the is repositioned as in Section 5.7.2.1. The 

photographs grouped in 

instants dunng the execution 

show that 

(a) is traced. 

the prescribed curve 

orientation the moving 

Figure 5.43: Execution segment (a) of the bigger parabolic tool path (see 

The close-up view of the CPrMmpn,N (b) and ( a) shown in 

transition consecutive "pOTn/"ntQ 

time 

as 

the smooth 
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Figure 5.44: Close-up view ofthe executed segments (b) and (a) of bigger paraboJic tool path 
Figure 

of 

parabolic tool path '-''-''-'<1'''' 5.7.2.1), the planar ",,,,,"\,"1/''', 180' about its 

and so 5.34 can be traced the 

time, "upwards". 

The In 5.45 the initial and as well as an 

5.34). The laH.~\..lJuaL 

platform is from these "h'__tr.'rrr" .... hc 
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Figure Second execution of segment (b) of the bigger parabolic tool path (see Figure 5.34). 

completely executed parabolic tool path is shown Figure 5.42. In 

of nlPC'p_UtH'''' execution of this tool path, it is proportionally shaped and smooth, in 

A 

continuous prescribed tool path specified by 

5.46: Close-up view of the completely executed bigger parabolic tool path Figure 
5.30). 
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Chapter 6 

6 CONCLUSION 


In the optimization procedure developed in this study for the optimum operation of a re-configurable 

machining platform, the evaluation of the objective and constraint functions was done through the 

computer simulation of the dynamics of the device. For the actual optimization the simulation was 

coupled to a relatively novel and particularly robust optimization method (LFOPC). The resulting 

methodology was successful in yielding operational geometries for the re-configurable platform which 

are not only feasible in accommodating various specified trajectories, but also optimal with respect to the 

actuator forces required to produce the associated prescribed kinematics. 

The validity of the operational designs obtained via theoretical modeling, computer simulation and 

numerical optimization, was also physically verified through the execution of the non-trivial paths using 

an actual physically re-configurable device, designed and constructed for the purposes of the current 

study. The successful execution of the paths demonstrates the practical potential of the device since the 

paths represent complicated, and free-form planar machining tasks. 

In the light of the above, it is clear that the main objective of this study, namely the verification of the 

feasibility, both from a theoretical and practical point of view, of a novel proposed concept of a re­

configurable planar Gough-Stewart machining platform, has been achieved. The remainder of this 

chapter takes on the form of a detailed review and assessment of the accomplishments of this study. 

6.1 Computer simulation 

A special purpose computer program was developed in Chapter 2, that models the kinematics and the 

associated dynamical behavior of a planar Gough-Stewart platform. Coupled to this program, the 

trajectory-planning algorithm developed in Chapter 3, allows for the realistic simulation of the 

continuous motion of the platform. 
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6.1.1 Kinematic and kinetic modeling 

The above mentioned special purpose program, with which the kinematic and kinetic modeling of a 

planar Gough-Stewart platform may be done, was developed using the Newton-Euler approach as 

presented by Haug [66] and Nikravesh [65]. 

This dedicated program yields closed-form solutions for the inverse kinematics (positions, velocities and 

accelerations) ofthe seven moving bodies comprising the mechanism. With the positions, velocities and 

accelerations known, the special purpose program also provides closed-form solutions for the inverse 

dynamics of the mechanism. Here, the weight and inertia of each moving body, as well as the single 

external force acting on the mechanism, are taken into consideration to determine in the required input 

actuator forces. 

The single external force referred to is the cutting force resulting from the contact between the cutting 

tool and the workpiece during material removal. Here the program was successfully adapted to simulate 

either of two possible machining scenarios, i.e. either with the workpiece or the cutting tool externally 

fixed. 

6.1.2 OCAS trajectory-planning algorithm 

Although the OCAS trajectory-planning algorithm was specifically developed for implementation in 

conjunction with the above mentioned simulation program, its application is not limited to the planar 

Gough-Stewart platform under consideration. In fact, since all three planar DOF are catered for, the 

motion of the end-effector of any other planar mechanism can similarly be described. 

The results presented in Section 3.5 show that planar motion along test paths described by analytical 

non-linear functions may realistically be simulated, without compromising on the positional or 

orientational accuracy. Note that slight positional and orientational inaccuracies are inevitable since the 

approximating cubic splines are fitted in the time domain, while the nodal points, representing the 

prescribed path, are specified in the two-dimensional Cartesian domain. For all practical purposes, these 

discrepancies are negligible. 

Apart from specifYing the kinematics along test paths described by analytical non-linear functions, the 

OCAS-algorithm was also successfully used for trajectory-planning along a non-analytical test curve. 

The treble clef test curve was generated using a Non-Uniform Rational B-Spline (NURBS) with 

commercial Computer Aided Design (CAD) software. Here it was shown that an adequately refined set 

of nodal points along this curve is required to ensure sufficient accuracy for the kinematics. For the 

example, while the NURBS test curve was generated with 42 nodal points, the OCAS-algorithm requires 
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49 nodal points on this curve for a representation accurate enough to generate the associated kinematic 

description. 

For all test curves considered, continuous position, velocity and acceleration curves as well as the 

continuous orientation angle, orientation angular velocity and orientation angular acceleration curves are 

generated using the OCAS trajectory-planning algorithm. These continuous curves representing the 

kinematics, are essential input data to the simulation program modeling the kinematics of the planar 

Gough-Stewart platform. As a result of the continuous acceleration curves, the determined input 

actuator forces required for manipulating the moving platform along a prescribed path, are also 

continuous. 

Although the application of the OCAS trajectory-planning algorithm was limited here to computer 

simulation of planar motion, the increased research interest in bridging the gap between free-form design 

and actual machining, requires further investigation of its applicability to actual physical control. Since 

a planar Gough-Stewart machining platform is ideally suited to execute non-linear paths, it can 

theoretically be applied as a machining device for free-form trajectories. The real-time control of such 

an actual planar Gough-Stewart machining platform could be done by the OCAS-algorithm implemented 

as part of an open architecture controller. 

It should be added that, in principle, the OCAS trajectory-planning algorithm can also be extended to 

general three-dimensional motion-planning. 

6.2 Formulation of the constrained design optimization problem 

This study shows that an optimum relative positioning for a prescribed trajectory, as well as the 

associated planar Gough-Stewart platform geometry may be determined by the carefuljonnulation and 

solution ofan appropriate constrained optimization problem. 

In particular, the single criterion cost:fUnction introduced here is the minimization of the overall 

maximum magnitude actuator force, as the prescribed trajectory is traced. It is evident from the results 

presented in Chapter 5 that the use of this objective function successfully prevents the mechanism from 

encountering singular or near singular configurations with associated infinitely large actuator forces. 

The success of this approach is borne out by the moderate optimum objective function values, F(X'), 

obtained for all the prescribed trajectories. 
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In conjunction with the formulated objective function, non-trivial inequality constraint functions allow 

for the incorporation of additional design requirements. Hence, apart from the limitations imposed on 

the values of the design variables, inequality constraint functions are successfully used to limit the 

actuator leg lengths to within their allowable ranges. Furthermore, the complicated issue of prohibiting 

mechanical interference of the physical machine while in motion, is also achieved by means of inequality 

constraint functions. The effective formulation of the latter inequality constraints was made possible by 

the availability of closed-form solutions for the instantaneous positions of the individual bodies 

comprising the machining platform (see Section 6.1.1). 

A sound foundation having been laid for the trajectory-based constrained optimization problem 

considered in this study, and a logical next step, to be pursued in the near future, is to optimize the 

adjustable geometry and placement of a planar Gough-Stewart platform for different prescribed 

workspace requirements. 

6.3 The LFOPC-algorithm 

The study also served to reinforce confidence in the LFOPC optimization algorithm as a method to solve 

optimization problems of practical engineering importance. 

The optimization results have confirmed the LFOPC-algorithm's reputation as a robust method, capable 

of yielding accurate and reliable results despite the presence of numerical noise, the use of finite 

difference approximations, and discontinuities in the objective and constraint functions. In particular the 

discontinuities in the slope of the objective function, that occurred in this study due to switching of the 

maximum actuator force between the legs, presented no problem and reliable results were obtained with 

reasonable computational economy. The respective prescribed trajectories investigated in this study 

required an average of approximately 6 minutes computational time on a Pentium IV 1.5 GHz computer 

with 640 MB DDRAM before the LFOPC-algorithm converged to the respective optimum operational 

geometries. In each case, the optimum solution corresponded to the specification of very accurate 

convergence tolerances. The algorithm was successful in each application, handling the five variables 

and up to 22 physical constraints with ease, even when starting from a severely infeasible initial design. 

Since a standard initial design XQ was used for all the prescribed tool paths investigated, it cannot be 

stated with certainty that the determined local optimum design is indeed the global optimum for all cases. 

Although the determination of the global optimum may be important from a theoretical point of view, 

the fact that the proposed methodology provides local optimum solutions that are indeed feasibly 
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executable, and correspond to acceptably low objective function values, is considered the most 

important contribution ofthis study. 

The "analysis of convergence to the optimum" performed for the first five prescribed tasks was 

important, because it shed light on the functioning of the algorithm when applied to the class of design 

optimization problems considered in this study. Of particular importance was the finding that 

sufficiently accurate "engineering solutions" may be obtained by only applying phase 0 of the LFOPC 

algorithm. Considering the prescribed tasks investigated here, the percentage computational time that 

can be saved by using only phase 0, varies between 0 % and 62 % with an average of 30 %. Indeed, 

termination of the LFOPC-algorithm after phase 0, will produce a practically feasible and near optimum 

design. 

The robustness and effectiveness with which the LFOPC-optimization algorithm handles the formulated 

constrained optimization problem is best illustrated by the case of the "bigger parabolic tool path", 

investigated in Section 5.7. Here the prescribed tool path cannot be continuously traced because of the 

physical limitations of the planar test-model. As a result, the LFOPC-algorithm yields a best 

compromised design. The compromised design, although infeasible, is invaluable in pointing out which 

inequality constraints are violated, and to what extent. It was shown for the "bigger parabolic tool path" 

that by analyzing the relevant information provided by the compromised solution, a rational piece-wise 

execution strategy can be determined for the successful and optimal execution of the complete path. 

Consideration of the above mentioned factors, as well as previous successful experience in the LFOPC­

algorithm [64], motivated its usage in solving the currently formulated constrained optimization 

problems. No other optimization algorithms were tested or applied in this study. 

6.4 	 The adjustable geometry planar Gough-Stewart platform test­

model 

The adjustable capability required for the proposed concept was successfully implemented in the design 

of the test-model. The test-model's demonstration capability is however limited to tracing different 

prescribed tool paths on an externally fixed workpiece. This machining option is considered more likely 

to be used in practice, since the alternative option of mounting the workpiece to the moving platform is 

limited by the size and weight of the workpiece that can realistically be mounted on the moving 

platform. 

Chapter 6 	 223 



CONCLUSION 

The prescribed trajectories were successfully traced simply by controlling the required variation of the 

actuator leg lengths. These lengths are found by solving the three closed-form inverse kinematic 

equations relating the position and orientation of the moving platform to the actuator leg lengths. The 

position and orientation of the moving platform follows directly from the prescribed trajectory, and 

hence the required actuator leg lengths may easily be determined. 

To further extend the practical application of the proposed planar Gough-Stewart machining platform, its 

(open architecture) control software will have to be adapted to enable the direct manipulation of the three 

DOF of the moving platform. Such a capability would however require knowledge of the maximum 

possible workspace. This raises the possibility of incorporating the ranges of configurability as design 

variables in an extended optimization methodology. Hence, the foreseen extended optimization system, 

in which the geometry ofthe workspace may be prescribed, should eventually also include the maximum 

ranges ofre-configurability capabilities of the mechanism as possible additional design variables. 

Even though the test-model was not calibrated, visual inspection shows that the actual executed paths 

closely resemble the prescribed trajectories. The positional error of the moving platform is evidently 

very small compared to the overall size of the respective paths. This shows that a practical adjustable 

machine tool, corresponding to the design proposed and demonstrated in this study, may confidently be 

applied to the execution of machining trajectories intended for the rough material removal in the 

manufacturing of moulds. 

In order to eventually fully exploit the inherent accuracy characteristics of the Gough-Stewart platform 

type machine too], a calibration strategy remains to be developed, especially if the manipulator is 

frequently to be re-configured in order to accommodate differently specified trajectories. 
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Appendix A 

A DERIVATION OF THE PLANAR EQUATIONS OF 

MOTION 

A.1 Newton's second law 

Kinetics is the study of motion and its relationship with the forces that produce the motion (see [65]). 

The simplest body arising in the study of motion is a particle, or point mass, defined by Nikravesh [65] 

as a mass concentrated at a point. According to Newton's second law, a particle will accelerate when it 

is subjected to unbalanced forces. More specifically, Newton's second law as applied to a particle is 

(Al) 

where i, m Cp
) and it respectively represents the total force acting on the particle, the mass of the 

particle and the acceleration of the particle (see Figure AI). 
(p) 

m 

z 

Figure A.1: A particle moving in a global coordinate system (after [65]). 

Since f and a are three-dimensional physical vectors, they may be represented as three-vectors in the 

global fixed coordinate system, i.e. i: f =[f(x) ,fey)' fez) r and a: a [a(xpa(y)' a(y)]T. The position 

vector r shown in Figure Al locates the particle in the global coordinate system and is represented in 

the global reference frame by r [X,y,Z]T. The acceleration a of the particle is the second time 
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derivative of the position vector, i.e. a =r [x,y, Z]T , and the global representation of expression (AI) 

therefore is 

(A2) 

For a system of p particles, the application of expression (A2) may be extended to describe the motion 

of each particle i, i = 1,2, ... , P in the system, i.e. 

1,2,...,p (A3) 


where fi is the global representation of the total externally applied force if acting on particle t, and fij is 


the global representation of the internal force fij extended by particle j on particle i. Note that fli = ij . 


Summing expression (A3) over all p particles in the system results in 


(A.4) 

and since fij =-fji (Newton's third law), it follows that IIfij =0, and consequently expression (A4) 
i~1 j=1 

reduces to 

~m(P)r =~f 
1 

(A.S)L ILl 
i::::1 1=1 

or simply 

mr=f (A6) 

where m =Im;pJ is the total mass ofthe system ofparticles, 
i=) 

r = ~t m;P)rj is the center ofmass of the system ofparticles, and 
m 1=1 

f LP 

fj is the total external force acting on the system ofparticles. 
i:;:1 

The translational equation of motion of a system of particles (A6), also holds for a general continuous 

rigid body or continuum, the center of mass ofwhich is given by 

r=~ JrPdm (A7) 
m vol 

where r P locates an infinitesimally small mass element dm as shown in Figure A2. 
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C 

z 

Figure A.2: A body as a collection of infinitesimally small masses (after [65]). 

Since vector r P is the sum of two vectors r P r + s, it follows that 

r= 1 JrPdm 
m vol 

=~ J(r+s)dm 
m vol 

r+~ JSdm 
m vol 

which implies that 

Jsdm=O (A8) 
vol 

and talcing first and second order time derivatives gives 

fsdm;:=O (A9) 
vol 

and 

fSdm 0 (A 10) 
vol 

A.2 Planar equations of motion 

For the purposes of analyzing a planar machining center it is required to derive the planar equations of 

motion. Consider Figure A3 showing an external force ( acting on the i-th particle of a system. For 

planar motion, the center of mass C of the system remains in the Gxy-plane, and coincides with the 

origin 0 of the body-fixed ~TJ~ -coordinate system. The centroidal body-fixed ~TJ~ -coordinate system is 

chosen in such a way that the ~ -axis is parallel to the z-axis. Note that the origin of the global xyz­

reference frame is denoted by G. 
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z 

Figure A.3: Rigid body experiencing planar motion. 

A.2.1 Planar translational equations of motion 

The first necessary condition for the system in Figure A3 to experience planar motion in the Gxy-plane, 

is that the external force f; must be parallel to the xy-plane of motion, which is only possible if the z-

component fi(z} of the force f; is zero (see [65]). 

More specifically, expression (A6) gives the two planar translational equations of motion, for the 

system shown in Figure A3: 

(All) 

and 

(AI2) 


with of course f(z) == 0 . 

Expressions (A. II) and (AI2) may also be combined in matrix form: 

[
m 	 O][~] [fIx)] (A.l3)
o m_ y flY} 

with 	 m representing the total mass ofthe system, 

x and y respectively representing the x- and y-accelerations of the center ofmass C, and 

f(x) and fly) respectively representing the x- and y-components of the total external force acting 

on the mass system. 
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A.2.2 Planar rotational equations ofmotion 

The second necessary condition for the system in Figure A3 to experience planar motion, is that it is 

only to rotate about the s-axis (see [65]). This rotation is due to the resultant moment about C of the 

external forces acting on the system. Since the s-axis is parallel to the z-axis, the global representation 

of the resultant moment of the forces about C must, for planar motion, only have a z-component. 

Consider the moment about G as a result of the external forces -( and :tfu acting on particle i (see 
j=! 

Figure A3): 

(Al4) 

With particle i located in the global reference frame by 

iP=r+s (A15), , 

the global representation of expression (Al5) is 

(A16) 


Hence, expression (Al4) may be represented in the global reference frame by 

n~ ~P(f, +:tfi) (AI7) 
H 

with i;P representing the expansion of riP into a skew symmetric matrix, i.e.: 

(Al8) 

Substituting expression (A3) into (AI7) yields 

G-~P(f ~f)-~P( P"P)n l -rj 1+ L Ij -lj mlrl (A19) 
j=! 

Summing expression (A19) over all i =1,2,... , p, gives the sum of the moments with respect to Gas 

n G=~'iPf +~~'iPf =~'iP(mPrP)
2..1 I 1) ftLLf Ll (A20) 
I=! i=! j=! I=! 

However, since i;Pfjj:::: -i;Pfj, (see expressions (AA) and (A5)), it follows that IIi;Pf.j =O. 
I=! j=1 

Furthermore, expression (AI6) implies that 

(A21) 

Expression (A20) may therefore be written as 
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DG ='if + ~s.f =~mpr.Pj=PLil L II! 
(A.22) 

i=l i::::d 

P 

where ~);f; =D the sum of the moments ofthe external forces about C. 
;=1 

For a continuous body, m; represents an infinitesimally small mass element dm, i.e. mr == dm, and 

therefore expression (A.22) becomes 

DG =if + n:::: ffPj=Pdm (A.23) 
vol 

with the position of the center of mass of the continuum r given by expression (A. 7). 

Since the center ofmass of the body under consideration is to remain in the Gxy-plane , the z-component 

of r is identically equal to zero, i.e. r:::: [x, y, or. The expansion of r into a skew-symmetric matrix is 

therefore 

(A.24) 


The force, f in expression (A.23) is the global representation of the resultant external force acting on the 

body, and nG and D respectively represent the resultant moment of the external forces acting on the body 

about the origin of the global reference frame G, and the center ofmass of the body C. 

In satisfying the second necessary condition for planar motion, the expansion of expression (A.23) may 

only yield a single non-zero scalar equation corresponding to the z-component of the resultant moment 

acting on the body with respect to G: 

n~) xf(y) - yf(x) + n(z) :::: [ JiPj=Pdm] (A.25) 
vol (z) 

From expression (A. 16) it follows that for a continuous body 

P (A.26)r r+s::::[~J+[:;::l
z s(z) 

with first and second time derivatives given by rP=r+s=[x,y,zr+[s{x),s(yps(Z)r and 

Substituting expression (A.26) into the right hand side ofexpression (A.25) results in 
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n~) xf(y) yf(x) + n(z) [I(r + s)(r + S)dm] (A27) 
vol (2) 

From expressions (A8) and (A10) it follows that Isr dm := 0 and Irs dm := 0, and therefore 
vol vol 

expression (A27) reduces to 

n~) xf(Yl yf(x) + n(z) =x(my) - y(m.x) + Is(x)s(y) - s(y)s(x) dm (A28) 
vol 

From expressions (All) and (AI2) it also follows that xf(y) yf(x) x(mY)-y(m.x), and therefore 

(A28) becomes 

n(z) = I[s(x)s(y) -s(y)s(x)]dm (A29) 
vol 

For general three-dimensional motion, the above argument would give 

n Issdm (A30) 
vol 

where s represents a skew-symmetric matrix of the form 

(A31) 

Nikravesh [65] shows that 

ss -ssm rossco (A.32) 

with co:= [co(X) ,COry)' co(z) r the global representation of the angular velocity vector. 

In agreement with the second necessary condition for planar motion, the body shown in Figure A3 that 

rotates only about the t;-axis, has an angular velocity vector of which only the z-component may be non­

zero, l.e.: 

(A33) 

with co(z) := <i> (see Figure A.3). 


Consequently, the skew-symmetric matrix ro in (A32) is given by: 


(A34) 


The time derivative of expression (A33) is 

m=[0,0, oo(z) r (A35) 

with 00(2) =<l> . 
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Hence, by substituting expressions (A.33) - (A.35) into the right hand side of expression (A.32), and 

isolating the third component ofthe resultant vector, gives for planar motion: 

(A.36) 

Since for planar motion, the t;-axis is parallel to the z-axis (see Figure A.3), it follows that: 

(A.37) 


Substituting expression (AJ7) into expression (A.29) finally gives 

n(z) =$J(s~~) + s~l]») dm (A.38) 
vol 

The integral in expression (A.38): 

j~~ = J(s~~) + s~Tj») dm (A.39) 
vol 

is called the mass moment of inertia ofthe body about the t;-axis through C. 

Finally substituting expression (A.39) into expression (A.38) gives the planar rotational equation of 

motion: 

(A.40) 

Note that the global representation of the angular velocity vector (0 =[O,o,~y is equal to the local 

representation of the angular velocity vector (0' =[O,o,~y . 
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FLOWCHART OF THE OCAS TRAJECTORY-PLANNING METHODOLOGY 

IOCAS 

t t 


No' 

Are the initial and final gradient 

conditions met? (see Section 3.2) 

IUser Inputs I 

~ 
Enter the nodal points 


(P, =(x"y,),i=O,l, ... ,N} 


• 
 Are the cubic arc c~nditions met?~ 

(see Section 3.1.1.1) 

I Nol 

I Computer code outputs I 

1 

Detennine ~ or dx at Po and PN using 1 

dy
Taylor expansions (see Section 3.2) i 

~ 

Detennine the 4 unknown coefficients of 

each interpolating polynomial p,(x) or p,(y) 

for i = 1,2, ... ,N (see Section 3.1.1.1) 

1 lDetermine the path length of each consecutive cubic arc s, for i = 
1 Simpson's composite rule (default n 20) 

! Enter the number of subintervals for I 

1,2,... ,N using Simpson's composite rule (see Section 3.1.1.2) . 

~ 
1Detennine the total path length S (expression (3.25» 

1 
ISpecify the central tangential speed v' and maximum I .1· Detennine the dependence ofthe curve length on 

i allowable tangential acceleration SALWW I i 
parameter t (see Sections 3.1.1.3 & 3.3) 

1 
Detennine the corresponding nodal times t" i 1,2,... ,1\-1, using 

the Newton Raphson iterative method (see Sections 3.1.1.3 & 3.3)1 

Detennine approximates for X(O) or YeO) and 
Yes 

X(TIII) or Y(l'lll) using Taylor expansions (see 

Section 3.1.2~)_____---l 

Generate cubic spline representations for XCt) and yet) 

Specify fixed Specify the angular Detennine the approximate gradient angle at cach nodal 
r--------~ 

orientation angle tV", offset tV,""" point, and consequently also the orientation angle tV, atr 
----r----.... 

I 

I 
 each t" i = 0,1,2, ... ,N (see Section 3.4) 
,I 
,I , 
I 

:,,,,, 
,I 
I 

,I 

, I 
 Generate a cubic spline representation for tjl(t) 
I 

,I 
I 

'i. , ,S;;pe:;:;:;Ciif,fy-:t;i;h:;e-;;n;;u~m.hbe;'r:-;o~f:;;aJdd::iiii;iti~on~a~li.in;;;t::;enn~e::id:;;ia;;;te:l----+lr-Subdivide-i'heti-me-span ove~-eaclllntervalt;:'-t~~:i --1I ~~.~N(0'-: 
time instants n",", (default n""" = 10) 1 obtain n""" additional intennediate time instants for plotting the i 

1 results (see Section 3.5): Y vs X, set), set), set), i
II.. i------~---------_J

i X(t), X(t) XCt), Yet), Yet), Yet), i tjl(t), tjl(t), tV(t) 
L ________________________________________ ~J"________ 

Figure B.1: OCAS flowchart. 

* See detailed flowchart in Figure 8.2 
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Determine the dependence of the curve length on parameter t (see Sections 3.1.1.3 & 3.3) 


iIsolate nodal point NM'D (see Section 3.3.2) 


+ 
Detennine time instant T M'D and the 4 unknown coefficients of the cubic 

polynomial function in time s,(t) specifying 5,(TMID) v' (see Section 3.1.1.3) 

+ 
Determine time instant T MID and the 

4 unknown coefficients of the cubic 

polynomial function in time s,(t) 

specifying sICO} =SALLOW (see 

Section 3.3.2.2) 

I 
i 

+ 
Detennine VMID (expression (3.34» I 

•Detennine time instant TllI and the 

4 unknown coefficients of the cubic 

polynomial function in time sm(t) 

specifying 5",(T MID) V"'ID (see 

Section 3.3.2.2) 

~ 
IDetennine initial acceleration s,(O) (expression (3.25» 

~ 

No Is central speed v' attained at nodal Yes 

Set i = I 
point NMlD such that s,(O) :S SALLOW 

"'I Shift node N, to coincide with node NMID-i 

+ 

Detennine time instant T, and the 4 unknown coefficients of the cubic 

polynomial function in time s,(t) specifying s,(T,) "" v· (see Section 3.1.1.3) 

+IDetennine initial acceleration SI(O) (expression (3.25» 

~ 
Yes ',,~"" 'P'''' "It,;"'" ~' """I ~ Seti = i + 1 

point N, such that s,(O) :;; SALLOW 

I Shift node N, to coincide with node NMID-i+' 

~ 
Detennine time instant Tl and the 4 unknown coefficients of the cubic 

polynomial function in time s,(t) specifying s,(T,) = v· (see Section 3.1.1.3) 

+I Setj = I I 

+ 
1 Shift node Nil to coincide with node NMID+; I 

+IDetennine time instant TIl (see Section 3.3.1) 

+ 
Determine time instant TlIl and the 4 unknown coefficients of the cubic 

polynomial function in time sm(t) specifying slll(TIl) v' (see Section 3.3.1) 

+IDetennine final acceleration lS-m(Tm)1 (expression (3 AI» 

Yes I, "",d~I~. from i ".""" po;.tN.• to "'" " ~ ISetj = j + 1 
nodal point Nmsuch that l;im(TllI)1 :S SAU.OW possible? 

I Shift node NIl to coincide with node NMlD+j-l I 

+ 
Detennine time instant T, and the 4 unknown coefficients of the cubic 

polynomial function in time s,(t) specifying s,(TI) v' (see Section 3.1.1.3) 

Figure B.2: Detail flowchart of determining the dependence of the curve length on t. 
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Appendix C 

C THE LFOPC MATHEMATICAL OPTIMIZATION 

ALGORITHM 

C.1 Background 

The dynamic trajectory method (also called the "leap-frog" method) for the unconstrained minimization 

of a scalar function F(X) of n real variables represented by the vector X =[XI' X 2 , ••• , Xn r was 

originally proposed by Snyman [64, 74]. The original algorithm has recently been modified to handle 

constraints by means of a penalty function formulation. (Snyman et al [75, 76]). The method possesses 

the following characteristics: 

• 	 It uses only function gradient information VF(X). 

• 	 No explicit line searches are performed. 

• 	 It is extremely robust and handles steep valleys and discontinuities in functions and gradients with 

ease. 

• 	 The algorithm seeks low local minimum and can therefore be used as a basic component in a 

methodology for global optimization. 

• 	 The method is not as efficient as classical methods on smooth and near-quadratic functions. 

C.2 Basic dynamic model 

The algorithm is modeled on the motion of a particle of unit mass in a n-dimensional conservative force 

field with potential energy at X given by F(X) . At X, the force on the particle is given by 

a=X -VF(X) 
(C.l) 

from which it follows that for the time interval [0, t] : 

2 2 
+llx(t)11 -+IIX(0)11 F(X(O») F(X(t») 

(C.2)T(t)- T(O) =F(O) F(t) 
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or 

F(t) +T(t) constant {conservation of energy} 

Note that since ~F = -~T as long as T increases F decreases. This fonns the basis of the dynamic 

algorithm. 

C.3 LFOP: Basic algorithm for unconstrained problems 

Given F(X) and a starting point X(O) == XO 

• 	 Compute the dynamic trajectory by solving the initial value problem (NP) 

X(t) = -V'F(X(t») 

X(O) =0, X(O) = XO 	 (C.3) 

• 	 Monitor X(t) == v( t). Clearly as long as T == t Ilv( t)11
2 

Increases F(X(t») decreases and descent 

follows as required 

• 	 When IIv(t)!! decreases apply some interfering strategy to extract energy and thereby increasing the 

likelihood of descent. 

• 	 In practice a numerical integration "leap-frog" scheme is used to integrate the NP (C.3). Compute 

for k = 0,1,2, ... and time step ~t 

X k 1 X k + vk 
+ ~t 

(CA) 
V k+1 =v k +ak+l~t 

whereak=-V'F(X k 
), V 

O taO~t 

• 	 A typical interfering strategy is: 

else 

Vk+l + vk 

set vk =--­ (C.S)
4 2 

compute new V
k 
+ 

1 and continue. 

• 	 Further heuristics are used to determine an initial ~t, to allow for magnification and reduction of ~t, 

and to control the step size. 
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C.4 LFOPC: Modification for constrained problems 

Constrained optimization problems are solved by the application, in three phases, of LFOP to a penalty 

function formulation of the problem [64, 76]. Given a function F(X), X E mn with equality constraints 

Hi (X) := 0 (i:= 1,2, ... , p < n) and inequality constraints C /X) S; 0 (j 1,2, ... , m ) and penalty parameter 

/-L» 0 , the penalty function problem is to minimize 

P(X,/-L) =F(X)+ IIlH~(X) + Ipjc:(X) (C.6) 
i~1 j~1 

o if G/X) S; 0 
where Pj { 11 if Gj(X»O 

Phase 0: Given some Xo, then with the overall penalty parameter 11 = 110(= 102 
) apply LFOP to 

P(X,llo) to give X'(llo) 

Phase 1: With XO X'(llo), 11::::111 104 
) apply LFOP to P(X,IlJ to give X'(IlI) and identify 

active constraints ia =1,2,... ,n.; gi. (X' (Ill »)> ° 
Phase 2: With XO :::: X' (/-LI) , use LFOP to minimize 

p.(X,IlI) IIlIH:(X)+ IllIg:' (X) (C.7) 
j=1 fl=l 

to give X· . 
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Appendix D 

D PHYSICAL SPECIFICATION FOR SIMULATION AND 

OPERATIONAL CONSTRAINTS OF THE TEST-MODEL 

0.1 Introduction 

This Appendix describes the physical specifications required for simulation of the motion of the test­

model. In addition it deals in detail with the incorporation of further physical constraints to prevent 

mechanical interference during the operation of the test-model. 

0.2 Physical specifications for simulation of the test-model 

A photograph of the test-model is shown in Figure D.I. Figure D.2 is a scaled two-dimensional view of 

the test-model where the eight bodies comprising the mechanical system are numbered in accordance 

with Figure 2.5. 

Figure D.l: Photograph of the test-model 
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111 

t 


y 
I 

11 -

E 


I, 

,I 

Figure D.2: representation of the test-model as a mechanical system of eight 
bodies. 

D.2.1 Operational geometry 

Note that the same variables X = ]T , introduced in ...... F'(''' 4.2.1, are used ..m 

to describe adjustable operational o p.r.rnP,i'nl of the physical test-model. 
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fixed tool tip relative to revolute joint D. 

Finally variable Xs the t'lprU1P,>n revolute D and so for 

C, D and E are by Pyn,rp",,,,,,., (4.3): 

+ +X 5 ), )) . 

D.2.2 Local coordinates 

Given a tool path, as well as an operational geometry X == [X I ]T , the physical 

simulation purposes, the global 

PHYSICAL SPECIFICATIONS FOR SIMULATION AND OPERATIONAL CONSTRAINTS OF TEST-MODEL 

variable X I indicates the between revolute joints A and B on the platform. 

center of mass the moving platform is taken as lTl1flUl<nl h,>hXlPpr\ joints A and hence 

X 
== - -t and i;~ == 2 

Note that the absolute revolute Don tubular rails is fixed. 

X 2 , and X 4 therefore determine the relative position of the global Oxy -coordinate 

relative to positionally revolute joint D. More 

relative to revolute joint and y 0 is at to jointD. 

For the fixed Section 2.4.1 and 2.6.4.2.1, the tool is specified in terms 

in design variables X 2 , and shiftof a 

the position of the to joint D. 

use of the test -model is Iimi ted to the of paths "..,,,,,","',","" in the 

workpiece. With an of the test-model it would also to u"",uv",,, the 

operation fixed tool scenario as in Sections 2.4.2 and 2.6.4.2.2. 

For the fixed tool case, the fixed tool "~<,,-.,t,,,,,,, in terms of local 

-coordinate system, and a change in design and X 4 will vary position of 

motion the test-model platform may simulated to find the overall maximum 

ISobjective function actuator 

in Section 4.2.2. 


In evaluating objective function Section 4.3.1), the inverse kinematic 


fonnally 


of the test-model 

that the global coordinates revolute joints C, D and E, as well as the local 
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;: be The coordinates of joints C, D and E are , ':)2 ' 

by substituting the specific values of the into PVYWP,o<, (4.3) also 

last D.2.l). The value of design variable Xl of 

coordinates in the D.2.I. 

Corresponding to of -coordinate system, i == IS to 

coincide with center and 

L"':>'-111'JU'-'1.of components that up individual body of the positions of each 

body's center mass may be calculated. With reference to Figure 0.2, the local 

the """'-rYl (VI are 

== 0.1904 m == 1m =O.l751m 
(D.1) 

0.050m s~ O.050m O.050m 

evaluation the objective function, furthermore solving the inverse dynamic equations of 

motion (expression (2.124)) the unknown multipliers and actuator ff Section 

4.3. 

D.2.3 Gravitational and frictional external forces 

entries constant mass matrix M in F'Yrwp,;:<;: (2.124) consist the 

masses and moments of the individual bodies (see Chapter 5), and may 

determined known and the parts body. With 

to the numbered bodies D.2, the entries of the mass matrix Mare 

(D.2) 

with 

M= 2.1 O.0829fI 

Ml = [0.7671, 0.7671, 0.0355]T 

M, [0.5696,0.5696, o.0263f 

M4 ==[0.8341,O.8341,O.0377f 

M 5 = = M7 = [3 6.17 x 1 r 
Ms= O,Or 

and In units. 
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The vector of lrnown extemal forces g (k) in expression (2.124) consists of the cutting force g~ cutting r) 

acting on the moving platform (body 1) and the weights of individual bodies comprising the planar 

Gough-Stewart platform g ~gravilY ) , i = 1,2,... ,7 (see expression (2 .124)). 

With the masses of the individual bodies of the platform test-model lrnown (see Chapter 5), their 

respective weights follow from expression (2 .104), i.e.: 

g~grav i I Y) = [0, - 20.842 N, Or 

g ~gravit Y) =[0, -7.526 N, or 

g ~gravi tY) =[O, -5.588N, Or 

g ~g, av i tY) = [0, - 8.182 N , or 

(gr.vily) = g (graviIY) = g (gravitY) = [0 _ 30 141 N O]T
g 5 6 7 ,. , 

The platform test-model represents a special case of the fixed work-piece scenario, with a zero tool 

length 11~ = 0 (see Section 2.4.1). This is because the pen, used for demonstration purposes, is mounted 

on the moving platform (body 1) at local coordinates (~, 11)1 = (0, 0). 

The cutting force g ~cuttingr ) of the fixed workpiece case is described in Section 2.6.4.2.1 . Note that the 

cutting force is modeled as a friction force, the magnitude of which is linearly dependent on the 

magnitude of the cutting velocity (see expression (2.107)). The moving platform of the test-model 

experiences frictional forces, not only as a result of the pen tracing the prescribed tool path on the 

Perspex side panel, but also because of the spring loaded lateral stiffeners (see Chapter 5) sliding 

against the Perspex side panels during the motion of the moving platform. 

The magnitude of the resultant frictional force may be measured by means of a simple experiment using 

a spring balance. In particular, the moving platform is disconnected from the three actuator legs, and 

hung unto a string. The experiment is executed by connecting the moving platform to the spring 

balance, and pulling the moving platform in a horizontal direction while the pen and spring loaded lateral 

stiffeners slide against the Perspex side panels. While moving at a constant speed along a lrnown 

distance, the "constant speed motion" time and spring balance reading are measured. 

Since the string supporting the moving platform is very long (1.38 m) compared to the horizontal 

motion (80 mm) of the moving platform, the vertical displacement of the moving platform may be 

neglected, hence the reading on the spring balance approximately equals the resultant frictional force. 
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Figure D.3: The experimental setup for measuring the frictional force using a spring balance. 

Figure D.3 shows a photograph of the expellmental setup used to measure the resultant frictional force 

on the moving platform using the spring balance. Table D.1 lists the readings that were obtained, as well 

as the calculation of the average cutting force constant, C cut ' The reasonable assumption is made here 

that the friction forces acting on the moving platform may be merged and simulated as a single cutting 

force (see Section 2.6.4.2.1). In order to determine the average cutting force constant, Celli used in 

expression (2.107), the experimental constant speed translations listed in Table D.1 were also measured 

and timed to yield the magnitudes of the constant speeds. 

Spring balance 

reading 

No. 

Resultant 

friction force 

[N] 

Distance 

[mm] 

Time 

[s] 

Constant 

speed 

[m/s] 

Ccut 

[Ns/m] 

1 7.85 80mm 3.74 0.02139 366.894 

2 9.81 80mm 1.54 0.05195 188.843 

3 11.28 80mm 1.13 0.07080 159.351 

4 8.34 80mm 3.57 0.02241 372.106 

5 9.81 80mm 1.23 0.06504 150.829 

6 10.3 80mm l.39 0.05755 178.971 

7 11 .77 80mm 0.77 0.10390 113.306 

8 8.34 80mm 3.17 0.02524 330.413 
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9 9.81 80 rum 1.42 0.056338 174.128 I 

10 11.28 80 rum 1.39 0.05755 196.016 1 

11 10.79 80 rum 1.17 0.06838 157.818 I 
12 7.85 I 80 rum 3.43 0.02332 336.483 

13 8.83 80 rum 4.16 0.01923 459.108 

14 19.81 80 rum 1.58 0.05063 193.748 

15 8.34 80 rum 4.89 0.01636 509.691 

16 9.81 80 rum 1.71 0.04678 209.689 

17 11.28 80 rum 1.01 0.07921 142.429 

Average 249.4 

Table D.I: Experimental readings in determining the average "cutting force constant". 

The average value for Ceut as detennined from the experimental measurements is 249.4. The specific 

value used in all for the simulations ofthe motion of the platform test-model, is 250. 

0.3 	 Specification of the physical operational constraints of the 
test-model 

In illustrating the optimization methodology, the configurational constraints (expressions (4.5) and 

(4.6)), relating to dimensional limitations ofthe individual components of the manipulator, were the only 

inequality constraints specified to ensure a feasible design for the hypothetical planar machining center. 

For the real test-model some of the physical limitations of the planar mechanism may also be 

incorporated in these configurational constraints, while others, specifically those relating to the 

prevention of mechanical inteiference, must be dealt with separately. 

In this section, the latter constraints are first explained in general terms below, followed by a 

categorization of the test-model physical limitations, and an explanation of the necessary inequality 

constraints with which a feasible test-model design may be obtained. 

D.3.1 	 Inequality constraint speCification for the prevention of mechanical 
interference 

In general the instantaneous perpendicular distance between a line in body j and a point in body i may 

easily be detennined for the special case where the line is parallel to the 1;-axis of body j. 

Consider for example Figure D.4 showing the schematic representation of bodies i and j experiencing 

planar motion. 
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Q(j) 

Figure D.4: Schematic representation of bodies i and j experiencing planar motion. 

It is assumed here that the following are known: 

1. 	 the instantaneous positions and orientations of respective bodies i, qj [rT ,cj>]; =[x,y,cj>]; , and 

j, qj =[rT ,cj>]r [x,y,cj>]r, as defined by expression (2.2). 

2. 	 the fixed local coordinates ofpoint P in body i, (~p, II p} ,and 

3. 	 the fixed local ll-coordinate ofline QR in body j, ll?R 

Using the transformation given by expression (2.1), the instantaneous global x- and y coordinates of 

point P may be determined, i.e., 

(D.3) 
P ):p . '" P '"Y 	 =Yi+':IiSITI'I';+lljcos'l'i 

The instantaneous ll-coordinate of point P relative to the local coordinate system ofbody j, llr, may also 

be determined using the inverse of the transformation given by expression (2.1), I.e., 

(D.4) 


. ~I [coscj>j sincj>j]wIth A. = 	 . 
J - sincj>j coscj>j 

Substituting sf rt - rj (see expression (2.1)) into expression (D.4), yields 
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and therefore 

(D.5) 


Hence, the instantaneous perpendicular distance between line QR and point P is given by 

s: n - n Q 
u p_ QR '1 J

P 
'1 J

R (D.6) 

Note that for the relative positioning ofbodies i and j shown in Figure DA, 0p_QR will become smaller as 

the two bodies move closer to each other. Hence, if the two bodies shown in Figure DA move relative to 

each other over a time interval [0, T] = [0,TMtime], the instantaneous perpendicular distance 0p_QR 

(expression (D.6» may be monitored at discrete time instants tj to find the overall minimum 

T
perpendicular distance, i.e. O~~R min[op_QR (t)] for tj = jLlt; j =0,1,2,... , M time ; where M time 

J Llt 

and Llt is a suitably small chosen monitoring time interval. 

The alternative relative positioning of bodies i and j is shown in Figure D.5. Here the instantaneous 

perpendicular distance 0p_QR (expression (D.6» becomes larger as the two bodies move closer to each 

other. Hence, if the two bodies shown in Figure D.5 move relative to each other over a time interval 

[O,T] =[0, TMtime], the instantaneous perpendicular distance Op_QR (expression (D.6» may be monitored 

at discrete time instants t j to find the overall maximum perpendicular distance, i.e. 

max[Op_QR (t)] for tj as defined above. 
J 
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1'"\j 

(j) Q 

~j 

p 

0; 

Figure D.S: Schematic representation of bodies i and j experiencing planar motion (alternative 
relative positioning of the two bodies). 

With the judicious selection ofpoint P on body i, and points Q and R on body j, mechanical interference 

between bodies i and j may be prohibited for both situations as depicted in Figure DA and Figure D.5 

respectively: Firstly, an allowable perpendicular distance 1.s~~;RI is chosen. Secondly, one of the 

following two inequality constraints is specified: 

l.saliOWP-QR I<.smin- P-QR (D.7) 

or 

.s maxP-QR <-I.sallow- P-QR I (D.8) 

Inequality constraint (D.7) is used for the relative positioning of bodies i and j as shown in Figure DA, 

while inequality constraint (D.8) is used for the relative positioning of bodies i and j as shown in Figure 

D.5. 

D.3.2 Linearly adjustable revolute joints 

The configurational constraints limiting the allowable relative distances between the linearly adjustable 

revolute joints of the fixed base (Xl and Xs) and the moving platform ( X I ) (see expression (4.5)) are 

directly applicable on the physical test-model. With reverence to Figure D.6 showing the adjustable 

capability of the test-model, the specific bounds (given in meters) on design variables XI' Xl and Xs 

are 
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0.1 ~ XI ~ 0.45 

0.1l3~X2 ~0.465 (D.9) 

0.113~X5 ~0.27 

XI '= 0.1 

r--~ 

l~ 

Figure D.6: Adjustable capability of the test-model. 

The lower and upper bounds specified in expression (D.9) correspond exactly to the lower and upper 

bounds that were specified for the optimization test run of the hypothetical planar machining center (see 

expression (4.14»). Hence, in agreement with the inequality constraints given by expression (4.7), the 

first six inequality constraints used to ensure a feasible test-model design, are 

CI(X) =' XI-0.45 ~ 0 

C2(X) =' 0.1- XI ~ 0 

C3 (X) =' X2 -0.465 ~ 0 
(D. 10) 

C4 (X);: 0.113- X2 ~ 0 

Cs(X);: Xs 0.27 ~ 0 

C6 (X) 0.1l3-Xs ~O 

D.3.3 Extreme motion constraints 

The extreme motion of the hypothetical moving platform is bounded by the allowable minimum and 

maximum actuator leg lengths (see expressions (4.6) and (4.8»). On the other hand, the motion of the 

physical moving platform is to be confined within the four frame boundaries represented by the four 

sides of rectangle FGHI as annotated in Figure D.7. 
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I I 
! 

spring loaded 
lateral stiffener 

0.6 

D 

.~~...-~- .. --...--­ .-...---­ ..~~-------.-..-­ .. ­ .. -~-.. --­

Figure D.7: Frame boundaries FGID. 

D.3.3.1 Upper frame boundary 

The upper frame boundary (line HI) cannot be exceeded by the lateral stiffeners on the moving platform 

with specification that the allowable maximum actuator leg length f\ for all three actuator legs 

k =1,2,3 is 0.525 m. Figure D.8 serves to illustrate this fact. 
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Figure D.S: Scaled two-dimensional view of an actuator leg extended to its maximum allowable 
leg length. 

Test-model inequality constraints 7-9 are given by 

C 7 (X) == e;mx (X) -0.525 S; 0 

Cg (X) err;' (X) - 0.525 S; 0 (D.11) 

C9 (X) == e~(X)-0.525 s;0 

where the overall maximum leg lengths for any prescribed path are given by e~ (X), k = 1,2,3 as 

explained in Section 4.3.2. These constraints (expression (4.8» correspond exactly to the constraints 

Ck+6 (X) == e~ (X) - 0.525 S; 0, k 1,2,3 specified for the optimization of the hypothetical platform see 

expression (4.8). 

D.3.3.2 Lower frame boundary 

The lower frame boundary of the test-model is represented by line FG in Figure D.7. Here it is 

important to prevent mechanical interference between the moving platform and the bottom frame cross 

members indicated by shaded regions a and b in Figure D.7. Line FG coincides with the top plane of the 

two bottom frame cross members. 

With the moving platform in a horizontal orientation, the bottom ends of the adjustable brackets of 

revolute joints A and B are the lowest points on the moving platform (see Figure D.7). Due to the fact 

that the relative positions of the revolute joints may be adjusted, it is highly unlikely that the adjustable 
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brackets of revolute joints A and B will collide with the bottom frame cross members (shaded regions a 

and b), even with the moving platform in a horizontal orientation (~I =0). Furthermore, for a large 

enough CCW rotation of the moving platform, point J indicated in Figure D.7 is the lowest point on the 

moving platform. Similarly, for a large enough CW rotation of the moving platform, point K (see Figure 

D.7) is the lowest point on the moving platform. 

The lower frame boundary is therefore treated here by monitoring the perpendicular distances between 

line FG on the frame, and respective points J and K on the moving platform following the methodology 

explained in Section 0.3.1. In particular, assumptions 1 - 3 listed in Section D.3.1 are valid here, since 

the instantaneous position (X p Yl) and orientation ~l of the moving platform (body 1 in Figure D.2) are 

known as the prescribed path is traced (see expressions (2.27) - (2.29». Furthermore, the global position 

(xg,Ys) and orientation ~8 of the frame (body 8 in Figure D.2) are fixed: [xg,yg,<pg]T =[O,O,of. The 

fixed local coordinates (in meters) of points J and K are (c/, 111)1 (-0.285,-0.004) and 

(~K, 11K)1 =(0.285,-0.004), and the fixed local 11-coordinate ofline FG is l1:G X) + 0.065. Note that 

X) is the design variable representing the y-coordinate of the three base revolute joints C, D and E (see 

Figure 0.2). Hence, the respective instantaneous perpendicular distances 0J-FG (X, t i) and 0K-FG (X, ti.j) 

may be determined at any time instant ti,i' i 0,1,2, ... , N -1, j =0,1,2, ... , n time (see Section 4.2.2) in 

accordance with expressions (0.3) - (0.6). The default value for n time =10 (see Appendix B). 

Since the relative positioning of the moving platform with respect to the lower frame boundary conforms 

to the relative positioning of the bodies i and j as depicted in Figure D.4, the lower frame boundary 

inequality constraints formulated here correspond to the inequality (D.7): 

C lO (X) == 0.006-o~~G(X) sO 
(0.12) 

CII(X) 0.006-0;Z~FG(X)SO 

where o~~G(X)=min[oJ_FG(X,ti +tj)], and o;Z~FG(X)=min[oK_FG(X,ti +tj)], and with ti and tj as 
I,) I,) 

defined above. 

The same value of 0.006m is used for both allowable perpendicular distances lo~~%1 and IO~I~;GI in 

expression (D.12). This value was chosen, so that the shortest attainable actuator leg length, without 

violating inequality constraints C IO and C ll (expression (0.12», is 0.075 m as shown in Figure 0.9. 

This length is also the allowable minimum actuator leg length specified for the hypothetical platform in 

expression (4.15). 
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0.006 

Figure D.9: Shortest attainable actuator leg length. 

Since the shortest attainable actuator leg length corresponds exactly to the allowable minimum actuator 

leg length, inequality constraints C k+9 (X) gk - .e;n (X)::; 0, k =1,2,3 (expression (4.8)) specified for 

the hypothetical platform are redundant in the optimization of the platform test-model. 

0.3.3.3 Left hand frame boundary 

The left- and right hand frame boundaries limit the horizontal movement of the physical moving 

platform. With the use of the spring loaded lateral stiffeners (see Chapter 5), point A is restricted to the 

right hand side of line FI, and point B is restricted to the left hand side ofline GH (see Figure D.7). 

Consider for the moment the left hand frame boundary. Point A is on the moving platform (body 1 in 

Figure D.2) at local coordinates (SA, llA)1 = ( _.2S., 0\1, and the global position and orientation ofbody 1 
\ 2 ) 

[x l'YI ,$1? are known at each time instant as the prescribed path is traced. The global position of point 

A may therefore be determined in accordance with expression (D.3). 

Line FI on the frame (body 8 in Figure D.2) is dealt with in a special manner. According to the 

definitions given in Section 2.3, the fixed body 8 is considered as the ground of the planar Gough­

Stewart platform mechanism. Figure D.2 shows that the origin of body 8 is chosen to coincide with the 

origin of the global Oxy-reference frame, (xg,ys) =(0,0), and that the local 0sSsl1s -coordinate system 

and the global Oxy -reference frame are identically orientated, i.e. $8 =O. This implies that the fIXed 
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vertical line FI is parallel to the YJ-axis of body 8. However, the proposed collision prevention 

methodology explained in Section D.3.1 is based on the assumption that the line in body j is parallel to 

the ~-axis of body j (see Figure DA). The special treatment of line FI consists of the specification that 

body 8 is angled at 90· , i.e. ~8 = It rad, and is allowable, since each inequality constraint is treated 
2 

separately and independent of the kinematic and kinetic analysis (Chapter 2). 

FI 
4 + X2The global x-coordinate ofline FI is X = X - 0.6 (see Figure D.7), with X4 and X2 two of the 

five design variables describing the adjustable geometry of the planar Gough-Stewart platform 

machining center (see Figure 4.1). With the specification that [Xg, Yg' ~8]T = [ 0,0, ; r the local YJ­' 
coordinate of line FI may be determined using the transformation given by expression (DA): 

YJ:I -(X4 + X 2 - 0.6) . 

The instantaneous perpendicular distance between point A on the moving platform and line FI on the 

frame 8 A-F1 may therefore be determined in accordance with expression (D.6). The relative positioning 

of the moving platform with respect to the left hand frame boundary agrees with the relative positioning 

of bodies i and j as depicted in Figure D.5. As a result of this, the instantaneous perpendicular distance 

8A-FI becomes larger as the moving platform moves closer to the left hand frame boundary. The left 

hand frame boundary inequality constraint is therefore given by 

(D.13) 


with 8~FI(X)=max[8A_FI(X,ti+tj)] and ti+tj asdefinedinSectionD.3.3.2. Since the radius of the 
I,) 

spring loaded lateral stiffener is 15 mm, a value of 0.015 m is assigned to the allowable perpendicular 

distance 18~1:~1 in the above expression. Note also that expression (D.l3) corresponds to inequality 

(D.8) derived for the general situation depicted in Figure D.5. 

0.3.3.4 Right hand frame boundary 

The right hand frame boundary restricts point B on the moving platform to the left hand side of line GH 

in Figure D.7. Point B on the moving platform (body I in Figure D.2) is at local coordinates 

(~B, YJB)J (&, oJ (see Section D.2.I). Line GH on the frame (body 8 in Figure 2.5) is treated here in 
\ 2 

a similar manner to line FI of the left hand frame boundary (see Section D.3.3.3) with the specification 
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GHthat [X8'Y8'~8r =[0,0,;r The global x-coordinate ofline GH is x =X 4 +Xs +0.4, from which 

the 10caI11-coordinate, l1~H =-(X4 + Xs +0.4), may be determined (see expression (D.4)). 

Note that since the perpendicular distance between line GH and point B becomes smaller as the platform 

moves closer to the right hand frame boundary, the right hand frame boundary inequality constraint is 

given by 

(D. 14) 


with O:'GH (X) =min[oB_GH (X, ti + t)] , and 0B-GH (X, tj + t) solved for in accordance with expression 
l,j 

(D.6) at each time instant ti + t j • Once again, an allowable perpendicular distance IO~~~HI 0.015 m is 

specified to compensate for the 15 rom radius ofthe spring loaded lateral stiffener (see Chapter 5). 

D.3.4 Revolute joint mechanical interference constraints 

There are no explicit constraints specified for the relative rotations about the revolute joints of the 

hypothetical platform. In practice however, the allowable rotations about the revolute joints of the 

physical test-model are limited as a result of mechanical interferences. 

The design and assembly of the test-model is explained in detail in Chapter 5. Figure D.10 shows an 

annotated two-dimensional view of the planar Gough-Stewart platform test-model, where the different 

components involved in the revolute joint mechanical interferences are annotated. 
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OJ) 

.S 
§ 
E 

drive units 

Figure D.10: Annotated drawing of the planar Gough Stewart platform test-model. 

Consider for the moment the fixed base platform assembly. In essence, and with reference to Figure 

D.lO each of the three revolute joints C, D and E is connected to a pair of carrier blocks, which are 

linearly adjustable along the base tubular twin rails. These base tubular twin rails are connected to the 

frame by means of mounting brackets. The base revolute joints C, D and E carry the actuator leg drive 

units, each consisting of a motor and gearbox assembly. 

Varying the actuator leg lengths, not only causes the moving platform to change its position and 

orientation, but also causes the relative orientations of the actuator legs to vary. The relative orientations 

of the actuator legs and drive units correspond exactly, hence the potential danger exists of mechanical 

interference between the drive units and the different components of the fixed base frame. 

0.3.4.1 Revolute joint C mechanical interference constraints 

The relative position of revolute joint C on the base tubular twin rails is determined by design variable 

(see Section D.2.I). Depending on the magnitude of X 2 , an excessively large CW rotation ofX 2 
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actuator leg I will cause the drive unit carried by revolute joint C to collide with either the left hand 

mounting brackets, or with the base tubular twin rails. 

The proposed inequality constraint methodology for the prevention of mechanical interference (Section 

D.3.l) may however be applied here to formulate two separate inequality constraints with which both 

potential collisions may be avoided: 

C l4 (X) == b:X~PQ (X) +0.005 :s:; 0 (D.15) 

CI5 (X) 0.005 b~~nMIM2 (X):S:; 0 (D.16) 

Figure D.ll: Inequality constraint C I4 (expression (D.15) active. 

Figure D.Il shows a scaled two-dimensional view of the test-model with X 2 0.360 m , where drive 

unit C is about to collide with the base twin tubular rails, but not with the mounting brackets. Note that 

the perpendicular distance between line PQ and point Ml is bMI~PQ =0.005 m, rendering inequality 

constraint CI4 (expression (D.15)) active. In spite of this, the perpendicular distance between line 

MIM2 and point Lis bL-M1M2 =0.028 m, so that inequality constraint C15 (expression (D.16)) is not 

active. 
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The evaluation of inequality constraints C l4 is summarized in Table D.2 below: 

General case analogy Inequality constraint C I4 I 

&max 1& allow I ( .P-QR S; - P-QR expreSSIOn C I4 (X) &~_PQ (X) + 0.005 S; 0 (expression (D. 1 5» 
I 

(D.8» 

Figure D.5 Figure D.II 

AssumQtion I: (see Section DJ.l) 

i 
[x, y, $]; must be known [x,y,$]~ known from the inverse kinematic analysis (see Section i 

2.5) 

[x,y,$]; must be known [x,y,$]~ =[O,o,oy fixed frame position and orientation (see Figure 

I 
I D.2) 

Assumption 2: (see SectIOn D.3.l) 

(sMI , 11MI)5 =(-0.06439,0.03) (see Figure D.13) 

Assumption 3: (see LJ..."uvu 

l1;R must be known 

Table D.2: Evaluation of constraint C I4 (expression (D.15». 

I I 
I . 

Figure D.12: Inequality constraint C l5 (expression (D.16» active. 
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On the other hand, Figure D.l2 shows a scaled two-dimensional view of the test-model with 

0.465 m , where drive unit C is about to collide with the left hand mounting bracket, and not withX2 

the base twin tubular rails. As expected, the perpendicular distance between line PQ and point Ml, is 

greater than 0.005 m (OMHQ == 0.031 m) so that inequality CI4 (expression (D.15» is not active, while 

0L-MIM2 == 0.005 m, so that inequality CIS (expression (D.16» becomes active. 

The evaluation of inequality constraint CIS are summarized in Table DJ below: 

General case analogy Inequality constraint CIS 

l ~al10W I< ~mi" ( •Up-QR - Up-QR expreSSIOn 

(D.7» 

C1S (X)=0.005 8~~MIM2(X)~0 (expression (D. 16» 

Figure D.4 Figure D.l2 

Assunmtion l' (see Section D 3 ..1) 

i 

[x,y,~li must be known [x,y,~]~ =[O,O,O]T fixed frame position and orientation (see Figure 

D.2) 

[x,y,~]r must be known [x,y,~]~ known from the inverse kinematic analysis (see Section 

2.5) 

! 

Assunmtion 2: (see Section DJ.l) 

(I;P,llP)i must be known (I;L, llL)8 = (X4 + X2 - 0.555),(X3 - 0.025») 

AssumQtion 3: (see Section D.3.1) 

ll;R must be known 1l~IM2 = 0.03 (see Figure D.13) 

Table D.3: Evaluation of constraint CIS (expression (D.16». 

/ / 


M3/ / 


0.006 i"/
~~/

'" 
Figure D.13: Local coordinates on drive unit C. 
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0.3.4.2 Revolute joint 0 mechanical interference constraints 

The relative position of revolute joint D on the base twin tubular rails is fixed (see Section D.2.1). 

However, the adjustable relative position of revolute joint E, given by the magnitude of design variable 

X s , influences whether drive unit D will collide with the base twin tubular rails, or with the carrier 

blocks of revolute joint E. These potential collisions will of course only occur for excessively large 

CCW rotations of actuator leg 2. A third possible collision may occur between actuator leg 2 and drive 

unit E, depending on the value of X s ' as well as the relative orientations of actuator legs 2 and 3. 

In order to prevent all three potential collisions from happening, three inequality constraints are 

formulated (refer to the annotations in Figure D.l 0 and Figure D.l4 respectively): 

C16 (X) o;:PQ (X) + 0.005 ~ 0 (D.17) 

C17 (X) == O~!R2 (X) + 0.005 ~ 0 (D.lS) 

CIS (X) == O~R3R4 (X) + 0.005 ~ 0 (D.l9) 

Figure D.14: Local coordiuates on drive unit D. 

0.3.4.3 Revolute joint E mechanical interference constraints 

As previously stated in Sections D.2.l and D.3.4.2, the magnitude of design variable Xs determines the 

relative position of revolute joint E on the base twin tubular rails. For an extreme CCW orientation of 

actuator leg 3, and depending on the magnitude of design variable X s ' drive unit E will collide either 

with the base twin tubular rails, or with the right hand mounting bracket. There also exists the possibility 

of mechanical interference between actuator leg 3 and drive unit D, depending on the magnitude of 

design variable X s , and the relative orientations of actuator legs 2 and 3. 
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Following the same recipe as before, three inequality constraint equations are formulated to prevent the 

above mentioned potential collisions from happening (refer to the annotations in Figure 0.10 and Figure 

0.15 respectively): 

C19 (X) O~PQ (X) + 0.005 ~ 0 (0.20) 

C20 (X) == O:':"VIV2 (X) +0.005 ~ 0 (0.21) 

C Z1 (X) == 0.005 - O;U;-T3T4 (X) ~ 0 (0.22) 

Figure D.15: Local coordinates on drive unit E. 

D.3.4.4 Revolute joint A mechanical interference 

Depending on the relative orientation of the moving platform (body 1 in Figure 0.2) and actuator leg 1 

(body 2 in Figure 0.2), point Jl on the moving platform left hand bracket may collide with actuator leg 

1. In order to avoid such a collision from happening, the following inequality constraint is formulated 

(see Figure 0.16): 

C22 (X) 0.005 O~~M3M4 (X) ~ 0 (0.23) 
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M3 
~<-" 

Figure D.16: Inequality constraint e22 (expression (D.23)) active. 
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