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Chapter 5

S DEMONSTRATION OF THE OPTIMUM EXECUTION
OF REPRESENTATIVE PRESCRIBED MACHINING

PATHS

5.1 Introduction

In this chapter, optimum platform geometries of the re-configurable planar Gough-Stewart platform test-

model are determined for different prescribed machining tasks.

The determination of the optimum platform geometries is done using the simulation-based optimization
methodology developed in Chapter 4. The feasibility of this approach was illustrated in Chapter 4 by
optimizing the geometry of a Aypothetical planar Gough-Stewart platform for a simple straight-line
prescribed path, taking into consideration the mechanism’s configurational constraints. In applying the
methodology to a physically real platform, however, the physical operational constraints specified in
Section D.3 are required to prevent mechanical interference. The respective masses and moments of
inertia of the seven bodies comprising the physical test-model are also determined in Appendix D
(Section D.2.3). These seven bodies are numbered below in Figure 5.1 which corresponds to Figure 2.5

and Figure D.2.
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5.4.4 Execution of the circular tool path

The series of photographs shown in Figure 5.18 is of different instants during the execution of the first

revolution of the circular tool path.

Figure 5.18: Execution of the circular tool path.

Figure 5.19 is a close-up of the traced circular tool path, showing that the diameter of the traced circle is

approximately 350 mm (35 cm ), and that the circle is smoothly traced.
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Figure 5.19: Close-up view of the executed circular tool path.

5.5 Spiral tool path

5.5.1 Nodal points and orientation angle

The spiral tool path is a scaled version of the logarithmic spiral test curve p=e"" of Section 3.5.4.

Using a scale factor of 0.285, the 79 spiral tool path nodal points are as shown in Figure 5.20.

The motion time along the spiral tool path is 93.24 seconds with the specification of §,,,,, =0.01m/s”,

v’ =1.0m/min and n__ =5 for the use of the OCAS trajectory-planning algorithm.
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Figure 5.1: Photograph of the physical planar Gough-Stewart platform test-model.

The moving platform is in contact with the Perspex side panels via the Teflon stabilizers and the pen
shown in Figure 5.1. Section D.2.3 shows how the resulting frictional force was experimentally
determined. This external frictional force represents the cutting force incorporated in the kinematic and
kinetic model of the planar Gough-Stewart machining platform. In fact, the test-model is used here to

demonstrate the “fixed workpiece scenario” (see Sections 2.4.1 and 2.6.4.2.1), with specifically a zero
tool length (n] =0), since the pen is mounted to coincide with the assumed center of mass of the

moving platform.

Furthermore, in this chapter, non-trivial prescribed paths are specified for the physical test-model using
the OCAS trajectory-planning technique described in Chapter 3. The five different test functions
discussed in Section 3.5 are used as prescribed tool paths, to illustrate the application of the proposed

optimization methodology to obtain optimum operational geometries.

Once the simulation-based numerical optimization of the physical test-model is done for each prescribed
path, the execution of each path follows through the control commands generated by the computer
simulation for controlling the required variation of the actuator leg lengths. These lengths are found by
solving the three closed-form inverse kinematic equations relating the position and orientation of the

moving platform to the actuator leg lengths. The position and orientation of the moving platform follows
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directly from the prescribed trajectory, and hence the required actuator leg lengths may easily be
determined (see expression (4.10)).

Since the purpose of the test-model is only to demonstrate the new technology, visual inspection is used
to verify that each executed path indeed corresponds to the prescribed path. Photographs are included in

this chapter to show the successful execution of the prescribed paths, for the respective optimum and

feasible settings of the planar machine.

Sections 5.2 — 5.6 respectively deal with the five different prescribed paths all of which are scaled for

continuous execution. Section 5.7 shows how the proposed optimization methodology may be applied in

the piece-wise execution of the “bigger parabolic tool path”.

5.2 Parabolic tool path

5.2.1 Nodal points and orientation angle

The parabolic test function used in Section 3.5.1, y(x) =~§é—; was approximated over the Xx-interval,

e [~2, 2], using 29 nodal points as shown in Figure 3.16. Here a scaled mirror image of this quadratic

function is used as prescribed path. The mirror image of the original parabola (expression (3.66)) is
given by

-
2

X
}’(X)———2~ (.1

over the x-interval, x e[-2,2]. Substituting the unscaled x-values into (5.1) gives the unscaled y-

values. The scale factor used here is 0.075, and the resulting 27 nodal points are shown in Figure 5.2.

-0.20 -0.18 -0.10 -0.05 0.00 0.05 0.10 0.16 020

faWat> ¥
Ll T ¥e

Figure 5.2: Nodal points used to approximate the parabolic tool path.
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For the OCAS trajectory-planning methodology (Chapter 3), the maximum allowable acceleration is

limited to 0.01 meter per second square (§,, =0.01m/s*), and a cutting speed of 1.0 m/min

allow
(v' =1.0m/min) is specified. With these specifications, the simulated prescribed motion is completed
in 29.46s. The simulation is furthermore carried out with the number of additional intermediate time

instants, n,. =5 (see Appendix B).

It is also required that the moving platform of the test-model be tangentially orientated with respect to
the prescribed curve. With this specification the moving platform orientation angle varies from 63.43°

at the starting point (-0.15,-0.15),t0 —63.43" at the end point (0.15,-0.15) (see Figure 5.3).

Orientation angle
80.00

60.00
40.00 1
20.00

0.00

0.00 5.00 10.00
~20.00 - '

~40.00 4

-60.00

-80.00

t

Figure 5.3: Variation in the orientation angle for the parabolic tool path.

5.2.2 Optimization results

A comparison between the initial test-model design and optimum test-model design for the parabolic

prescribed tool path is given in Table 5.1, with figure insets 1(a) - 1(d).
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Initial design Optimum design

X°=[0.4,04,-0.4,-0.4,0.2]" X' =[0.1,0.19387,~0.47769,-0.18012,0.113]"

Inequality constraint values (see Section D.3):

C,(X°)=-0.05 C,(X°)=-0.3 C,(X")=-035 —C,(X")=-0.363x10"
C,(X°)=-0.065 C,(X°)=-0.287 C,(X')=-0.27113 C,(X")=-0.08087
C,(X°)=-0.07 C,(X°)=-0.087 C,(X")=-0.157 = C,(X")=0.624x10"

—C,(X°)=0.10533
—C,(X°) =0.00045
—C,,(X°)=0.07769
C,,(X°)=-0.14542
C,,(X°) =-0.00493
—C,(X°)=001727
C,(X°)=-0.06220

C,(X°*)=-0.01481
—C,(X°)=0.07769
C,(X%)=-0.34542
-, (X°)=0.00109
—C,,(X°)=0.01619
—>C,(X°)=0.04250
C,0 (X°) =—0.08449

C, (X°)=-007149 —C,,(X°)=0.03098

~» constraint violation

=C,(X)=-0.784x10"°
C,(X")=-0.01780

=C, (X" )=-0.616x10"
C,(X')=-022639
C,(X")=-0.22745
C, (X')=-0.01676
C,(X')=-0.05754
C,,(X")=-0.05200

C,(X")=-0.03374

C,(X")=-0.39888
C,,(X")=-0.04907
C,,(X')=-0.05909
C,,(X")=-0.05310
C,,(X")=-0.15073
C,,(X')=-0.11672

=C,(X)=-0.616x10"°

= constraint active

Variation of actuator leg lengths along the parabolic tool path:

Initial design Optimum design
L L2 L3 Lmin Lmax | L1 L2 L3 Lmin Lmax |
0.7 0.7
0.6 /_—‘* 0.6 1
E 0.5 E 0.5
w ]
€04 | %04 :
k3 8
503 * 03
$ £
g g
802 802
0.1 0.1
0.0 : 0.0 , : : |
0.0 5.0 10.0 15.0 20.0 250 30.0 0.0 5.0 10.0 15.0 200 25.0 30.0
t[s] t[s]
1(a) 1(b)
Chapter 5 163



http:0.4,0.2f

L
DEMONSTRATION OF THE OPTIMUM EXECUTION OF REPRESENTATIVE PRESCRIBED MACHINING TASKS

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Variation of actuator forces along the parabolic tool path:

Initlal design _ Optimum design
35.0 - : | 350 I = =
30.0 30.0
25.0 1 25.0
| 200 _/ Z 200 -
o ®
i3 &
E 15.0 4 g 15.0
§ 10.0 % 10.0
g 5.0 - 2 50-
i 0.0 . . 0.0 AN g T . {
0|0 5.0 100 150 200 250  30.0 oo 5.0 100 160 200 250 \30;.04
5.0 1 50 - o
-10.0 1 -10.0 o
tis] tls] | I
1(c) 1(d)
F(X°)=22.066 N F(X")=31.936N
Actuator leg 3 Actuator leg 1

Table 5.1: Comparison between the initial and optimum designs for the parabolic tool path.

Although the initial objective function value F(X°)=22.066 N is lower than the optimum objective
function value F(X')=31.936 N, the initial design is infeasible. In fact, nine of the 22 inequality

constraints are violated when the parabolic test function is traced with the initial design X°. Table 5.1

lists the initial values of the inequality constraint functions C,(X°), i=1,2,3,...,22, as well as their
optimum values C,(X"), i=123,...,22. The violated inequality constraints associated with the initial

design X’ have function values greater than zero, and are indicated by a single arrow — in Table 5.1.

Similarly, the active inequality constraints associated with the optimum design X" have approximately

zero function values, and are indicated by a double arrow — in Table 5.1.

The variation in the actuator leg lengths depicted in figure inset 1(a) clearly show that both actuator legs
£, and /, initially violate the allowable maximum leg length, explaining the positive constraint function
values of C, and C, (expression (D.11)). Inequality constraints corresponding to C,, and C,,
(expression (D.12)) are violated even though the allowable minimum leg length is not violated (see
figure inset 1(a)). Indeed, these two inequality constraints are violated as a result of the specification of
tangential orientation of the moving platform with respect to the parabolic tool path (see Figure 5.3).

The remaining violated inequality constraints, corresponding to the positive function values of C,,, C,,,
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C,, C, and C,,, indicate that the parabolic tool path cannot be followed with the initial design X°,

due to mechanical interference (see respective expressions (D.15), (D.17), (D.18), (D.19) and (D.23)).

On the other hand, figure inset 1(b) clearly shows that for the optimum design X", the variation in
actuator leg lengths as the parabolic tool path is followed, lies within the minimum and maximum
allowable lengths. The feasibility of the optimum design X' is further borne out by the fact that the
optimum inequality constraint function values C,(X"), i=1,2,3,...,22 are all less than, or approximately
equal to zero. In particular, the inequality constraints corresponding to C,, C,, C,, C,, and C,, are
considered to be active (see expressions (D.10), (D.11) and (D.12)). The optimum solution is found after
227 optimization iterations and utilizing 6 minutes and 58 seconds computational time on a Pentium IV
1.5GHz computer with 640 MBDDRAM. LFOPC terminated on criterion 2 (g, <107) listed in

Section 4.4.

5.2.3 Analysis of convergence to optimum

Figure 5.4 shows the convergence history of the objective function.

Objective function value
340 — — — - —

’ |

32.0

30.0 1 Start phase 2 |

\28.0 - Start phase 1

26.0
‘24.0 -

22.0 A

20.0

0 50 100 150 200
iteration number

Figure 5.4: Convergence history of the objective function for the parabolic tool path.
The behavior of the above objective function vs. iteration number curve is of course dependent on the
iterative search generated by the LFOPC algorithm in the five dimensional design space (see Figure

4.10). The choice of the initial design X° obviously plays an important role in the nature of the

convergence history of the objective function. In correspondence with Section 4.5, the initial

configuration of the planar machining center is chosen as X° =[0.4,0.4,~0.4,-0.4,0.2]" for all the
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machining paths investigated in this chapter. Initial design variable values X! =0.4m, X; =0.4 m and
X?=02m are in scaled agreement with the geometry of Haug et al.’s [73] planar Gough-Stewart

platform. Setting design variables X; =-0.4m and X{ =-0.4m corresponds to a random choice for

the position of the origin of the global Oxy-coordinate system, relative to which the tool path is

described, and the kinematic and kinetic analysis (Chapter 2) is done.

Figure 5.5: Photograph of the initial test-model design X° =[0.4,0.4,-0.4,-0.4,0.2]".

With specific reference to Figure 5.4, the labels @ — ® are used in Table 5.2 to relate the iteration
number and phase of the LFOPC-algorithm (see Appendix C) to the actuator leg responsible for the
maximum magnitude actuator force (see Section 4.2.2) and the violated inequality constraints at the

indicated regions of the convergence curve.
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Labels Iter. | LFOPC- | Act. Violated Inequality Constraints
No. Phase leg
X° 0 0 2, C, ¢, ¢, C, C, C, C, C, C,
7 0 ¢, c, ¢ ¢ C, C, C Ce C,
® 8 0 ¢, c, ¢ ¢ C, C, C, C,
9 0 £, c, ¢ C C, C, Ce Cs C,
52 0 ¢, C, C, C, C, C,
@ 53 0 2, C, C, C, C, .
54 0 Z, C, C, C., C, C,
60 0 Z, C, C, C,
®
61 0 Z, C, C, C,
63 0 ¢, C, C, C,
64 0 Z, C, C., C,
65 0 £, C, C., C,
@ 66 0 ¢, C, C, C,
67 0 4, C, C, C,
68 0 2, C, C, C,
69 0 ¢, C, C, C,
86 0 ?, C, C, C,
LFOPC | . . = Co Cu
phase- maximum violated constraint value C, (X" )=10.00496
change 87 1 l, C, Cc, C,
88 1 ¢, C, C, C,
121 i ¢, | none
® 122 1 £, | none
123 1 (| c,q
LFOPC 215 1 ¢, 1 C, C C, C, C,
phase-
change 215 2 “ € G G o G
X 227 2 ¢, 1 C, C C, C, C, (active)

Table 5.2: Comparative table for the parabolic tool path objective function vs. iteration number

curve (see Figure 5.4).
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The increase in the objective function value between labels @ and ® in Figure 5.4 is a result of the
LFOPC phase-change occurring at iteration number 87 (see Appendix C) at which point the penalty
parameter is increased. Furthermore, Table 5.2 shows that the actuator leg responsible for the maximum
magnitude actuator force switches from actuator leg £, to £, at label @. It was shown in Section 4.3.1
that a switch in the actuator legs responsible for the maximum magnitude actuator force is associated
with a kink in the objective function, and hence a discontinuity in its slope. This results in the spiky

behavior of the objective function in these regions.

The switches involving actuator legs £, and ¢, that occur as the LFOPC-algorithm changes from phase
0 to phase 1 show that the associated design is close to the optimum. Consider figure inset 1(d) showing
the variation in actuator forces associated with the optimum design X' . The maximum magnitude of
the force in actuator leg £, f, =31.936 N occurring at time instant t =3.97 s, is only slightly larger than
the maximum magnitude of the force in actuator leg ¢,, f, =28774N occurring at time instant

t=29.46s.

The fact that the final design of phase 0 (iteration number 87 in Table 5.2) is indeed relatively close with
respect to feasibility to the optimum design, is evident from the convergence histories of the respective
design variables X, /=12,..,5 as shown in Figure 5.6. It is of interest to note that for the design
variables the convergence is considerably smoother. In practical terms, convergence is effectively

achieved at the end of phase 0 after only 87 iterations where the maximum violated constraint is C, with

a function value of C, (X" )=0.00496 m = 4.96 mm .

X1 x2 3 X e 35
Q.50 e« i - . s

0.40 -
0.30 -
020 ._-\"

.10 4

0.00 " v - — ! .
0.40 50 100 150 200

-0.20 4
0.30 4 /\_,A._—'
-0.40 e

o801 7 T

0.60 !
l iteration number ]

Figure 5.6: Convergence histories of design variables X , i =12,....5 for the parabolic tool path.
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5.2.4 Execution of parabolic tool path

Figure 5.7 shows a series of photographs taken at different time instants as the parabolic tool path is

traced. The tangential orientation of the moving platform along the curve is clearly visible from the

Figure 5.7: Execution of parabolic tool path.

A close-up view of the executed parabolic tool path is shown in Figure 5.8. Inspection shows that the
actual executed tool path accurately resembles the prescribed tool path (see Figure 5.2). It is evident that
the distance between the end points of the traced parabolic tool path is approximately 300 mm (30cm)
and that the traced parabolic tool path is proportionally shaped and smooth in agreement with the
prescribed path specified by Figure 5.2.
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Figure 5.8: Close-up view of the executed parabolic tool path.

5.3 Spike tool path

5.3.1 Nodal points and orientation angle

The spike test function of Section 3.5.2, v{x) = 1—1—2 (see expression 3.67) was approximated over the
+X

Py

x-interval, x€[-2,2], using 27 nodal points. Note that the initial and final nodal points are

P,o={x,,y,)=(2,0.2) and P, = (X, ¥, ) =(-2,0.2) respectively.

The spike tool path is a scaled version of the original spike test function using a scale factor of 0.15. In
particular, the initial and final nodal vpoints are thus P, =(x,,vy,)=(03,0.03) and
Py = (X, ¥y ) =(-0.3,0.03) respectively. Figure 5.9 shows the 27 nedal poimnts used to approximate

the spike tool path.
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Figure 5.9: Nodal points used to approximate the spike tool path.

The OCAS trajectory-planning methodology (Chapter 3) is again used to approximate the spike tool
path with §, =0.01m/s* and v’ =1.0m/min resulting in a total motion time of 41.95s. The
simulation is again done with n,__ =5.

time

As in the case of the parabolic tool path, the moving platform of the test-model must maintain a
tangential orientation with respect to the prescribed spike tool path. The variation of the orientation

angle [degrees] as the moving platform traces the spike tool path, is depicted in Figure 5.10.

Orientation angle
40.00

30.00

20.00

10.00

0.00
0.p0 10.00 20.90 30.00 40.00
~10.00
-20.00

-30.00

-40.00

t

Figure 5.10: Variation in the orientation angle for the spike tool path.

5.3.2 Optimization results

The initial and optimum test-model designs for the spike tool path are compared in Table 5.3, with

graphical insets 2(a) - 2(d).
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Initial design

Optimum design

X" ={0.4,0.4,-04,-04,02]

X' =[0.21174,0.29788,~0.17937, - 0.27835,0.18509]"

Inequality constraint values (see Section D.3):

C,(X°) =-0.05 C,(X°)=-03 C,(X")=-0.23826 C,(X')=-0.11174
C,(X°)=-0.065 C,(X°)=-0.287 C,(X")=-0.16712 C,(X")=-0.18488
C,(X°)=—-0.07 C,(X°)=-0.087 C,(X")=-0.08491 C (X")=-0.07209

—C,(X°)=0.17403
—C,(X°)=0.11302
C,,(X°) = -0.27092
—C,(X")=0.11249
C,(X°)=-0.05145
C,.(X%)=-0.04628
C,,(X*)=-0.05924
C,,(X°)=-0.08051

5 C(X)=0.11745
C,,(X°)=-0.27092
C,(X°)=-0.08751
C,.(X°) =-0.03529
C,,(X°)=-0.02809
C,.(X°)=-0.05358
C,o (X°) = -0.08094
C,,(X°)=-0.05931

=C,(X')=-0511x10"°
C,(X")=-0.06545
C,(X")=-0.05029

=, (X')=0.687x10"
C,(X")=-0.05317

=C,.(X")=-0.535x10"°
C,(X")=-0.01017
C,(X')=-0.03971

C,(X")=-0.05923
C,,(X")=-0.05029
C,(X")=-0.16093
C,.(X") =-0.00220
=C, (X" )=0281x10"*
C, (X' )=-0.02511
C,,(X") =-0.02684
C,(X")=-0.10923

—» constraint violation

=> constraint active

Variation of actuator leg lengths along the spike tool path:

. Initial design ] | Optimum design ) J
- L1 L2 L3 T [ LY —L2 L3 Lmin —— Lmax |
0.8 - : 0.8 - - :
07 0.7 | |
081 _ 061
E E
o 05 @ 0.5
5 w £
o > ]
§04- 504
§ 0.3 1 203 _
8 g H
i 0.2 0.2 l
'i~ 0.1 0.1 i
|00 : : 0.0 P
i 0.0 10.0 20.0 30.0 40.0 0.0 10.0 20.0 30.0 40.0 i
tsl tis]
2(a) 2(b)
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Variation of actuator forces along the spike tool path:
InitiaL t&?igi - Optimum gesign
2 3 e 1l e f2 e 3
40.0 W “ﬁj e 40.0 I ‘ P
20.0 /_ 20.0 - ‘
z ’ s ¢
'g 10.0 % ? 10,0 1
2 o0 : : — 2
£ o 10 20.0 30.0 0 g 20.0 30.0 40.0
£ 100 £ -
~ ©
-20.0
-30.0
40.0 i 40.0
t[s] t[s]
2(c) 2(d)
F(X°)=37.884 N F(X")=35.160N
Actuator leg 2 Actuator leg 1

Table 5.3: Comparison between the initial and optimum designs for the spike tool path.

The violated inequality constraints associated with the infeasible initial design correspond to constraint
functions C,, C,, C, and C,, (see expressions (D.11) and (D.14)). Again looking at figure inset 2(a),
it is evident that all three actuator legs £,, ¢, and ¢, will violate the maximum allowable actuator leg
length if the spike tool path is to be traced with the initial design X°, explaining why the inequality
constraint function values C,(X°), C,(X°), C,(X") are greater than zero. The inequality constraint
corresponding to C,, prevents the excessive side way movement of the moving platform towards the

right hand side as explained in Section D.3.3.4.

Figure inset 2(b) shows that in the case of the feasible optimum design X, the variation in the actuator
legs lies within the specified minimum and maximum allowable bounds. The active constraints
correspond to C,, C,,, C, and C,, (see respective expressions (D.11), (D.14), (D.17) and (D.18)).
The optimum solution is found after 156 optimization iterations and utilizing 4 minutes and 53 seconds

computational time on a Pentium IV 1.5GHz computer with 640 MBDDRAM. LFOPC again

terminated on criterion 2 (g, <107°).
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5.3.3 Analysis of convergence to optimum

Figure 5.11 shows the convergence history of the objective function.

[ Objective function value
38.0

138.0 - ’
37.0 -

36.0

35.0

!

34.0

Start phase 2 |
330 Start phase 1
32.0
31.0 @
30.0 T " . . . .
L 0 20 40 60 80 100 120 140 160
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Figure 5.11: Convergence history of the objective function for the spike tool path.

Labels ©® — ® in Figure 5.11 are used in Table 5.4 to relate the iteration number and phase of the
LFOPC-algorithm (see Appendix C) to the actuator leg responsible for the maximum magnitude
actuator force (see Section 4.2.2) and the violated inequality constraints in the respectively indicated

regions.

Labels Iteration = LFOPC- | Act. | Violated Inequality Constraints
No. Phase leg
). & 0 0 ¢, C, G G C,
15 0 ¢, G, G G G,
0] 16 0 £ G, G 3
17 0 £, C, Cy Ci
30 0 'gl C7 C13 i6 Cl?
)
31 0 f, C’; C13 16
39 0 Z, C, Ce
40 0 £, C, C
®
41 0 ¢, ¢, Cy
42 0 4 C,

Chapter 5 174



DEMONSTRATION OF THE OPTIMUM EXECUTION OF REPRESENTATIVE PRESCRIBED MACHINING TASSS

64 0 l, C, s C C,
65 0 ¢, | C, C, C, C,
66 0 Z, C, C, C,
@ 67 0 2, C, C, C, C,
68 0 ¢, | C, C, C, C,
69 0 ¢, C, C, C,
70 0 Z, C, C, C,
87 0 £ C, Cc, C, C,
88 0 £, | C, C, C, C,
89 0 l, C, C, C, C,
90 0 ¢, 1 C, C, C, C,
LFOPC
ohase- 91 0 ¢, C, C, C, C,
change = €y Co Gy
92 0 £, | maximum violated constraint value:
C,(X*)=10.00436
92 1 Z, C, C, Cs C,
93 1 ¢, | C, C, C, C,
112~114 1 £, | none
® 115 1 e, C,
116 1 Z, C,
145 1 £, C, Ch C,
LFOPC 146 1 £, C, C, C, C,
phase-
change 146 2 ¢, | C, C, Cs C,
147 2 ¢, 1 C, C, C, C,
X’ 156 2 ¢, C, C, C, C, (active)

(’23@ t

Table 5.4: Comparative table for the spike tool path objective function vs. iteration number

curve (see Figure 5.11).

The first LFOPC phase-change from phase 0 to phase 1 occurs at iteration number 92, hence the
resulting increase in the objective function value between labels @ and ® in Figure 5.11 as the penalty
parameter is increased at the start of phase 1. The spiky behavior of the objective function value at labels
® and @ can again be explained by the switch in the actuator leg responsible for the maximum

magnitude actuator force, that occur in these regions.

Chapter 5 175

UN
UN
Yu

1
N

IVERSITEIT VAN PRETORIA
ITY OF PR

VERS OF PRETORIA
IBESITHI YA PRETORIA



The convergence histories of the respective design variables x,, i =1,2,...,5 are shown in Figure 5.12.
Again effective convergence with respect to feasibility is obtained at the end of phase 0 after only 92
iterations with the maximum violated constraint value C,(X)=0.00436 m =4.36 mm. Note also,
that there is a switch between actuator legs ¢, and /, responsible for the maximum magnitude actuator
force at iteration number 88, just before the end of phase 0. This corresponds to the behavior of the
actuator leg forces associated with the optimum design X" (figure inset 2(d)). The maximum magnitude
of the force in actuator leg 7, f, =35160 N occurring at time instant t =4195s, is only slightly larger
than the maximum magnitude of the force in actuator leg ¢,, f, =33.838 N occurring at time instant

t=171s.

Design variables

’ X1 X2 X3 X4 X5

0.50 = 2 R
0.40 |
0.30 %
0.20
0.10 |
0.00 : ; ' ; : ; 5

20 40 60 80 100 120 140 160
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-0.30 4 i B e

-0.40
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Figure 5.12: Convergence histories of design variables X,, i =12,...,5 for the spike tool path.

5.3.4 Execution of the spike tool path

Figure 5.13 shows a series of photographs taken at different time instants as the spike tool path is traced.
Similarly to the parabolic tool path, the spike tool path is executed with a tangentially orientated moving

platform (see Figure 5.10).
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Figure 5.13: Execution of the spike tool path.

The close-up view of the executed spike tool path (Figure 5.14) shows that the traced spike tool path
closely resembles the prescribed spike tool path specified by Figure 5.9.

ol e LY T S | (R RV N YRR Y R RRT  T

Figure 5.14: Close-up view of the executed spike tool path.
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5.4 Circular tool path

5.4.1 Nodal points and orientation angle

The diameter of the circular tool path is 0.35m and the circle is centered at (x,y) =(0,0). Hence the
path is defined by
x* +y? =(0.175) (5.2)

In agreement with the circular test curve of Section 3.5.3, the nodal points {P, =(x,,y,),i=0,1,2,.., N}
of the circular tool path are specified using corresponding sweep angles 3, €[0°,720° ], where the sweep
angle is measured clockwise from the positive x-axis. For any specific sweep angle B,, i =0,1,2,...,.N,
the corresponding x- and y-values are given by x, =0.175cos,, and y, =0.175sin, respectively.
The sequence of sweep angles {B,}, is chosen such that starting at B=0", two CCW revolutions are
followed. A total of 79 nodal points cover the two revolutions. The first revolution where $€[0°,360°]
is shown on the lefi-hand side of Figure 5.15, and the second revolution, where Be[360°,720°] is

shown on the right-hand side of Figure 5.15.

,,,,, G20 o e i = L. 0.20 7
i . ' ‘ » Ld
* » : i » .
. 0.15 - ¢ ! ) . 0.15 .
. . . » .
. ] . .
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. . ; . .
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. . ; ‘ - -
. :
- 8.60 - ol — 600 . . T
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. -0.05 . | . -0.05 R
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0.4 - ! : -0.10
- . ! » .
- * i . »
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Figure 5.15: Nodal points used to approximate the two revolutions of the circular tool path.

The total time required to complete the two revolutions is 135.61s, using the OCAS trajectory-planning

methodology with §,  =0.01m/s*, v'=1.0m/min andn___ =5.

allow tirme

Other than in the cases of the parabolic and spike tool paths, a fixed moving platform orientation ¢, =0

is maintained as the circular tool path is traced.
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5.4.2 Optimization results

A comparison between the initial and optimum test-model designs for the circular tool path is shown in
Table 5.5, with figure insets 3(a) — 3(d).

Note that the kinematics and kinetics of the two revolutions are nof identical. The distribution of the
nodal points is specifically chosen to accommodate acceleration at the start of the first revolution, and
deceleration at the end of the second revolution (see Figure 5.15). The effect of this on figure insets 3(a)

— 3(d) are the slight differences between the respective curves at time instants t=0s and t=135.61s.

Initial design Optimum design

X°=[0.4,04,-0.4,-04,0.2]"

X" =[0.34476,0.39829, - 0.28487, - 0.36676,0.25238]"

Inequality constraint values (see Section D.3):

C,(X°)=-0.05 C,(X°)=-03 C,(X')=-0.10524 C,(X")=-0.24476
C,(X°)=-0065  C,(X°)=-0.287 C,(X")=-0.06671 C,(X")=-0.28529
C,(X°)=-0.07 C,(X°)=-0.087 C,(X")=-0.01762 C,(X')=-0.13938

—C,(X°)=0.09721
—C,(X°)=0.05
C, (X°)=-0.15

—C,(X°)=0.09721
Co(X)=-0.15
C,(X°)=-021

C,(X")=-0.00514
C,(X')=-0.04408
C, (X")=-0.03487

=C,(X")=0326x10"
C,(X")=-0.03487
C,(X")=-0.20608

C,(X°)=-0.01
C,,(X°) =-0.04642
C,,(X°)=-0.05081
C,(X°)=-0.06975
C,,(X°) =-0.08546

C,,(X%)=-0.03130
C,,(X°)=-0.03130
C,,(X°)=-0.04334
C, (X°) = —0.09344
C,, (X°)=-0.06502

-3 constraint violation

C,(X")=-0.06916
C,(X")=-0.00911
C,,(X")=-0.02786
C,(X")=-0.01857
C,,(X")=-0.08240

=> constraint active

C,(X")=-0.00157
=C,(X)=-0.114x10"
C,(X") =-0.04462
C,(X")=-0.00119
C,(X')=—-0.06527
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Variation of actuator leg lengths along the circular tool path:

Initial design Optimum design
L1 1.2 L3 Lemin Lmax | Fﬁ L1 L2 L3 Lmin Lmax |
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Variation of actuator forces along the circular tool path:
[ ~_Initial design _ | ~_Optimum dosign
|—H —f2—] 2 e 3
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5.0 -5.0 -
-10.0 - -10.0 1
tis] tis]
3(c) 3(d)
F(X°)=26976N F(X")=21.431N
Actuator leg 2 Actuator leg 2

Table 5.5: Comparison between the initial and optimum designs for the circular tool path.

Starting with the infeasible initial design X° (see the unallowable variation in actuator leg lengths in
inset 3(a), and associated positive inequality constraint function values C,(X°), C,(X°) and C,(X°)),
the optimum design X is found in 73 optimization iterations. This requires 6 minutes and 35 seconds
computational time on a Pentium IV 1.5GHz computer with 640 MBDDRAM. The LFOPC-

algorithm again terminated on criterion 2 (¢, <107) listed in Section 4.4.
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Note that the absolute values of the two active constraints, identified from the positive values of C,(X")

and C(X") (expressions (D.11) and (D.17)) are at least one order of magnitude larger than the
absolute values of the active constraints for the optimization of the parabolic and spike test functions. In
spite of the fact that inequality constraint C, is violated by 0.326x10~° m (0.326 mm ), this violation

lies well within the minimum safety margin of Smm that was used during the formulation of the

inequality constraints.

The effectiveness of the chosen “maximum magnitude actuator force” objective function (see Section
4.2.2) is borne out by comparing figure insets 3(c) and 3(d). In figure inset 3(c) showing the actuator
force variations for the initial design X°, actuator force f, is predominant with significant elevations at
time instants t=6.23s, t=72.20s and t=132.45s. On the other hand, the actuator force variations

associated with the optimum design X in figure inset 3(d) shows a much more level distribution in

terms of the maximum forces in all three actuator legs.

5.4.3 Analysis of convergence to optimum

Figure 5.16 shows the convergence history of the objective function.

28.0

27.0
26.0 -
25.0 -
24.0
23.0 -

®
220 - ® ®

21.0 ® N
end of phase 0 and phase 1
20.0 ; T T T T ‘
0 10 20 30 40 50 €0 70 80
iteration number

Figure 5.16: Convergence history of the objective function for the circular tool path.
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Labels © — ® in Figure 5.16 are used in Table 5.6 to relate the behavior of the convergence curve of the
objective function in the respective indicated regions to the iteration number and phase of the LFOPC-
algorithm, the actuator leg responsible for the maximum magnitude actuator force and the violated

inequality constraints.

Labels Iteration | LFOPC- @ Act. Violated Inequality Constraints
No. Phase leg
X° 0 0 £, 1C, C C(C,
14 0 ¢, C,
@ 15 0 Z, 8
16 0 £, Ch
23 0 £, C, C
24 0 ¢, C, C Cy
25 0 Z, C, C C,
&) 26 0 ¢ C, C
27 0 £, C, Cs C,
28 0 ¢, C, Ci C,,
29 0 l, C, C, C,,
30 0 £, C, C C,
@
31 0 £, C, C, C,
39 0 £, C, C C,
40 0 £, C, Cis
41 0 4, C, Ci C,
@ C, C
42 0 ¢, | maximum violated constraint value
C,(X*)=0.00110
43 0 4, C
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60 0 £, C,
61 0 2, C
Cis
62 0 £,
LFOPC C,(X%)=0936x10"
Phase- 62 1 ‘, C
changes C (only active constraint)
63 1 £,
see footnote ™ at the end of Table 5.6
63 2 Z, C
64 2 ¢, C
67 2 ¢, C,
68 2 Z, C, C,
69 2 4, C,
®
70 2 Z, C,
71 2 £, C,
72 2 2, C,
C, C (active)
X" 73 2 2,
(only C,, =0 enforced in LFOPC- phase 2)

* Note that at the end of phase 1 only one constraint, corresponding to C,, is identified to be active. In
the subsequent stringent enforcement of this constraint in phase 2, the constraint corresponding to C,
also incidentally becomes active. This explains the relative large value (but nevertheless of insignificant
magnitude) of C,(X") in Table 5.5. A diagrammatical representation of the situation that arises is

sketched below

// ////c%o//

As is evident from the convergence histories

pf the X, (1 = 1,2,...,5), thlS distance || X - X || . /I;easible i’egion /<o / /
is extremely small (negligible) and does not / y ;7 / - /
affect the reliability and accuracy of the L / /7 /
computed solution.
J X"at the end of phase 1is infeasible Cr=0
because LEOPC is essentially an

exterior penalty function method

Table 5.6: Comparative table for the circular tool path objective function vs. iteration number
curve (see Figure 5.16).
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A switch in the actuator leg responsible for the maximum magnitude actuator force occurs in the vicinity
of label @. This again explains the non-smooth nature of the objective function vs. iteration number

curve in this area (see Figure 5.16).

Note that since the initial design only violates the “allowable maximum leg length” inequality constraints
(expression (D.11)), it may be possible to intuitively adjust the position of the prescribed tool path
relative to the position of the planar machine in order to achieve feasibility. In terms of the set of design
variables, this implies that only two design variables, X, and X,, need to be changed until the
prescribed circular tool path is feasibly traced. Although this might seem to be an easier option, the
inherent danger of this approach is the unknown occurrence of mechanical interference. This danger is

evident from the fact that the optimum design X" found by LFOPC is associated with the two active

constraints:

e C, an “allowable maximum leg length” inequality constraint (expression (D.11)), and

e C, a“mechanical interference” inequality constraint (expression (D.17)).

The convergence histories of the respective design variables X., i =1,2,...,5 are shown in Figure 5.17.
Practical convergence (both with respect to feasibility and optimum objective function value), has
already been achieved as early as iteration 42 with a maximum violated constraint function value of
C,(X*)=0.00110m (1.10mm), and with the associated design vector given by
X* =[0.34901,0.39819, - 0.28277,-0.36638,0.25303]" . Note that no significant changes in the
values of the design variables occur after iteration 42 as can be seen from the optimum values of the

design variables, X" =[0.34476,0.39829, — 0.28487, - 0.36676,0.25238]" .

—

l V o Design variables" a
| X1 X2 R p——y i
{
|

0.40 e
0.30

0.20 b e

0.10

10,00 f—— e : S

0.10

'-0.20

-0.30

1«0.40 :

iteration number

Figure 5.17: Convergence histories of design variables X, i=1,2,....5 for the circular tool path.
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5.4.4 Execution of the circular tool path

The series of photographs shown in Figure 5.18 is of different instants during the execution of the first

revolution of the circular tool path.

Figure 5.18: Execution of the circular tool path.

Figure 5.19 is a close-up of the traced circular tool path, showing that the diameter of the traced circle is

approximately 350 mm (35 cm ), and that the circle is smoothly traced.
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Figure 5.19: Close-up view of the executed circular tool path.

5.5 Spiral tool path

5.5.1 Nodal points and orientation angle

The spiral tool path is a scaled version of the logarithmic spiral test curve p=e"" of Section 3.5.4.

Using a scale factor of 0.285, the 79 spiral tool path nodal points are as shown in Figure 5.20.

The motion time along the spiral tool path is 93.24 seconds with the specification of §,,,,, =0.01m/s”,

v’ =1.0m/min and n__ =5 for the use of the OCAS trajectory-planning algorithm.
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Figure 5.20
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: Nodal points used to approximate the spiral tool path.

As for the circular tool path, the spiral tool path is traced with a fixed moving platform orientation

b, =0.

5.5.2 Optimization results

The initial and optimum test-model designs for the spiral tool path are compared in Table 5.7 (with

figure insets 4(a) - 4(d)).

Initial design

Optimum design

X°=[0.4,0.4,-0.4,-0.4,0.2]"

Xv

=[0.32686,0.34053, - 0.26137, — 0.40930, 0.15538]"

Inequality constraint values (see Section D.3):

C,(X°)=-0.05

C,(X°)=-0.065

C,(X°)=-0.07
—C,(X°)=0.09323
—C,(X")=0.05420
C,,(X°)=-0.19441
C,,(X")=-0.03220
C,(X’)=-0.05697
C,,(X°)=-0.06113
C,(X°)=-0.06763
C,,(X*)=-0.09526

C,(X%)=-0.3
C,(X°)=-0.287
C (X°)=-0.087

—C,(X°)=0.10988
C,,(X°)=-0.19441
C,(X°)=-0.17684
C, (X")=-0.03972
C,.(X°)=-0.03865
C,(X°)=-0.06216
C,, (X°) =~0.09095
C,,(X°)=-0.06325

—» constraint violation

C,(X')=-0.12314
C,(X") =~0.12447
C,(X")=-0.11462
=C,(X")=0.347x10"
C,(X")=-0.07828
C,(X')=-0.05578
= C,(X")=0.108x10"°
C,,(X") = -0.03094
C,(X") =-0.02269
C,(X")=-0.06875
=C, (X)=0345x10""

=> constraint active

C,(X")=-0.22686
C,(X")=-0.22753
C,(X) =-0.04238
C,(X")=-0.06128
C,,(X") =-0.05578
C,,(X")=-028217
=C,,(X")=0.700x10"
C,.(X")=-0.03204
C,(X") =-0.00256
C,,(X")=-0.11837
C,,(X") =-0.06792
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Variation of actuator leg lengths along the spiral tool path:

B
Initial design Optimum design i
L L2 L3 Lmin Lmax | — L2 L3 Lmin Lmax | '
0.7 - 07 |
Pt "N |
EoAs / E 0.5 |
& '] H
£04 £04 1
503 =03 i
s |
B2 % 0.2 - 1
0.1 0.1 ’ i
| 00 . S— : ‘ 00 , : : : » § |
00 100 200 300 400 500 600 70.0 80.0 90.0 00 100 200 300 400 500 600 700 800 900 |
tis] t[s] i
4(a) 4(b)
Vanation of actuator forces along the spiral tool path:
B Initial design _ Optimum design
[ e 2 3 ::—ﬂ —_——
35.0 R A IS = T
300 - 30.0
25.0 25.0
£ 20.0 Z 200
& 0
b3
g 150 $ 150
& £
£ 100 £ 100
2 5
& 50 % s0-
0.0 e N SP— 0.0 ™ : A _—
oo 10¢ 200 300 400 500 80.0 700 80.0 900! oo 100 200 W.o 60.0 700 800 90.0
5.0 - -5.0 A :
[f t[s] t{s]
4(c) 4(d)

F(X°)=28.914N

Actuator leg 1

F(X")=22.409N

Actuator leg 1

Table 5.7: Comparison between the initial and optimum designs for the spiral tool path.

The initial design is again infeasible (see the variation in actuator leg lengths in inset 4(a) and the

corresponding positive inequality constraint function values C,(X°), C,(X°) and C,(X°)). The

Seasible optimum design (see figure inset 4(b)) is associated with active constraints corresponding to C,,

C,, C, and C,

(see respective expressions (D.10), (D.14), (D.15) and (D.22)).

Note that
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corresponding to the circular tool path, the optimum variation in actuator forces of figure inset 4(d)

shows a level distribution in terms of the maximum forces in all three actuator legs.

The optimum design, X', is found in 133 optimization iterations and utilizing 11 minutes and 46
seconds computational time on a Pentium IV 1.5GHz computer with 640 MB DDRAM . As before,

LFOPC terminated on criterion 2 (g, <107) listed in Section 4.4.

5.5.3 Analysis of convergence to optimum

Figure 5.21 shows the convergence history of the objective function.

Objective function value
30.0

29.0
28.0
27.0 -
26.0
25.0
24.0 -

23.0 -

22.0 - X T
21.0 ‘
Start phase 1 Start phase 2
20.0 : ‘ ;
0 20 40 60 80 100 120 140

iteration number

i

Figure 5.21: Convergence history of the objective function for the spiral tool path.

Table 5.8 with labels @ ~ @ relate the behavior of the convergence curve of the objective function to
iteration number, the LFOPC phases, the actuator leg responsible for the maximum magnitude actuator

force, and the violated inequality constraints in the respectively indicated regions of the curve.
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Labels Iteration | LFOPC- | Act. Violated Inequality Constraints
No. Phase leg
X° 0 0 Z, Cc, ¢ G
18 0 el C13 ClS
19 0 E} C13 C 1 CIS
@
20 0 g! CB clll CIS
21 0 é! CI3 C]S
@ 28-31 0 £, C, C, C,
63 O ft C? C13 14 C2l
64 0 ¢, | C Co Cu Gy
@
65 0 81 G, CM sz
66 0 ¢ C, Cy Gy Ca
78 0 'gl C7 C]S C14 CZI
C, Cs Cy Cu
LFOPC 79 0 ¢, | maximum violated constraint value
phase- -
C,,(X")=0.00316
change
79 1 ¢ C, Cs Cy C21
80 1 K! G, Czs cw Cz!
87-89 1 £, | none
@
90 1 Z, C,
125 1 £, C, C, C, C,,
LFOPC 126 1 Z, C, c, C, C,,
phase-
change 126 2 ¢, C, Cc, C, C,,
127 2 £, C, C, C,,
X’ 133 2 £, C, C, C, C,, (active)

Table 5.8: Comparative table for the spiral tool path objective function vs. iteration number

curve (see Figure 5.21)
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Note that the actuator leg responsible for the maximum magnitude actuator force switches between £,

and £, in the vicinity of label ®.

The convergence histories of the respective design variables X,, 7 =1,2,...,5 are shown in Figure 5.22.

Again convergence (with respect to feasibility and objective function value), is effectively achieved at
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the end of phase 0, after 79 iterations with the maximum violated constraint value

C,,(X”)=0.00316m (3.16 mm).

Design variables

I- X1 x2 3 P p— —><§‘

L ks

‘ 0.50 17— = i

0.40 e
0.30 -

020 |
0.10 - |

0.00 +—— = oy — = > 1
20 40 60 80 100 120 140
-0.10 |

-0.20 -

B /‘”‘

-0.50 -+~ S - -
iteration number

Figure 5.22: Convergence histories of design variables X , i =1,2,....5 for the spiral tool path.

5.5.4 Execution of the spiral tool path

The series of five photographs in Figure 5.23 depicts the tracing of the spiral tool path with a

horizontally orientated moving platform (¢, =0).
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Figure 5.23: Execution of the spiral tool path.

The close-up view of the executed spiral tool path in Figure 5.24 shows its relative size and proportional

shape. For all practical purposes the executed path corresponds accurately and smoothly to the spiral

tool path prescribed by Figure 5.20.

Figure 5.24: Close-up view of the executed spiral tool path.
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5.6 Treble clef tool path

5.6.1 Nodal points and orientation angle

The treble clef tool path used here is a scaled version of the treble clef test curve of Section 3.5.5. Figure
5.25 shows the 49 scaled nodal points generated with a scale factor of 0.00285.

0.45

0.40 1 .

035 . .

0.30

0.26 -

0.20 -

0.16

0.10 4 L

0.05 -

»
0.00 2.8 ;
000 005 010 015

Figure 5.25: Nodal points used to approximate the treble clef tool path.

The OCAS trajectory-planning methodology is again utilized here with the specification of

§aiow =0.01m/s*, v’ =1.0m/min and n,_ =35, resulting in a total motion time along the treble clef

tool path of 73.28 seconds.

The treble clef tool path is also traced with a fixed moving platform orientation ¢, =0.
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The initial and optimum test-model designs for the treble clef tool path are compared in Table 5.9.

Initial design

Optimum design

X°=[04,04,-04,-04,02]

X" =[0.42327,0.34561, -

0.08380, - 0.30386,0.25886]"

Inequality constraint values (see Section D.3):

—>C,(X")=0.33349
—C,(X")=0.28228
C,,(X°)=-032755
C,(X")=-0.0425
C, (X")=-0.07431
C,(X°)=-0.11291
C,(X%)=—-0.09483
C, (X°)=-0.11013

C,(X°)=-0.05 C,(X°)=-03
C,(X°) =-0.065 C,(X°)=-0.287
C,(X°)=-0.07 C.(X°)=-0.087

- C,(X°)=0.27978
C,,(X°) =-0.32755
C,,(X°)=-0.39335
C, (X°)=-0.05377
C(X®) =-0.07656
C,.(X°)=-0.10447
C,,(X°)=-0.12035
C,,(X°)=-0.07064

-» constraint violation

C,(X")=-0.02673
C,(X")=-0.11939
C,(X')=-0.01114
=C,(X")=0221x10""
C,(X")=-0.04101
C, (X")=-0.01136
C,,(X")=-0.07261
C(X")=-0.03426
C,,(X')=-0.03052
C,(X")=-0.07222
C, (X')=-0.13874

C,(X")=-0.32327
C,(X")=-0.23261
C,(X")=-0.14586
C (X")=-0.01996
C,(X")=-0.01136
C,(X")=-0.33997
C,,(X")=-0.00315
=C,(X")=-0.774x10"°
C,(X")=-0.00305
C,, (X")=-0.04259
C,,(X")=-0.04912

=> constraint active

Variation of actuator leg lengths along the treble clef tool path:

i Initial de sign Optimum desngn
! E L1 L2 L3 Lmin Lmax | — L2 L3 Lmin ——Lmax | |
l 0.9 - 08 - — |
' o8 0.8 !
Lo 0.7 |
Eos Eos i
2 2 !
™ 0.5 \\_j/ & 0.5 i
b~ c |
3 3 ;
w 0.4 = 0.4 ;
8 . i
- g |
. 03
® g ‘
02 I 02 i
0.1 0.1 '
0.0 . : 0.0 : : ‘ : ;
00 100 200 300 400 500 600 700 ! 00 100 200 300 400 500 600 700 |
. \ ] tis] | t[s] ‘
5(2) 5(b)
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Variation of actuator forces along the treble clef tool path:

__ Initial design _Optimum design
— —— MR
300 30.0
25.0 - 250 -
Z 200 Z 20.0
3 #
2 150 8 150
£ 2
§ 100 g 100
[} o
g g
8 50 m / % 50-
0.0 4 , . : 0.0 ; « : ;
00 100 7200 300 4 §0.0 600 70,0 00 100 200 300 400 50.0 60.0 v.o !
5.0 - -5.0
-10.0 -10.0
i tfs] tls]
5(c) 5(d)

F(X°)=29.586 N

Actuator leg 2

F(X")=20.715N

Actuator leg 3

Table 5.9: Comparison between the initial and optimum designs for the treble clef tool path.

The initial design is severely infeasible (see the unallowable variations in actuator leg lengths shown in

inset 5(a) and which correspond to the positive inequality constraint function values C,(X°), C,(X?)

and C,(X°)). The optimum and feasible (see inset 5(b)) design X" with active inequality constraints

corresponding to C, and C,, and a level maximum magnitude actuator force distribution (see inset

5(d)) is found in 127 optimization iterations and utilizing 6 minutes and 57 seconds computational time

on a Pentium IV 1.5GHz computer with 640 MBDDRAM. Once again, LFOPC terminated on

criterion 2 (g, <107°) listed in Section 4.4.
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5.6.3 Analysis of convergence to optimum

Figure 5.26 shows the convergence history of the objective function.

?

30.0

23.0 -

Objective function value

29.0 -
28.0
27.0
26.0
25.0

240

22.0
21.0 1

20.0 -

end of phase 0 and phase 1

@

i

iteration number

0 10 20 30 40 50 60 70 80 90 100 110 120 130

<

Figure 5.26: Convergence history of the objective function for the treble clef tool path.
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The relatively smooth convergence graph of the objective function value shown in Figure 5.26 relates the

LFOPC phases, actuator leg responsible for the maximum magnitude actuator force, and violated

inequality constraints as indicated in Table 5.10.

Labels Tteration | LFOPC- | Act. Violated Inequality Constraints
No. Phase leg
X° 0 0 £, | C, C C,
35 0 £, | C, C, C,5 C, Cy,
36 0 £, | C, C,. Cs Cg,
37 0 £, C, C., C, C, Cg,
38 0 £, C, c, C, C, C,
@ 39 0 £, | C, C, C, C, C,
C, C. C, Cg,
40 0 £, | maximum violated constraint value
C,,(X*)=0.02568
41 0 £, | C, C, Cs Cg,
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84 0 {, | C, C
C? Clé
85 0 £, | maximum violated constraint value
LFOPC C,, (X*)=0.00220
phase-
85 1 £, | C, C,
changes
86 1 ¢, | C, C,
86 2 £, | C, Cy
87 2 2, | C, C,
X' 127 2 £, | C, C, (active)

Table 5.10: Comparative table for the treble clef tool path objective function vs. iteration
number curve (see Figure 5.26).

Note that a switch from ¢, to £, as the actuator leg responsible for the maximum magnitude actuator

force occurs in the vicinity of label ©.

The convergence histories of the respective design variables X, 7=1.2,...,5 are shown in Figure 5.27.

Here the convergence of the design variables is significantly more sluggish, requiring about 100
iterations to converge, compared to the relatively fast and sharp convergence of the objective function

value within 40 iterations. Even though, after 40 iterations the objective function value
(F(X*)=20.747N) is close to the optimum objective function value (F(X')=20.715N), the
maximum violated constraint function value, C,, (X*)=0.02568 m , shows that this is still an infeasible
design due to the occurrence of mechanical interference (see expression (D.19)). The corresponding
values of the design variables are X* =[0.41543,0.39816,-0.08308,-0.33817,0.21923]".
Significant further changes occur in the values of design variables X,, X, and X, between iterations
40 and 100 (X'® =[0.42319,0.34551, - 0.08406, — 0.30402, 0.25886]" ). However, after phase 0 of the
LFOPC-algorithm has terminated (iteration number 85), the maximum violated constraint function value
is only 2.20mm (C, (X*)=0.00220m), which is negligible for all practical purposes and X* may

be taken as an effective optimum design.
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84 0 ¢, |C, C,.
C, C,
&5 0 ¢, | maximum violated constraint value
LEQEG C,, (X*)=0.00220
;ZS;S 85 e, |c o
86 1 ¢, | C, C,
86 2 ¢, | C, C,
87 2 ¢ | C, &
X’ 127 2 ¢, | C, C, (active) J

Table 5.10: Comparative table for the treble clef tool path objective function vs. iteration
number curve (see Figure 5.26).

Note that a switch from /7, to ¢, as the actuator leg responsible for the maximum magnitude actuator

force occurs in the vicinity of label ©.

The convergence histories of the respective design variables X,, i =1,2,...,5 are shown in Figure 5.27.

Here the convergence of the design variables is significantly more sluggish, requiring about 100
iterations to converge, compared to the relatively fast and sharp convergence of the objective function

value within 40 iterations. Even though, after 40 iterations the objective function value
(F(X*)=20.747N) is close to the optimum objective function value (F(X')=20.715N), the
maximum violated constraint function value, C ,(X*)=0.02568 m , shows that this is still an infeasible
design due to the occurrence of mechanical interference (see expression (D.19)). The corresponding
values of the design variables are X* =[0.41543,0.39816,-0.08308,—0.33817,0.21923]".

Significant further changes occur in the values of design variables X,, X, and X, between iterations

40 and 100 (X'™ =[0.42319,0.34551, — 0.08406, — 0.30402,0.25886]" ). However, after phase 0 of the
LFOPC-algorithm has terminated (iteration number 85), the maximum violated constraint function value
is only 2.20 mm (C,(X*)=0.00220 m), which is negligible for all practical purposes and X* may

be taken as an effective optimum design.
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Figure 5.27: Convergence histories of design variables X,, i =1,2,....5 for the treble clef tool
path.

5.6.4 Execution of the treble clef tool path.

The four photographs grouped in Figure 5.28 were taken at different time instants along the actually

traced treble clef tool path. Note that the moving platform remains horizontal (¢, =0) during the

execution of the path.

Figure 5.28: Execution of the treble clef tool path.
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A close-up view of the executed treble clef tool path is shown in Figure 5.29, for comparison with the

prescribed nodal points shown in Figure 5.25. Clearly the path is accurately traced with no practically

significant differences in size and proportion between the executed and prescribed tool paths.

Figure 5.29: Close-up view of the executed treble clef tool path.

5.7 Bigger parabolic tool path

All of the above tool paths are scaled down versions of those represented by the original test functions
discussed in Section 3.5. In each instance, the proposed optimization approach determined a feasible
design of the adjustable planar machine, with which the (scaled) prescribed tool path could be
continuously traced. In general, however, a feasible design may not exist for a particular prescribed path,

and thus it cannot be continuously traced. In this event, user intervention is required to divide the
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Figure 5.31: Variation in the orientation angle for the bigger parabolic tool path.

5.7.1.2 Optimization results

Whenever the LFOPC-algorithm cannot find an optimum design that is feasible, it computes a “best”

compromised design corresponding to that with least possible constraint violation, and presents it as the

optimum solution. A comparison between the initial test-model design and the compromised optimum

test-model design for the bigger parabolic prescribed tool path is given in Table 5.11, with figure insets

6(a) — 6(d).

Initial design

Optimum compromised design

X°=[04,04,-0.4,-04,0.2]

X" =[0.09643,0.11018,-0.51561, -

0.10841,0.11015]"

Inequality constraint values (see Section D.3):

C,(X°)=-0.05
C,(X°)=-0.065
C,(X°)=-0.07

—C,(X*)=0.11077
C,(X") =-0.00648
—C,,(X°)=0.12769
C,,(X°)=-0.09548
—C,,(X°)=0.03046
—C,,(X°)=0.05454
C,(X°)=-0.03549
—C, (X°)=0.06468

C,(X°)=-0.3
C,(X°)=-0.287
C,(X*)=-0.087

C,(X°) = -0.02581
—C,,(X°)=0.12769
C,,(X")=-0.29548
—C,,(X°)=0.02800
—C,,(X")=0.04159
—C,(X°) =0.08839
C,, (X®) =-0.02495
—C,(X*)=0.04873

—» constraint violation

C,(X")=-0.35357 —C,(X")=0.00357
C,(X")=-0.35482 —C,(X")=0.00282
C,(X")=-0.15985 — C,(X")=0.00285
—C,(X)=0.01264 —C,(X)=0.591x10"
—>C,(X")=001347 —C,(X")=0.01208

C,(X')=001208 C_(X")=-0.36166

C,(X")=-0.16520
C,(X')=-0.29681
C,,(X")=-0.00670
C,(X")=-0.05005
C,,(X")=-0.04202

C,(X")=-0.05061
C, (X')=-0.04946
C,,(X")=—0.04160
C,, (X")=-0.13960
C,,(X")=-0.17053

— constraint violation
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Variation of actuator leg lengths along the bigger parabolic tool path:

actuator lengths [m]

o
~

I
>

©

o

<

o

initial design ] Optimum design
11 12 L3 Lmin Lmax | L1 L2 w3 - LN s L 12X ]
,..l.'ﬁfff — - O 0.7 ,lf T T T I T LTI LT T
///-—/___~ 08
¥ E°° <
]
4 £04
=
2
3 $ 0.3
3
2 4 ® 0.2
0.1 01
0.0 0.0

o
(<)

0.0 10.0 20.6 30.0 40.0
t [s] 1 t[s]

6(b)

10.0 20.0 300 40.0

Variation of actuator forces along the bigger parabolic tool path:

i 60.0 : 60.0

50.0 - 50.0 |

Initial design

m____E:.}?[

10.0

actuator forces [N]

¢
-10.0

-20.0 4

6(c)

F(X°)=23.121N : F(X")=57.681N

Actuator leg 2 Actuator leg |

Table 5.11: Comparison between the initial and optimum designs for the bigger parabolic tool
path.

The infeasibility of the initial design X’ is evident from figure inset 6(a), as well as from the violated
inequality constraints corresponding to C,, C,,, C,,, C,,, C,s, C,s, C,;, C5, C,, and C,,. Figure

inset 6(c) shows the variation in actuator forces for this initial design with an objective function value of

F(X°)=23.121N, with actuator leg 2 responsible for the maximum magnitude actuator force.
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Considering the compromised optimum design X", the constraints corresponding to C,, C,, C,, C,,
C,, C,, C, and C, are violated by the LFOPC-algorithm in its search for a best compromised

solution. The variation of the actuator legs for this compromised optimum solution is shown in figure

inset 6(b), where the violation of the maximum allowable actuator leg length by actuator legs ¢, and ¢,
is clearly visible. In correspondence with Section 5.4.2, the magnitude of constraint function value
C,(X")=0.591x107 m (0.591 mm ) is indeed negligibly small, and from a practical point of view, the
inequality constraint associated with C, can be considered active rather than violated (see expression

(D.11)).

The violated inequality constraints associated with C,, C, and C; (expression (D.10)) imply that the
linearly adjustable revolute joints are positioned outside their allowable ranges. In particular, C, has the
largest constraint function magnitude of the three with C,(X")=0.00357m=3.57mm. Although

substantial, these violations are not critical, since they lie within the minimum safety margin of 5mm

that was used during the formulation of the inequality constraints (see Appendix D).

Apart from the critically violated actuator leg length inequality constraints C, and C, (expression
(D.11)), violated constraints C,, and C,, resulting from the tangential orientation of the moving
platform, cannot be ignored. More specifically, of these four inequality constraint functions, the smallest
magnitude is C, (X")=C,(X")=0.012lm (12.1mm) and the largest magnitude is
C,(X)=0.0135m (13.5mm).

The above analysis of the violated inequality constraints is used in the next subsection where the
prescribed parabolic tool path is rationally divided into different segments. For the sake of
completeness, however, the convergence histories of the objective function (Figure 5.32) and design

variables (Figure 5.33) in arriving at the compromised solution, are also included here.
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Figure 5.32: Convergence history of the objective function for the bigger parabolic tool path.
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Figure 5.33: Convergence histories of design variables X, i=1,2,....5 for the bigger parabolic
tool path.

Note that the compromised optimum solution X" is found in 238 optimization iterations requiring 7
minutes and 29 seconds computational time on a Pentium IV 1.5GHz computer with
640MBDDRAM. The LFOPC-algorithm here also terminated on criterion 2 (¢, <107°) listed in

Section 4.4,
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5.7.2 Dividing the prescribed path into segments

5.7.2.1 Nodal points and orientation angle

In the case of a compromised solution the user may intervene in a rational manner in order to execute the
path. This is done by firstly analyzing the constraints violated by the compromised design. Note that for

the example under consideration, the critically violated inequality constraints are the maximum
allowable actuator leg lengths £, and 7, (C, and C, given by expression (D.11)) and the lower frame
boundary constraints C,, and C,, as explained in Section D.3.3.2. This implies that the “vertical

motion” of the moving platform that is required for the complete continuous tracing of the prescribed

parabolic tool path shown in Figure 5.30, cannot be accommodated.

0.20 0.15 -0,10 .05 0.00 0.05 0.10 0.15 0.20
ey «
» »
*» »
. £0.04 .
o [ 3 .
. * .08 - ‘ .
* »
. *
- AZ
X
(a)
-0.25 -020 -045 -0.10  -0.05 0.00 0.00 0.05 0.10 0.15 0.20 0.25
. " 0.00 : x 0.00
-0.05 -0.05
K L -0.10 Y -0.10
L] L]
L 2 > *
» »
. -0.15 . -0.15
L .
N L -0.20 ) -0.20
-0.25 -0.25
X X
(b) ©)

Figure 5.34: Three sets of nodal points used to approximate the bigger parabolic tool path: (a)
upper middle segment, (b) bottom left segment and (c) bottom right segment.

The prescribed parabolic tool path is symmetric about the y-axis, hence the “bounds of vertical motion”,
associated with the execution of the left-hand side of the tool path correspond exactly to the “bounds of

vertical motion” associated with the execution of the right-hand side of the tool path. This implies that
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dividing the prescribed parabolic tool path into two symmetric segments, will not remedy the problem.
An alternative strategy is to divide the prescribed tool path into three seperate segments as shown in

Figure 5.34 (a) - (c).

The sequential execution of firstly segment (b), then segment (a) and finally segment (c), is one possible
strategy that can be followed to execute the prescribed bigger parabolic tool path. The assumption is
made here that the workpiece can be repositioned after each segment is executed. This assumption is
justified not only because repositioning is common practice in the machining of larger workpieces, but
also because the two “repositioning parameters” correspond to chosen design variables of the

constrained optimization problem. In particular, design variables X, and X, determine the position of

the workpiece relative to the base of the planar Gough-Stewart machining platform (see Figure 5.5).

For demonstration purposes it is further assumed that the planar “workpiece” on which the prescribed
tool path is to be traced, can be rotated through 180° about the vertical y-axis of the prescribed parabola.
This assumption implies that a second possible strategy for the execution of the prescribed bigger
parabolic tool path, is to sequentially trace segments (b) and (a) of Figure 5.34, then rotate the workpiece

through 180" about its vertical symmetry axis, and finally trace segment (b) of Figure 5.34 once more.

The advantage of the latter strategy is that for the optimization based operating system of the planar
Gough-Stewart platform as proposed in this study, only two of the three segments shown in Figure 5.34
have to be optimized for. In practice segments (b) and (a) are treated as two separate tool paths, each
requiring its own optimization run. The subsequent optimization results of the respective prescribed tool

paths are presented in sub-sections 5.7.2.2 and 5.7.2.3.

For both prescribed tool paths, the OCAS trajectory-planning methodology (Chapter 3) is applied with

the maximum allowable acceleration limited to 0.01 meter per second square (§,,., =0.01m/s’ ), and a

allow

specified cutting speed of 1.0m/min (v’ =1.0m/min). With these specifications, the simulated

prescribed motion along segment (b) in Figure 5.34 is completed in 10.07s, and the simulated

prescribed motion along segment (a) in Figure 5.34 is completed in 24.165 .

The original specification that the moving platform of the test-model be tangentially orientated with
respect to the prescribed curve, is also incorporated here. In particular, the moving platform orientation
angle now varies from 63.4° at the starting point (=0.2,-0.2) of segment (b) to 54.5° at the end point
{(—0.14, - 0.098) of segment (b) as shown in Figure 5.35.
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Orientation angle
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Figure 5.35: Variation in the orientation angle for segment (b) of the bigger parabolic tool path
(see Figure 5.34).

For segment (a) in Figure 5.34, the moving platform orientation angle varies from 54.5" at the start point
(-0.14,-0.098), to — 54.5° at the end point (0.14,—0.098) (see Figure 5.36).

Orientation angle
80.00

4000
20.00

0.00
0.p0 5.00 10.00 15.00 20.00 25.00 30,00

-20.00

-40.00 -

-60.00

t

Figure 5.36: Variation in the orientation angle for segment (a) of the bigger parabolic tool path
(see Figure 5.34).
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5.7.2.2 Optimization results for segment (b) of Figure 5.34.

A comparison between the initial test-model design and the optimum test-model design for segment (b)

K

L

et

of the bigger parabolic tool path (see Figure 5.34) is given in Table 5.12 with figure insets 7(a) — 7(d).
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Initial design

Optimum compromised design

X’ =[0.4,04,-0.4,-0.4,0.2]

X' =[0.21606,0.23581,~0.52924, - 0.38758,0.11917]"

Inequality constraint values (see Section D.3):

C,(X°)=-0.05
C,(X°%) =-0.065
C,(X°)=-0.07

C,(X")=-0.32486
C,(X")=-0.00911
C, (X°)=-0.38212
C,,(X°)=-0.40876

C,(X°)=-03
C,(X°)=-0.287
C,(X*)=-0.087

C,(X°)=-0.23336

> C,(X°) =0.12770

C,(X°)=-0.29556
—C,,(X°)=0.02801

C,(X")=-0.23394
C,(X')=-0.22919
C,(X")=-0.15083
C,(X")=-0.13510
C,(X") =-0.00394
C,(X)=-0.51136
C,(X")=-0.31045

C,(X')=-0.11606
C,(X')=-0.12281
C,(X")=-0.00617
C,(X')=~0.17790
C,,(X")=-0.00154
C,,(X")=—0.48845
C, (X')=-0.06274

—C,,(X")=0.03048
—>C,,(X")=0.05455
C o (X°®) =-0.04946
C, (X°)=-0.05174

- C,,(X°)=0.04160

- C,,(X°)=0.08839
C,, (X°)=-0.06903
C,,(X°)=0.04874

C(X")=-0.22601
C,.(X")=-0.03509
C,,(X")=-0.08209
C, (X") =—0.06039

C, (X')=-0.07416
C o (X")=-0.05569
C,(X')=-0.18538
C,,(X")=-0.01225

—> constraint violation

Variation of actuator leg lengths along segment (b) of the bigger parabolic tool path (see Figure 5.34):

~ Initial design ]
L2 L3 Lmax| |

~ Optimum design
L2 L3 e

Lmin - ] L1

— —Lmin ~——Lmax| |
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Variation of actuator forces along segment (b) of the bigger parabolic tool path (see Figure 5.34):

r_,IniLial_cl_wefM_ Optimum design
RS J—Y SR —
20,0 1 oo o _7__%J e e DO.0 s e e P
15.0 15.0 - e T —
10.0 - 10.0 -
g / L z
5 0.0 | : : . @ 00 ; ‘ ; ;
§ 5,00 20 4.0 6.0 8.0 100 120 § 500 2.0 4.0 8.0 8.0 100 120
5 ‘ -
g 100 S -10.0 -
E IRRE
-15.0 ® 50
-20.0 - -20.0
250 - 25.0 -
-30.0 j‘ -30.0
t[s] tis]
7(c) 7(d)
F(X°)=23.078N F(X")=17.238N
Actuator leg 2 Actuator leg 3

Table 5.12: Comparison between the initial and optimum designs for segment (b) of the bigger
parabolic tool path (see Figure 5.34).

The mitial design X’ is infeasible as can be seen from the positive inequality constraint function values
C,, (X)), C (X%, C;(X%, C(X%), C,(X®) and C,(X°) in Table 5.12. The (allowable) initial
variation of the actuator leg lengths along segment (b) of the bigger parabolic tool path (see Figure 5.34)
is shown in figure inset 7(a).

The LFOPC-optimization algorithm finds the feasible optimum design X" in 122 optimization iterations
requiring 1 minute and 32 seconds computational time on a Pentium IV 1.5GHz computer with

640 MB DDRAM .

The optimum design X~ found is an unconstrained optimum as can be seen from the negative inequality
constraint function values C,(X"), i =1,2,3,...,22 listed in Table 5.12, and the optimum variation of the

actuator leg lengths shown in figure inset 7(b). The optimum variation of the actuator forces along
segment (b) of the bigger parabolic tool path shown in figure inset 7(d) is significantly different when

compared to the initial variation shown in figure inset 7(c). In particular, the initial objective function

value is F(X°)=23.078N in actuator leg /¢,, while the optimum objective function value is

F(X")=17.238 N in actuator leg ¢, .
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The convergence histories of the objective function (Figure 5.37) and design variables (Figure 5.38) are
shown below. Note that since no active constraints were identified as the LFOPC-algorithm progressed

along phase 0 (see Appendix C), the iterative search terminated on criterion 2 (g, <10°°) listed in

Section 4.4 before the end of phase 0.

Objective function value
24.0

|

220 |
200 |
1

18.0 -

16.0 -

140 |

|

12.0 -

‘ ; |

110.0 | : ‘ |

0 20 40 60 80 100 120 14(1
iteration number

L

Figure 5.37: Convergence history of the objective function for segment (b) of the bigger
parabolic tool path (see Figure 5.34).

Design variables l
«; X1 s X2 3 X4 % | ]
Q.60 o JRE— ey i
0.40 a
\-.E : |
6.2 '\w : |
0.00 - . . . s .
20 40 60 80 100 120 |
0.20

-0.40 e .
WWM\"\M--%W_,_M__ i
060 o B

iteration number

Figure 5.38: Convergence histories of design variables X, i =1,2,...,5 for segment (b) of the
bigger parabelic tool path (see Figure 5.34).
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5.7.2.3 Optimization resuits for segment (a) of Figure 5.34.

K}

»

A~ 4

A comparison between the initial test-model design and the optimum test-model design for segment (a)

of the bigger parabolic tool path (see Figure 5.34) is given in Table 5.13 with figure insets 8(a) — 8(d).

Initial design

Optimum compromised design

X°=[0.4,04,-0.4,-0.4,0.2]"

X' =[0.28698,0.27183,-0.40319, - 0.25524,0.13241]"

Inequality constraint values (see Section D.3):

C,(X°)=-0.05 C,(X")=-03
C,(X°)=-0.065 C,(X%)=-0.287
C,(X°)=-0.07 C,(X°)=-0.087

—C,(X°)=0.10390
C,(X°) =-0.00651
—C,,(X°)=0.00321
C,,(X*)=-0.12872
C,(X°)=-0.05491
C,,(X°)=-0.01806
C,(X°)=-0.07006
C, (X°)=—0.08689

C,(X°)=-0.02582
—C,(X°)=0.00321
C,(X°)=-0.32872
C,,(X*)=-0.03807
C,,(X°)=-0.00827
C,(X*)=-0.00218
C,, (X°) =-0.09382
C,,(X°)=-0.01093

—» constraint violation

C,(X")=-0.16302
C,(X')=-0.19317
C,(X")=-0.13759
=C,(X")=0375x10™
C,(X") =-0.04699
=C, (X")=0.158x10""
C,(X")=-0.17817
C,(X")=-0.17787
C,(X")=-0.00307
C,,(X")=-0.06970
C, (X")=-0.03715

C,(X")=-0.18698
C,(X")=-0.15883
C,(X")=-0.01941
C,(X")=-0.05909
=C,(X)=0.158x10™*
C,(X')=—-0.34499
C,(X")=-0.05417
C,,(X")=-0.02705
= C,(X")=0.108x10"
C,(X")=-0.15416
C,,(X") =-0.07894

= constraint active

Variation of actuator leg lengths along segment (a) of the bigger parabolic tool path (see Figure 5.34):

Initial design Optimum design
1 L1 L2 L3 Lmin Lmax | L1 L2 L3 LMin s Lmax |

0.7 4 e 0.7 |

0.6 - 0.8
£ 0.5 :E: 05
[] ]
€04 5;3, 0.4
8 8
go3- §o03
[} o
§ 0.2 § 0.2

0.1 0.1

0.0 0.0 ‘ . .

0.0 5.0 10.0 15.0 20.0 25.0 0.0 5.0 10.0 15.0 200 25.0
tis] t s
8(a) 8(b)
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Variation of actuator forces along segment (a) of the bigger parabolic tool path (see Figure 5.34):
Initial design ' __Optimum design - ‘
[ p— y—y " p— |
|
|
250 25.0 |
Z 200 Z 200 y
8 A 2 8
g : g .
'2 150 2 150 )
$ f g

] ] ;
8 100 | 8 100 ]
] 5.0 5.0 - | l
0.0 , , . 0.0 , : . : ‘ i
[ 0.0 50 10.0 15.0 20.0 25.0 0.0 5.0 10.0 15.0 20,0 2.0

‘ tis] t[s] ) B

8(c) 8(d)
F(X°)=19.554 N F(X")=24347N
Actuator leg 1 Actuator leg 1

Table 5.13: Comparison between the initial and optimum designs for segment (a) of the bigger
parabolic tool path (see Figure 5.34).

To start off with, the initial design X° is again infeasible as can be seen from the positive inequality
constraint function values C,(X°), C,,(X") and C, (X°)in Table 5.13. Figure inset 8(a) also shows
that actuator leg £, violates the maximum allowable actuator leg length (inequality constraint C,) as
segment (a) of the bigger parabolic tool path (see Figure 5.34) is traced with the initial design. The

lower frame boundary inequality constraints C,, and C,, (expression (D.12)) are also slightly violated
by the initial design.

For the feasible optimum design X', the active inequality constraints corresponding to C,, C,,, C,,
and C, (see Table 5.13) exhibit a behavior similar to that detected for the circular tool path of Section
5.4, and explained in detail with reference to Table 5.6. The LFOPC-optimization terminated on
criterion 2 (g, <107°) listed in Section 4.4 after 144 optimization iterations requiring 3 minutes and 40

seconds computational time on a Pentium IV 1.5 GHz computer with 640 MB DDRAM .

The optimum variation of the actuator forces along segment (a) of the bigger parabolic tool path shown

in figure inset 8(d) is fairly similar to the initial variation shown in figure inset 8(c). In particular, the
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initial objective function value is F(X°)=19.554 N in actuator leg £,, while the optimum objective

function value is F(X") =24.347 N, also in actuator leg £, .

The convergence histories of the objective function (Figure 5.39) and design variables (Figure 5.40) are
shown below. Note that both these graphs indicate that in this case, effective convergence is only

reached after only 120 iterations.

Objective function value
28.0

27.0
26.0 -
25.0

24.0 -
23.0 -

22.0 - end of phase 0 and phase 1
210

20.0
19.0 +

18.0 - : - . ; T :
0 20 40 60 80 100 120 140
iteration number

Figure 5.39: Convergence history of the objective function for segment (a) of the bigger
parabelic tool path (see Figure 5.34).

Design variables
l — X1 X2 o X3 x4 ——-><5
0.50 I I T T I I i i
.40 1
0.30 —\
0.20 —————\
0.10
0.00 : : T v
010 [ 20 40 80 80 100 120 140
0.20 4
0.30 /
0.40 +
£0.50 S
iteration number

Figure 5.40: Convergence histories of design variables X, i=12,...5 for segment (a) of the
bigger parabolic tool path (see Figure 5.34).
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5.7.3 Execution of the prescribed bigger parabolic tool path

5.7.3.1 First execution of seagment (b) {see Figure 5.34)

The series of photographs grouped in Figure 5.41 shows the initial and final time instants during the first
(“upward”) execution of segment (b) of the prescribed bigger parabolic curve (see Figure 5.34). The

tangential ortentation of the moving platform is clearly visible from these photographs.

Figure 5.41: First execution of segment (b) of the bigger parabolic tool path (see Figure 5.34).

A close-up view of the executed segment (including a horizontal reference base-line) is shown in Figure
5.42.

Figure 5.42: Close-up view of the executed segment (b) of the bigger parabolic tool path (see
Figure 5.34).
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5.7.3.2 Execution of segment (a) (see Figure 5.34)

Once segment (b) has been traced, the “workpiece” is repositioned as explained in Section 5.7.2.1. The
series of photographs grouped in Figure 5.43 shows the positioning of the platform at different time
mstants during the execution of segment (a) of the prescribed bigger parabolic curve (see Figure 5.34).
These photographs clearly show that the tangential orientation of the moving platform is maintained as

segment (a) is traced.

Figure 5.43: Execution of segment (a) of the bigger parabolic tool path (see Figure 5.34).

The close-up view of the executed segments (b) and (a) shown in Figure 5.44, emphasizes the smooth

transition between consecutive segments,
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Figure 5.44: Close-up view of the executed segments (b} and (a) of the bigger parabolic tool path
(see Figure 5.34}.

5.7.3.3 Second execution of segment (b) (see Figure 5.34)

Corresponding to the second possible strategy for the plece-wise execution of the prescribed bigger
parabolic tool path (see Section 5.7.2.1), the planar “workpiece” is now rotated through 180" about its
vertical symrmetry-axis, and repositioned so that segment (b) of Figure 5.34 can be traced for the second

time, also “upwards”.

The series of photographs grouped in Figure 5.45 shows the initial and final time instants, as well as an
intermediate time instant during the second execution of segment (b) (see Figure 5.34). The tangential

orientation of the moving platform is again clearly visible from these photographs.
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