
Chapter 4 

4 THE DETERMINATION OF OPTIMUM PLATFORM 

GEOMETRIES FOR PRESCRIBED MACHINING TASKS 

4.1 Introduction 

Du Plessis et al. [70] introduced the unique concept of an adjustable geometry planar Gough-Stewart 

platfonn machining center, where the geometry of the planar machining center is optimized using the 

LFOPC-algorithm [64]. The geometry was optimized with respect to the static actuator forces required 

to hold the mechanism in static equilibrium at each instant along the prescribed path. The dynamic 

actuator forces were also taken into account in the work by Snyman and Smit [71], in which the 

manipulator dynamics were simulated using the Dynamic Analysis Design System (DADS v. 9.0) [72]. 

They found that optimizing the platfonn geometry using the DADS software for the dynamics was 

computationally expensive if excessive numerical noise in the objective functions was to be avoided. 

This chapter now explains how the LFOPC-algorithm [64] may be used to optimize the adjustable 

geometry of the planar Gough-Stewart platfonn machining center for any reasonably prescribed path 

using the stand-alone and fundamentally based inverse dynamic analysis procedure developed in 

Chapter 2. Here the actuator forces are detennined as the manipulator moves in a prescribed manner 

along the specified path. In this study, the path specification is done using to the OCAS trajectory­

planning methodology as explained in Chapter 3. 

Minimizing the dynamic actuator forces required for executing the prescribed path with respect to the 

geometry, results in the avoidance of the very large actuator forces associated with singularities. 

Furthennore, as a by-product of the constrained optimization procedure, a positioning of the planar 

Gough-Stewart platfonn relative to the prescribed path is obtained that automatically ensures that the tool 

path is feasibly placed within the workspace of the mechanism. If it is not possible to place the 

prescribed path inside the workspace of the manipulator, the optimization algorithm yields an optimum 

compromised design geometry which allows the user to intervene in a rational manner. 
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Section 4.2 explains the fonnulation of the basic constrained optimization problem, while Section 4.3 

gives details regarding the evaluation of the objective and constraint functions. The procedure for 

solving the optimization problem is explained in Section 4.4. Finally, the results of a representative 

optimization test run are shown and discussed in Section 4.5. 

4.2 	 Formulation of the constrained optimization problem 

In general, any conceptual design, dependent on n real design variables X = [XI'X2,X3 , ••• ,X n r, can be 

optimized by firstly defining an appropriate objective function F(X), and where applicable, additional 

inequality constraints Cj(X)~O (j=I,2,3, ... m) and equality constraints Hk(X) 0 

(k = 1,2,3, ... P < n). The optimum design X· and optimum objective function value F(X') can then be 

found by applying anyone of several available optimization techniques or algorithms, to solve the 

following mathematically fonnulated (constrained) optimization problem: 

minimize F(X) 
x 

(4.1) 


such that C/X)~O j=1,2,3,... m and Hk(X) 0; k=1,2,3, ... p<n 

The selection of the design variables must be such that the objective function F(X), the inequality 

constraint functions Cj(X) (j = 1,2,3,... m) and the equality constraint functions Hk(X) 

(k = 1,2,3, ... p < n) are all dependent on X = [XI'X2,X3, ... ,XJT. 

4.2.1 	 Design variables describing the adjustable geometry of the planar 

Gough-Stewart platform machining center 

With reference to Chapter 2, where the planar Gough-Stewart platfonn machining center was 

introduced (see Figure 2.2 and 2.5), the positioning of the actuator joints on the base and on the moving 

platfonn may easily be adjusted. This feature is also incorporated in the practical design of the planar 

Gough-Stewart platfonn test-model with continuously adjustable geometry (see Appendix D). In 

particular the five design variables X [XpX2,X3,X4,XSr, indicated by the arrows in Figure 4.1, are 

used to describe the proposed adjustable geometry. 
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Figure 4.1: Five design variables describing the adjustable geometry planar Gough-Stewart 
platform machining center. 

The two design variables X3 and X4 represent the coordinates of the left most revolute joint C on the 

horizontal base relative to the fixed global reference frame. In practical terms this implies that the 

position of point C on the base of the planar Gough-Stewart platform must be adjustable. This required 

positional adjustment may of course also be accomplished in practice by shifting the position of the 

global origin 0 relative to the fixed horizontal base (see Figure 2.8 and 2.10 for theflXed workpiece and 

fixed cutting tool cases respectively). The tool path is described relative to the global origin 0, and the 

kinematic and kinetic analysis of the mechanism is also done relative to its position (Chapter 2). 

The remaining three design variables XI' X 2 and Xs indicate the relative distances between the 

linearly adjustable revolute joints of the fixed base (X2 and Xs ) and the moving platform ( X I ). 

In summary, and with reference to Figure 4.1, 

(4.2) 

x 
E = X 4 +X2 +Xs 

(4.3) 
yE =X3 

and 

Chapter 4 140 



THE DETERMINATION OF OPTIMUM PLATFORM GEOMETRIES FOR PRESCRIBED MACHINING TASKS 

In order to solve for expression (4.2), one of the two local coordinates ~t or ~~ must be known. If the 

center of mass of the moving platform is midway between revolute joints A and B, expression (4.2) 

reduces to I~t I=~~ = ~I • 

4.2.2 	 Objective function used to optimize the planar machining center 

geometry 

The objective function used here, is the overall maximum magnitude ofthe individual actuator forces f k , 

k 1,2,3 (see expression (2.124)), as the planar Gough-Stewart platform moves along a prescribed tool 

path. 

Using to the OCAS trajectory-planning algorithm, the prescribed path is specified by a set of nodal 

points {PI (xpy/),i O,I,...,N} (see Section 3.1). Time instants are then allocated to the consecutive 

nodal points according to the specified tangential "cutting speed", as well as the magnitude of the 

maximum allowable tangential acceleration. Each consecutive time span [t l , t l+1], i =:; 0,1,... ,N -1, with 

associated magnitudes ~tl =t;+1 - t; is then subdivided into an additional number of equally spaced 

intermediate time instants, using the parameter (see Appendix B). This intermediate time n time 

parameter is used in the OCAS-algorithm for the graphical representation of the results as is explained in 

Section 3.5.1. 

In determining the overall maximum magnitude of the individual actuator forces f k , k 1,2,3, for a 

specific prescribed tool path, the additional time discretization parameter n time is again utilized. This 

... 	 J
tl't;+1 tIme 	

A
allows 	 for a further discretization 0 f the interval [] mto Instants t;,j =t; +--uti' 

n time 

i =0,1,2,...,N -1, j :::: 0,1,2,... ,n time • Hence, for a sufficiently refined time discretization 

{t l ,;, i:::: 0,1,2, ..., N -1; j =0,1,2" .. , n,jme} * over [0, T] [0, tN_1,n._ ], the objective function may be taken 

as 

F(X) =:; f!1ax{maxlfk (t;)1 ' i 0,1,2, ...,N -1; j 0,1,2, ...,ntimJ (4.4)
k-l,2,3 ',J 

The occurrence of singularities inside the workspace of Gough-Stewart platforms is associated with 

dramatic increases in actuator forces [59]. Minimizing the above objective function will push the design 

* note that t;o =tl-1n. 
, , timll' 
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towards an optimum platform geometry which avoids close proximity to singularities as a specific 

prescribed path is traced. 

Apart from the fact that the objective function is dependent on the prescribed path, it is also shown in 

Section 4.3 that expression (2.124) is indeed an implicit function of the vector of design variables 

X [XI'X2,X3'X4 ,XJ, and that the objective function is therefore well defined. 

4.2.3 Constraints applicable on the planar machining center 

With reference to Figure 4.1, the allowable relative distances between the linearly adjustable revolute 

joints of the fixed base (X2 and Xs) and the moving platform (XI) are subject to physical lower ( 

i =1,2,5 ) and upper (Xi, i 1,2,5 ) bounds, i.e. 

(4.5) 


Similarly, the actuator leg lengths ( f! i , i = 1,2,3 ) are bounded by minimum (L, i =1,2,3 ) and maximum 

(f!i' i = 1,2,3) leg length limits: 

(4.6) 


These bounds are defined as the mechanism configurational constraints, and determine its working 

capability, since for any specific operational geometry X [Xl,X2,X3,X4'XsY to be feasible, the 

mechanism configurational constraints (4.5) and (4.6) must be satisfied. 

The formulation of the constrained optimization problem (expression (4.1)) allows for the easy 

imposition of the above configurational constraints, since they may readily be expressed as general 

inequality constraints ofthe form C j(X) ::; 0, (j 1,2,3, ... ,m). 

In particular, expression (4.5) represents the first six inequality constraints C j(X) ::; 0, (j =1,2,3, ... ,6) : 

C1(X)=XI-Xl ::;0 

C 2(X)=X1 X1::;0 

C (X) X -X ::;0
3 2 2 

(4.7) 
C4 (X) == - Xl ::; 0 

Cs(X) == Xs Xs::; 0 

C 6 (X) Xs Xs::; 0 
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The leg length limits g; 5.£; 5.£;, i=I,2,3 (expression (4.6» represent an additional six inequality 

constraints C j+6 (X) 5. 0, (j =1,2,3, ... ,6). As with the objective function (4.4), these six inequality 

constraints are dependent on the prescribed path, as well as the design variables 

X =[XpX2,X3,X4'XSY (see Section 4.3). Monitoring the prescribed path and corresponding platform 

geometry at discrete time instants tl,j' the overall maximum and minimum actuator leg lengths may be 

obtained. They are respectively given by £;:-(X)=max[£k(t;,j'X)] and £;in(X)=min[£k(t;,j'X)] 
; ,j t,j 

for k 1,2,3 and {t;,], i 0,1,2, ... , N -1; j =0,1,2, ... , n time } suitably small monitoring time intervals as 

previously defined in Section 4.2.2, The allowable maximum and minimum actuator leg lengths are 

respectively denoted by £k and gk' k =1,2,3 , resulting in the following six mathematically expressed 

inequality constraints: 
-

Ck+6(X) == £;:- (X) - £k 5. 0, k =1,2,3 
(4,8) 

and Ck+9(X) == gk - £'t (X) 5. 0, k 1,2,3 

4.3 Evaluation of the constrained optimization problem 

The formulated constrained optimization problem (Section 4.2) is evaluated for a specific prescribed 

path, given any arbitrary design X [XI'X2'X3 ,X4 ,XJ. The design vector X fixes the operational 

geometry of the platform. 

4.3.1 Evaluation of the objective function 

Evaluating the objective function (4.4), involves performing a kinematic and kinetic analysis of the 

planar Gough-Stewart platform as explained in Chapter 2. ill particular, for any time instant along the 

prescribed path, the position (xl'Y I) and orientation (~I) of the moving platform (body 1 in Figure 2.5) 

are known (see Section 2.4). Furthermore, with the operational geometry (X) fixed, expression (4.2) 

yields the local ~~- and ~~-coordinates while expression (4.3) yields global coordinates (XC,yc), 

(x D, yD) and (x E , yE). Note that since the coordinates (x\ yA) and (x B , yB) follow from (xl' y l' ~l) , 

~~ and ~~ in expression (2.57), expressions (2.58) - (2.61) may be solved for. Expressions (2.57) 

(2.61) uniquely define the coordinate vector q =[xI'Yl'~I'X2'Y2'~2, ...,x8'Y8'~8r, which uniquely 

defines the Jacobian matrix of the planar Gough-Stewart platform given by expression (2.62). The 

Jacobian matrix is used to find the accelerations of the individual bodies (expression (2.56». With these 
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accelerations known, the Jacobian matrix is again used to solve the inverse dynamic equations of motion 

(expression (2.124)) for the unknown LaGrange multipliers}., and actuator forces ff. 

The sensitivity of the objective function (4.4) to each of the design variable Xi' i =1,2,... ,5 may also be 

graphically determined. This is done by fixing four of the five design variables, and varying the fifth 

while evaluating the objective function value. 

As an example, the sensitivity analysis is done for a path where the center of mass of the moving 

platform follows a straight-line prescribed path inclined at 60° to the horizontal as shown in Figure 4.2. 

Five equally spaced nodal points are used to specifY the path, and using the OCAS-algorithm, the 

trajectory-planning is done for a specified constant tangential speed of 0.01 m/ s. Furthermore, the 

default time discretization parameter, n time =10, is used resulting in a total of 41 monitoring time 

intervals. 

The direction of travel is such that the initial configuration of the mechanism corresponds to the one 

shown in dashed lines in Figure 4.2 and the final configuration to the one in solid lines. Furthermore, the 

moving platform remains horizontal as the straight-line path is traced. The fixed values of the respective 

design variables are 

X3 =-O.4m (4.9) 

and the mass matrix of this example platform is given by expression (2.132). 

0.4 
1]1 

'-----II> X 

=====B. 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ 
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~~~rr777F~~rr77~~~777F~ 

Figure 4.2: Straight-line prescribed path. 
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The sensitivity of the objective function to design variable Xl is shown in Figure 4.3. Here Xl is varied 

with a step size of 0.0025 m between 0.1 m and 1.0 m, while design variables X
2 

, X3 , X
4 

and Xs 

remain fixed (see expression (4.9». 

Objective function value 

115 


110 


105 


0.2 0.4 0.6 0.8 

Figure 4.3: Objective function (4.4) versus design variable Xl' 

Figure 4.3 consists of a single smooth curve, indicating that as X I varies, a single actuator is responsible 

for carrying the maximum magnitude actuator force. For the example prescribed path considered here 

(Figure 4.2), actuator leg £1 (see Figure 4.1) carries the maximum magnitude actuator force. 

Evaluating the objective function while varying design variable Xl with a step size of 0.000001 m 

between 0.5756 m and 0.576 m, magnifies the curve as shown in Figure 4.4. This curve demonstrates 

the effective absence of any numerical noise in the analysis. 

Objective function value 

106.867279 

,106.8672785 

106.867276 

,106.8672775 

106.867277 +-----r--~---,..--_,_-___,--~--__; 

0.57555 0.5756 0.57565 0.5757 0.57575 0.5758 0.57585 

Figure 4.4: Close-np of objective function (4.4) versus design variable Xl' 
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This absence of noise is due to the fact that the objective function (expression (4.4)) is determined with 

high accuracy using the fundamentally based inverse dynamic analysis procedure explained in Chapter 

2. 

The sensitivity of the objective function to X 2 is shown in Figure 4.5. Here design variables XI' X 3 , 

and Xs remain fixed (see expression (4.9)) while Xl is varied with a step size of 0.0025 m X4 

between 0.1 m and 1.0 m . 
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Figure 4.5: Objective function (4.4) versus design variable Xl' 

In contrast to Figure 4.3 which consists of a single smooth curve, Figure 4.5 consists of four smooth 

curves linked to each other at three points where discontinuities in the slope (kinks) occur. Each of the 

three kinks in the above graph is due to a switch in the actuator leg responsible for the maximum 

magnitude actuator force. 
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Figure 4.6: Close-up of objective function (4.4) versus design variable X 2 • 
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Figure 4.6 shows a close-up view of the first two kinks, where the left most smooth curve represents 

actuator leg il 2 (see Figure 4.1) carrying the maximum magnitude actuator force, the middle smooth 

curve represents actuator leg il 3 carrying the maximum magnitude actuator force, and the right most 

smooth curve represents actuator leg il I carrying the maximum magnitude actuator force. The isolated 

discontinuity in Figure 4.5 occurring near X 2 =0.8 m is due to the switch between actuator legs il I and 

il 2 in carrying the maximum magnitude actuator force. 

The respective sensitivities of the objective function (4.4) to design variables X 3 , and Xs are as X 4 

shown in, Figures 4.7 4.9. 

Objective function value Objective funcllon v.lue 

250 

200 

00 ., 2 ., -0 e -0.8 ~OA -0.2 

Figure 4.7: Objective function Figure 4.8: Objective function (4.4) 
(4.4) versus design variable X 3 • versus design variable X 4 • 

4.3.2 Evaluation of the inequality constraints 

Inequality constraints (4.7) may, of course, be explicitly evaluated. The evaluation of the inequality 

constraints (4.8) follow from the kinematic and kinetic analysis mentioned in Section 4.3.1. With the 

global coordinates of points A, B, C, D and E known at any time instant t, actuator leg lengths il I eX, t) , 

il 2 (X,t) and il 
3 
(X,t) are the magnitudes of respective vectors CA, DA and ED (see Figure 4.1): 

il1(X,t) =ICAI ~(XA _XC)2 +(yA _yC)2 

il 2(X, t) =IDAI =~(XA - XD)2 + (yA _ yD)2 (4.l0) 

il 
3 
(X,t) IEDI ~(XB _X E)2 +(yB _yE)2 

Objective function vaiue 

020 040 OBO 

Figure 4.9: Objective function 
(4.4) versus design variable XS' 

Note that mechanism configurational constraint (4.6), not only fixes the allowable maximum and 

minimum actuator leg lengths, but also influences the kinematic and kinetic performance of the planar 
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Gough-Stewart platfonn. This follows from the relationship existing between the physical dimensions of 

the two bodies comprising an actuator leg, and the allowable relative actuator displacement. 

Consider translational joint 2 - 5, which is the left most actuator leg of the planar Gough-Stewart 

platfonn as shown in Figure 2.5 (actuator leg f) in Figure 4.1). The physical dimensions of bodies 2 

and 5 detennine the allowable actuator displacement of leg 1. Furthennore, the local 02 ~2 112 and 

05~5115 coordinate systems are chosen with 02 and Os respectively coinciding with the centers of mass 

of bodies 2 and 5, the positions of which are also determined by the physical dimensions of these two 

bodies. With the positions of the respective centers of mass of bodies 2 and 5 known, local coordinates 

~~ and ~; are also known. Similar arguments apply for translational joints 3 - 6 and 4 - 7 . 

With reference to Figure 2.5, local coordinates ~~ and ~~ of translational joint 3 

translational joint 4 - 7 , together with local coordinates ~: and ~; of translatio

required to solve for expression (2.61). 

- 6, ~: and 

nal joint 2 

~~ of 

5 are 

4.4 Solving the constrained optimization problem 

As mentioned in Section 4.1, the LFOPC-algorithm [64] is used here to optimize the adjustable geometry 

of the planar Gough-Stewart platfonn machining center for any specific prescribed path. The 

optimization procedure is schematically represented in Figure 4.10. 

Initial design Optimum design 
XO X· 

Is anyone of the 
convergence criteria 

satisfied? 

LFOPC adjusts 
Prescribed path the design X 

.----- .,) 
Simulation of the planar 
Gough-Stewart platfonn 

L-__________________~ ~ D 

Figure 4.10: Optimizatiou of the adjustable geometry of the planar platform machining center. 
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The user specifies the initial design XO as well as the prescribed path. The simulation of the planar 

Gough-Stewart platform involves the OCAS trajectory-planning algorithm presented in Chapter 3, as 

well as the kinematic and kinetic analysis of Chapter 2. 

The LFOPC optimization algorithm [64] used here is a gradient-based method for unconstrained 

minimization applied to a penalty junction formulation of the constrained optimization problem. A more 

detailed description of the LFOPC-algorithm is given in Appendix C. In short, a penalty function is 

created by combining the objective function (4.4) and the inequality constraint equations (4.7) and (4.8). 

Furthermore, the gradient vector of the penalty function determines the adjustment of the design vector 

X as the LFOPC-algorithm searches iteratively for an optimum design X'. These optimization 

iterations continue until one ofthe following two convergence criteria (see Figure 4.10) is satisfied: 

1. The norm of the penalty function gradient vector is below a specified value Eg 

2. The norm of the relative design vector, given by Ilx"current" X "Pre;;ous"II ' is below a specified tolerance 

In determining the gradient vector of the penalty function, LFOPC requires the gradient vector of the 

objective function with respect to the design variables, as well as the gradient vectors of each inequality 

constraint with respect to the design variables. 

The gradient vector of the objective function (4.1) with respect to the design variables is obtained by 

differentiating numerically using forward finite differences [55]. The components of the objective 

function gradient vector at any specific design X =[XI ,X 2 ,X3>X4 ,Xsf is approximated by 

(4.11) 


where AX, = [0,0, ... , Ep ... ,O]T with Ej > 0 in the i th position, and i =1,2, ... ,5 . 

With reference to the optimization flowchart given in Figure 4.10, six simulation runs of the planar 

Gough-Stewart platform are required per iteration. This is because at each design point forward finite 

differences are used in computing the gradient components of the objective function, requiring five 

perturbed objective function values, and one unperturbed objective function value as is apparent from 

expression (4.11). 

The appropriate values of E, to be used may be determined from an experimental sensitivity study of the 

approximate gradients with respect to different step sizes Ei of the five design variables. For any chosen 

design X, the objective function may be determined as the platform traces the prescribed path. The 
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sensitivity of, for example the variation of the approximation F[X + AX i' X] to a:~x) with respect to 
I 

different orders of magnitude of hi' may be represented by an exponential graph. The graph of 

F[X + AX" X] versus hi is expected to show a stable plateau, the mid B-value of which is the most 

suitable value to be used in expression (4.11). 

A sensitivity analysis of F[X + AX" X] versus hi is performed here for the example straight-line 

prescribed path shown in Figure 4.2. For this sensitivity analysis, a constant tangential speed of 0.1 mls 

is specified, and the moving platform remains horizontal as the prescribed path is traced. The fixed 

design of the adjustable geometry planar Gough-Stewart platform at which the sensitivity analysis is 

performed is X [0.4,0.4, -0.4, -0.4, 0.2f (see Figure 4.2) and the mass matrix of this example 

platform is given by expression (2.132). 

The computed approximations F[X+AXi'X] (denoted by F[X+AX_i,X]) to the gradients a~~x) , 
I 

i =1,2,... ,5 are plotted versus B in Figure 4.11. 

I 
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Figure 4.11: Sensitivity of F[X + AX i' X] to step size E, for i =1,2,... ,5 . 

The above sensitivity analyses show that the choice hi == B 10-8 
, i = 1,2,... ,5 will result in reliable 

computed gradients. 
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The components of the gradient vectors of each inequality constraint function in (4.7) are, of course, 

analytically known and given by: 

OC1(X) OC1(X) = 0 OC1(X) 
0 OCl(X) =0 OCl(X) =0 

aX l aX 2 ax) aX4 aX 5 

ac 2 (x)OC 2 (X) =-1 ac 2 (x) =0 ac 2 (x) =0 ac 2 (x) = 0 0 

aXl aX 2 ax] aX4 aX 5 


ac 3 (x) OC 3 (X) ac 3 (x) ac 3 (x) (X)
0 =1 0 =0 =0 

aX l aX 2 aX 3 aX4 aX 5 

(4.12) 
OC 4 (X) OC 4 (X) OC 4 (X) OC 4 (X) OC 4 (X) = 0 =0 =0 0 


aXl aX 2 ax) aX4 aX 5 


OC 5 (X) ac 5 (x) == 0 acs(X) acs(X) OCs(X)0 0 =0 1 
aX l aX2 aX3 aX 4 axs 


ac 6 (x) ac6 (x) == 0 ac 6 (x) == 0 OC6 (X) = 0 OC6 (X)

=0 -1 

ax, aX 2 ax) aX4 axs 

On the other hand, the forward finite difference formula is again used to numerically approximate the 

derivatives of the inequality constraint functions in (4.8) at any given design X == [XPX2,X3'X4,XS]T : 

(4.13) 

where AXi =[O,O, ... ,Ep...,of with Ei > 0 in the i lll position, and j ::: 1,2,...,6 . 

The same six simulation runs of the planar Gough-Stewart platform required to determine the objective 

function gradient vector, are utilized to evaluate expression (4.13). 

The gradients of the inequality constraint functions are expected to have similar sensitivities with respect 

to the order of magnitude of Ei as the objective function gradients (see Figure 4.11), hence Ei == E ::: 10-8 

is used in expression (4.13), for allj. 

4.5 Discussion of optimization results 

The prescribed straight-line path ofFigure 4.2 is used here to illustrate the determination of the optimum 

geometry of the planar Gough-Stewart platform machining center for a given task path. Using the 

general OCAS trajectory-planning methodology (see Chapter 3), the straight-line path is prescribed by 

specifying 5 nodal points as shown in Figure 4.12. Again the default value of n time ::: lOis used for the 

discretization parameter in the analysis of the straight-line path. 
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Figure 4.12: Nodal points specified for the straight-line prescribed path. 

For this illustrative example, the "fixed workpiece" mode of operation of the machining center, as 

explained in Sections 2.4.1 and 2.6.4.2.1, is used with a zero tool length rl~ 0.0. Specifying a zero 

tool length enforces the center of mass of the moving platform to trace the prescribed straight-line path, 

as was done for the sensitivity analysis explained in Section 4.3.1. Furthermore, a fixed moving 

platform orientation ~I == 0 (see Figure 4.2) is maintained with a constant tangential cutting speed of 

0.01 m! s and a "cutting force constant" Ceu ! 10000 Nsjm (see expression (2.107)). Since the length 

ofthe prescribed straight-line path is 0.4 m, the motion takes 40 s to complete. 

With reference to Figure 4.1 the initial configuration of the planar machining center is 

XO =[0.4, 0.4, - 0.4, 0.4, 0.2 Y, where the design variables X~, X~ and X~ (given in m) are in 

scaled agreement with the geometry of Haug et al.'s [73] planar Gough-Stewart platform. The initial 

coordinates (X~; X~) of the left- most revolute joint on the horizontal base are arbitrarily chosen as 

(-0.4; 0.4). Figure 4.2 is a scaled schematic representation of the machining center fixed to these 

initial geometry settings XO =[0.4, 0.4, 0.4, 0.4, 0.2 Yat the start and end points of the prescribed 

straight-line path. The mass matrix ofthis platform is again given by expression (2.132). 

Figure 4.14 shows the variation in the respective actuator lengths (designated by Lt, L2 and L3) as the 

prescribed path is followed using the initial design, while Figure 4.16 shows the variation of 

corresponding actuator forces fk , k 1,2,3 (designated by f1, f2 and f3) for the prescribed path. 
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It is important to note that the allowable maximum actuator lengths £k = 0.525 m, k 1,2,3 designated 

by Lmax in Figure 4.14 are violated if the initial design is used to trace the prescribed path. These 

violations imply that the specified tool path lies outside the workspace of the platform and that the initial 

geometry settings are therefore infeasible for carrying out the prescribed task. The specific bounds of the 

mechanism configurational constraints, given in meters, (see Section 4.2.3, expressions (4.5) and (4.6», 

are 

0.1::; XI ~ 0.45 

0.113 ~ X2 ~ 0.465 (4.14) 

0.113 ::; X5 ~ 0.27 

and 

0.075 ~ ( ~ 0.525, i =: 1,2,3 (4.15) 

In particular, the inequality constraint function values for tracing the straight-line prescribed tool path 

using the initial design XO, are 

C (XO) -0.05 C (Xo) =-OJ C (XO) =: -0.065I 2 3 

C
4 
(Xo) =: -0.287 Cs(XO) =-0.07 C

6 
(Xo) -0.087 

~ (Xo) =0.21202 ~ Cg(Xo) 0.15559 ~ C (XO) = 0.15559 C7 9 

CIO(XO) -0.26675 Cli (Xo) ~0.36862 C 
I2 

(XO) = -0.26675 

where the violated inequality constraints associated with the initial design XO have function values 

greater than zero, and are indicated by a single arrow ~. 

The optimized geometry settings for the straight-line prescribed path are: 

X· =[0.44978, 0.34151, -0.14924, 0.38010, 0.13973Y. Figure 4.13 shows a scaled schematic 

representation of the machining center fixed to these optimal geometry settings at the start and end points 

of the prescribed straight-line path. Figure 4.15 shows the variation in the actuator lengths for the 

optimum platform design. The varying actuator lengths lie well within the minimum and maximum 

bounds specified, demonstrating the feasibility of the optimum design X'. The particular inequality 

constraint function values for tracing the straight-line prescribed tool path using the optimum design X· , 

are 

C (X') = -0.223 X 1O~3 C (X')::::: -0.34978 C (X') =-0.12349I 2 3 

C4 (X') = -0.22851 C
5 
(X') =: -0.13027 C6 (X') =: -0.02673 

C7 (X') =: -0.03145 Cg (X') =: -0.09383 C9 (X') =-0.04696 

CIO(X') =~0.01897 CII (X') -0.21098 CI2 (X') =-0.00466 
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Note that since all the above inequality constraint function values are less than zero, the optimum design 

found by the LFOPC·algorithm is referred to as an unconstrained optimum. In the event that the 

optimum solution corresponds to a design where one or more inequality constraint function values are 

equal to zero, the associated constraints are considered active, and the design X· is known as a 

constrained optimum. In the actual practical numerical identification of active constraints, the condition 

equal to zero is relaxed to approximately equal to zero. 

0.4498 

Tp 

(0.1,0.273) 

D (-0.038, -0.149) 


Figure 4.13: Scaled schematic representation of optimum machining center geometry settings. 
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Figure 4.14: Initial design: variation of actuator Figure 4.15: Optimum design: variation of 
lengths along tool path. actuator lengths along tool path. 
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Figure 4.16: Initial design: variation of actuator 
forces along tool path. 

The effectiveness of the optimization procedure is further borne out by comparing Figure 4.16, with 

Figure 4.17, showing the variations in actuator forces for the optimum and initial designs respectively. 

For this simple illustrative example, the objective function value (expression (4.4)) is reduced by 

approximately 35% by optimizing the geometry of the platform. The initial objective function value is 

F(Xo ) =:110.28 N in actuator leg 1, compared to the optimum objective function value of 

F{X')= 71.32 N ,also in actuatorleg 1. 

The objective function convergence history is depicted in Figure 4.18. 

Figure 4.17: Optimum design: variation of 
actuator forces along tool path. 
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Figure 4.18: Objective function convergence history. 
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The labels <D @ in Figure 4.18 are used in Table 4.1 to relate the iteration number and phase of the 

LFOPC-algorithm (see Appendix C) to the actuator leg responsible for the maximum magnitude 

actuator force (see Section 4.2.2) and the violated inequality constraints at the indicated regions of the 

convergence curve. 

I 

I 

Labels 
I 

Iter. LFOPC- Act. I Violated Inequality Constraints 

i 
No. Phase Leg. 

XO 0 0 f1 C 7 Cg C 9 

25-26 0 f, None 
i i 

27 0 f1 1 None 
I 

<D I 28 0 f3 I None 

I 
29 0 £) None 

, 30-32 0 f, None 

33 0 fl CI CIt 

34 0 f, I C 
) C I2 

@ 
i 35 0 f[ C, C I2 

36 0 fl i CI C l2 

39 0 fl CI 

40-42 0 f3 C, 

43 0 fl C1 
@ 

I 
44 0 f3 I C, 

45 0 f3 i C, 
i 

46 0 fl C, 

64 0 f) C, 

LFOPC­ C 1 

65 0 £) 
phase violated constraint value C[ (X65) 0.570 X 10-3 

change I 65 1 f1 CI 

I 66 1 fl C I 

80 1 
I 

f) None 

X· 81 1 i f1 None 
i 

Table 4.1: Comparative table for the parabolic tool path objective function vs. iteration number 
curve (see Figure 4.18). 

I 

i 

i 

! 

i 
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Note that there are sv.ritches between actuator legs £I and £3 in being responsible for the maximum 

magnitude actuator force at labels <D and @. The discontinuities in the objective function gradient vector 

(4.11) associated with these switches (see Section 4.3.1) are responsible for the unsmooth behavior of 

objective function convergence graph in these regions. The slight spiked behavior occurring at label ® 

can be attributed to inequality constraints C1 and C I2 being violated during iterations X 
33 

- X38. 

Figure 4.19 shows the corresponding convergence histories for the design variables Xi' i == 1,2, ... ,5 . 

Design variables 

'-===-'X1 -=-X2 ~- X3 -X4-___xsl 
................................. 


I 
i 

I 

20 40 60 80 

iteration number 

Figure 4.19: Convergence histories of design variables Xi' i = 1,2,...,5. 

When comparing Figure 4.18 with Figure 4.19, it is evident that the LFOPC optimization algorithm [64] 

used here effectively converges to the optimum solution after only 50 optimization iterations. In 

particular, Table 4.1 shows that the end of phase 0 of the LFOPC-algorithm, the only violated constraint 

is C
1 

with an associated constraint function value of C 1(X65 
) 0.570xlO-3 m (0.570mm). This 

violation is of such small magnitude that it is negligible. 

The optimum solution, corresponding to the specification of extremely accurate convergence tolerances 

(Eg 10-5 for criterion 1; and Ex 10-5 for criterion 2 in Section 4.4), is found after 81 optimization 

iterations and utilizing 53 seconds computational time on a Pentium IV 1.5 GHz computer with 

640 MB DDRAM . The specific criterion that the LFOPC-algorithm terminated on is criterion 2, 

Ex ::; 10-5 (see Section 4.4). Throughout the choice DELT 0.01 was used for the LFOPC maximum 

stepsize parameter (see Appendix C). 
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