
Chapter 4

Parallel processing implementation

4.1.1 Parallel computing concepts

Parallel processing refers to the concept of speeding up the execution of a program by divid-
ing the program into multiple fragments that can execute simultaneously, each on its own
processor. A program being executed across N processors might execute N times faster than
it would using a single processor [44]. The term parallelism denotes the possibility of exe-
cuting several operations (instructions) simultaneously. Nowadays there are a considerable
number of results on algorithms and parallel architectures, i.e. algorithms and architectures
which make the parallel execution possible [45].
There is an intrinsic parallelism present in many computational problems. While it is some-
times clear that the solution of many problems can be easily obtained by simultaneously
executing some stages of the solving process, often a simple conversion of sequential algo-
rithms into parallel algorithms does not provide the maximum attainable parallelism for a
given problem. In fact, it is not always possible to transform the best sequential algorithms
into the best parallel algorithms, i.e. there is no trivial correspondence between sequential
and parallel computing, and the existence of parallel computing environments, opens new
horizons for scientific investigation [45].
The first parallel algorithms were developed at the beginning of the sixties, even though
parallel architectures did not exist at that time. In that period, and in the following years,
many researchers were fascinated by the challenge of solving problems assuming the existence
of a parallel environment, without pondering on the applicability of their studies. This
research, which later became important in practice, led to the first investigations into the
characteristics and properties of parallel computing [45].

 
 
 



4.1.2 Technology

Technology has been growing very rapidly during recent years. Different types of parallel
computers have been designed, starting from the vectorial computer, up to the multiprocessor
and the distributed system. These new architectures belong to the very large class of parallel
computers [45]. The design of parallel machines leads to a strong practical interest towards in
the comprehension of all aspects of parallelism, with particular regard to the parallel solution
of the main computational problems. Contemporary technologies make it very difficult to
connect processors to one another completely and directly [46].

The advent of Very Large Scale Integration (VLSI) techniques has further augmented the
interest towards parallelism from a different viewpoint: algorithms are designed in view
of their hardware implementation. A very interesting feature of VLSI is its measure of
"architectural complexity", i.e. the circuit area. Another attractive characteristic of VLSI
is the possibility of having a single circuit at reasonable costs and considerable number of
computing elements cooperating for the execution of a given process. Finally, VLSI is also
innovative from a theoretical viewpoint: we will see that in order to obtain an appropriate
computing model from it, it is necessary to take into account the "geometric" structure of
computations, in addition to their logical structure [45].

Recently there has been an increased interest in parallel processing in a Network of Work-
stations (NOW) as an alternative to Massive Parallel Processors (MPP) due to simplicity
and cost effectiveness of such systems.

4.1.3 Classification of parallel machines

The terminology used in parallel computing lacks uniformity even when dealing with the
basic issues. This is because a great number of ideas, concepts and methods differ both
from a logical and computer architectural point of view when referring to the notion of
parallelism. The characteristic which is common to all aspects of parallelism is the concept
of concurrence, i.e. the simultaneous participation of entities in the quest towards a common
goal [45].

Developing the notion of concurrency implies abandoning both the traditional machine model
(Von Neumann computer) and the sequential nature of its algorithms. The problem then
arises of characterizing new computing methodologies [45]. Already in 1966, some basic
criteria were identified to classify parallel computing from a programmer's point of view.
Programming with a single instruction flow was called Single Instruction Multiple Data
(SIMD), whereas programming with several instruction flows was called Multiple Instruction
Multiple Data (MIMD). The SIMD and MIMD classes proved to be an important means of
classification, since almost all parallel machines are actually included in them [45]. SIMD
programming is also called synchronous parallel programming. There is a single program
and all processors are constrained to execute the same instructions. The parallel flows which
are automatically generated by an instruction on different data converge at the end of the
instruction execution. In the case of MIMD parallelism, the programmer has the possibility of
controlling many instruction (process) flows and many data flows. All processes can be made
up of instructions belonging to different programs [45]. This high flexibility makes MIMD

 
 
 



parallelism more general than SIMD parallelism: a problem which is not characterized by
a regular structure, but has a potential parallel exploitation, is appropriate for MIMD and
not for SIMD. The greater flexibility must be paid for by the presence of problems which do
not arise in the case of SIMD, in particular problems of data and process synchronization,
as well as problems of allocation of processors to processes [45].

4.1.4 Interconnecting structures and graphs

One of the main obstacles to the design of parallel computers resides in the difficulty of
efficiently implementing hardware and/or software communication mechanisms among the
different computing elements [45]. If all the elements are connected by a shared resource,
this becomes the bottleneck of the system with consequently slower execution and worse
performance. Hence, the interconnection problem should be addressed with the adoption of
dedicated links.

In this framework, a parallel architecture can be seen as a set of processors connected by links
for exchanging messages. In order to analyze the properties of interconnection structures,
it is convenient to adopt the notation of a graph. In fact, it is possible to establish a
correspondence between the nodes of a graph and computing elements, as well as between
arcs and links. The use of this correspondence makes the study of the topological properties
of the structure much easier. It follows that if the focus is on the geometry of the connections,
a graph is a natural representation of the architecture [45].

4.1.5 Parallel computing models and complexity measures

Computational complexity is a main field of computer science devoted to the determina-
tion of the minimal quantity of resources required to solve a computational problem. The
investigation is usually carried out in two different ways:

• One method attempts to evaluate the quantity of resources necessary to solve a problem
(complexity lower bound) .

• The other method analyzes the way algorithms use their resources (complexity upper
bound) [45].

If one wants to evaluate algorithm performance and compare it to the best possible perfor-
mance, it is necessary to introduce computing models highlighting the fundamental resources
and their relationships. It is then possible to define an optimum algorithm as the one mak-
ing the minimum use of resources. The analyses carried out on the models give results that
can be applied to the machines [45]. An apparent contradiction regarding the complexity
of parallel computations is the fact that many computing models do not consider the costs
due to data access and data exchange. Neglecting these costs is in certain cases an excessive
simplification of reality. On the other hand, the lower complexity bounds obtained by ne-
glecting these costs are of course still valid, when these costs are present [45]. It follows that
the study and the analyses, even if performed on simplified models, give useful indications,

 
 
 



provided that a model expressing some of the particularities of parallel machines is used.
For this reason, many complexity analyses are performed on models neglecting some costs
[45]. One of the main objectives of computational complexity is to determine bounds to
the cost required by computations, independently of technical details. Hence, it is neces-
sary to define how to measure the performance of parallel algorithms independently of the
specific architecture. We can introduce some of the main parallel computational models,
(Boolean and arithmetic) circuits and parallel random access machines (PRAM), together
with an "algorithmic" model, which is less formal than the preceding ones, but more useful
to analyze the performance of algorithms. This parallel computing model has been widely
used, especially for the early complexity analyses. The following rules describe the criteria
to perform an analysis using such a model [45]:

One of the most important aspects of computational models is their generality. The notion
of a computational graph of a parallel algorithm is the unifying element of our approach [45].
In structural analysis, the above assumptions are reasonable if the cost of evaluating a
function is orders of magnitude larger than the cost of communication. If the analyses is
evaluated using FEM, the former is definitely true.

4.2 Parallel virtual machine, linux xpvm

A quiet rebellion is under way in the world of computer operating systems and
software. The rebels refer to themselves as the Open Source Movement. Their
doctrine is called the "GNU Manifesto, " a document available from the free
software foundation in Boston and their standard is the Linux operating system
!47j.

Linux is the free Unix written from scratch by Linus Torvalds with assistance from a loosely-
knit team of hackers from across the Internet [47]. Linux aims towards POSIX compliance,
and has all of the features one would expect of a modern, fully fledged Unix: true multitask-
ing, virtual memory, shared libraries, demand loading, shared, copy-on-write executables,
proper memory management and TCP /IP networking [48].

Linux runs mainly on 386/486/586-based PCs, using the hardware facilities ofthe 80386 pro-
cessor family (TSS segments, and others) to implement these features [48]. Linux supports
GCC, Emacs, the X Window System, all the standard Unix utilities, TCP /IP (including

 
 
 



SLIP and PPP), and all of the numerous programs that people have compiled or ported to
it [48]. One might state that UNIX is like Linux. With the freely available source code of
the kernel, every user trying to use this own OS (operating system) for a particular purpose
is in fact a developer. This tendency causes the use and admiration for Linux to grow daily.
Linux is an emerging technology that will affect us all [47].

Parallel Virtual Machine (PVM) is a software system that enables a collection of heteroge-
neousl computers to be used as a coherent and flexible concurrent computational resource
[49]. The individual computers may be shared- or local-memory multiprocessors, vector
supercomputers, specialized graphics engines, or scalar workstations, that may be intercon-
nected by a variety of networks, such as Ethernet or FDDI [49]. User programs may be
written in C, C++ or FORTRAN and access PVM through library routines [49]. PVM is
available as source code and can be installed on any operating system. The libraries han-
dle the inter-communication and the user need only use these libraries for the sending and
receiving of data. The programming can be split into two areas, the creation of the mas-
ter program and slave programs. The master program controls each of the slave programs.
Any number of slaves can be spawned on each machine and the results sent back to master
after termination. One of the major advantages of PVM is that it uses an already available
amount of resources to obtain the goal in a very effective manner. PVM is the most common
NOW implementation in use today. The source code of PVM is granted under the GNU
license which makes it distributable/available for everyone to use. In fact the PVM software
comes as a default installation with most Linux distributions.

Below is a brief description of some aspects of PVM .

• Applications, machines and networks. At the application level, sub-tasks can exploit
the architecture best suited for them .

• At the machine level, computers with different data formats are supported, including
serial, vector and parallel architectures.

Under PVM, a user-defined collection of computational resources can be dynamically con-
figured to appear as one large distributed-memory computer, called a "virtual machine"

lQuality of being diverse and not comparable

 
 
 



PVM supports a straightforward message passing model. Using dedicated tools, one can
automatically start up tasks on the virtual machine. A task, in this context, is a unit
of computation, analogous to a UNIX process. PVM allows the tasks to communicate
and synchronize with each other. By sending and receiving messages, multiple tasks of an
application can co-operate to solve a problem in parallel. The model assumes that any task
can send a message to any other PVM task, with no limit on the size or amount of the
messages [50].

PVM is composed of two parts. The first is the library of PVM interface routines. These
routines provide a set of primitives to perform invocation and termination of tasks, message
transmission and reception, synchronization, broadcasts, mutual exclusion and shared mem-
ory. Application programs must be linked with this library to use PVM. The second part
consists of supporting software that is executed on all the computers, and make up the vir-
tual machine, called a "daemon". These daemons interconnect with each other through the
network. Each daemon is responsible for all the application components processes executing
on its host. Thus, control is completely distributed, except for one master daemon.

Two crucial topics arise when discussing implementation issues: inter-process communica-
tions (IPC) and process control. These topics are discussed below [50].

In PVM different daemons communicate via the network. PVM assumes existence of only
unreliable, unsequenced, point-to-point data transfer facilities. Therefore, the required reli-
ability as well as additional operations like broadcasts, are built into PVM, ontop the UDP
protocol. For IPC, the data is routed via the daemons, e.g., when task A invokes a send
operation, the data is transferred to the local daemon, which decodes the destination host
and transfers the data to the destination daemon. This local daemon decodes the destination
task and delivers the data. This protocol uses three data transfers, of which one is across
the network. Alternatively, a direct-routing policy can be chosen (depending on available
resources). In this policy, after the first communication instance between two tasks, the rout-
ing data is locally cached (at the task). Subsequent calls are performed directly according
to this information. This way, the number of data transfers over the network is reduced to
only one, over the network. Additional overheads are incurred by acknowledgment schemes
and packing/unpacking operations [50].

Process control includes the policies and means by which PVM manages the assignment of
tasks to processors and controls their execution. In PVM, the computational resources may
be accessed by tasks using four different policies:

 
 
 



• A transparent-mode policy, in which sub-tasks are automatically assigned to available
nodes.

• The architecture-dependent mode, in which the assignment policy of PVM is subject
to specific architecture constraints.

• A user's defined policy that can be "hooked" to PVM. Note that this last policy requires
a good knowledge of the PVM internals.

PVM uses the transparent mode policy, by default. In this case, when a task initiation
request is invoked, the local daemon determines a candidate pool of target nodes (from
the nodes of the virtual machine), and selects the next node from this pool in a round-robin
manner. The main implications of this policy are the inability of PVM to distinguish between
machines of different speeds, and the fact that PVM ignores the load variations among the
different nodes [50].

In this study an 18 node Beowulf "Souper" computer is constructed using PCs that would
otherwise have been disposed of. All of the computers used are installed with a Redhat 6.2
Linux distribution. A main server is set up to be in charge of all the major tasks. The
server uses NFS (Network file system) to share the user home partitions and most of the
user programs over the network. This means that each of the other nodes only needs a basic
kernel to allow the rest of the file systems to be mounted over the network. Thus all changes
in software only needs to be done on the server. Figure 4.1 shows the cluster constructed.

Installation and configuration of such a "Souper" computer cannot be seen as a trivial task.
It is however, a necessary step to achieve a computational goal. The time spent constructing
such a cluster in co-operation with the effort required for the parallel implementation of
a program makes such implementations only viable if the same program can be re-used
frequently for different problems. Once such a computing cluster has been installed, entirely
new fields of exploration open up in computational mechanics. The gain in computational
capabilities allows more traditional problems to be solved with higher accuracy. However,
changes in software and programs require almost permanent administration. Details of the
software implementation are best obtained by a study of the parallel programs depicted in
Appendix C.

XPVM is a graphical console and monitor for PVM. It provides a graphical interface to the
PVM console commands and information, along with several animated views to monitor the
execution of PVM programs. These views provide information about the interactions among
tasks in a parallel PVM program, to assist in debugging and performance tuning [51].

 
 
 



Figure 4.1: Photo of the 18 node Linux "Souper" Computer, named GOH, constructed in
this study

To analyze a program using XPVM, a user need only compile his or her program using the
PVM library, version 3.3 or later, which has been instrumented to capture tracing informa-
tion at run-time. Then, any task spawned from XPVM will return trace event information,
for analysis in real time, or for post-mortem playback from saved trace files [51]. Figure 4.2
shows a typical XPVM screenshot. However, care should be taken when using XPVM since
the monitoring of the PVM program uses a large amount of computer resources which can
slow down the execution of the program.

Benchmarking implies the measuring of the speed with which a computer system will execute
a computing task, in a way that will allow comparison between different hardware or software
combinations [52]. It does not involve user-friendliness, aesthetic or ergonomic considerations
or any other subjective judgment [52].

Benchmarking is a tedious, repetitive task, and requires attention to details. Very often the
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results are not what one would expect, and are subject to interpretation (which actually
may be the most important part of a benchmarking procedure) [52].

Benchmarking deals with facts and figures, not opinion or approximation [52]. The relative
speed of computers can be determined by benchmarking different computer systems against
one another for common tasks. When benchmarking programs, they should be run on the
same system.

Benchmarking in a parallel environment becomes very intricate since none of the machines
in the system can be exactly the same. Many more factors which can influence the speed of
the program in a parallel environment than on a single machine and is thus very difficult to
benchmark. The interpretation of the results becomes complicated and important. In paral-
lel implementations important factors like data access cost, communication among processors
and difference in speed of processors are very difficult too incorporate. Instead the standard
idealizations of complexity measures allows the complexity upper and lower bounds to be
determined with reasonable accuracy. Determination of complexity bounds gives a possible
operational range rather than a specific performance feature for the implementation.

 
 
 



In this section we proceed to implement a CA program in parallel using PVM. The problem
of parallel implementation is approached by first considering the new components required
for a parallel implementation. We start with a simple parallel implementation. Doubtless
superior implementations exist. At each stage of the parallel implementation our program is
evaluated to ascertain possible performance increases obtainable in a PVM implementation.

We have already established that CA computations can become very expensive compared to
traditional techniques as the size of the problem increases. Their discrete nature also allows
an important analogy with digital computers: CA may be viewed as parallel-processing
computers of simple construction [4]. Since each of the cells follow the same cell rule, the
parallel architecture becomes a simple implementation of SIMD.

In Section 2.6 we saw that any dimension of CA can be mapped to a square lattice. Thus
we only need to consider the implementation of a square computational lattice for a parallel
implementation. We also introduced a novel internal computer representation in Section
2.10 which allows for easy interaction with currently available computing architectures.

CA seem to be ideally suited to parallel computations since every cell can be updated
simultaneously. This, however, isn't an ideal implementation with conventional parallel
computational architectures, since the updating of one cell will require information from more
that one neighbor. Thus more data have to be exchanged than the number of computations
performed per node. Implementing a parallel version using PVM implies that the data
transfer would take place using network cards in each PC. Both 100Mb/s and lOMb/s
network cards will be used. The slower 10Mb/s card will create the biggest bottle neck in
system, since the internal data transfer rate in each node (Bus speed) is much higher than the
external transfer rate (network card). Additionally the calculation speed of each computer
is much higher than the data transfer between its components. Thus, to create an effective
parallel program, an attempt has to be made to find an optimum between the amount of data
transferred and the actual computations performed. This complex optimum will depend on
the number of nodes used in the PVM setup as well as speed difference between the nodes.

The methodology presented here explains how the computing takes place in terms of the
physical position of the cell. The difference between this explanation and the internal rep-
resentation described in Section 2.10 relates purely to indexing and is trivial to implement
in such a setup. Since the goal of the implementation of the CA simulation is only to ascer-
tain whether a parallel implementation using PVM would be able to deliver a performance
increase, such a representation is excluded in this section.

 
 
 



Consider the simple two-dimensional lattice shown in Figure 4.3 with each cell given a
number to indicate its position. We obtain the CA boundary conditions from an external
method (FEM, BEM or known solutions) and by using initial cell states of zero we obtain
an initial computational problem to be calculated with a parallel implementation.

The CA computational lattice can be divided into smaller sub-lattices in which each of
the sub-lattices can be computed simultaneously. This means that the boundaries between
the sub-lattices have to be exchanged to solve the initial problem. To prescribe boundary
conditions for each sub-lattice, fixed boundaries have to be obtained from each neighboring
sub-lattice. This results in a complicated setup as the boundaries "overlapping" (as seen
in Figures 4.3, 4.4 and 4.5). By creating one "overlapping" boundary row we limit the
neighborhood that can be used in our CA simulation to a Moore neighborhood. This does not
create any accuracy concerns since the Moore neighborhood has already revealed acceptable
accuracy (Section 3.4.2). This neighborhood is also an optimum for the amount of data
exchanged.

We divide the lattice into sub-lattices, keeping the boundaries constant on each sub-lattice,
to obtain the boundary values from their direct neighbors. If we presume a four sub-lattice
split, as shown in Figure 4.4 we need to keep the boundaries of each sub-lattice fixed. Hence
the only boundaries that are not updated are the original problem boundaries. This creates
three "overlapping" boundaries for each sub-lattice where data has to be exchanged.
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This simple principle can be expanded to more possibilities. We also consider the problem
in Figure 4.3 divided into nine sub-lattices. In this case it is clearly not possible to divide
the original problem into equally sized sub-lattices. It can, however, be set up as nine
computational sub-lattices with different sizes. Figure 4.5 shows one such a possible setup.
This example illustrates a few basic logical principles, namely:

• The more sub-lattices that are created, the more overlapping layers are created. This
results in more data that have to be exchanged. It also causes the total amount of
data in the computation to increase.

 
 
 



• The overlapping layers are not the same for each sub-lattice. The center lattice ex-
changes data with eight neighbors, the corner lattices exchange data with only three
neighbors while the lattices on the sides connect to five neighbors. Obviously, each one
connects to different neighbors .

• The different sized sub-problems have different calculation needs. To obtain artifi-
cial load balancing between the computing nodes, the more computational intensive
problems should be sent to faster computing nodes in the cluster.

4.3.2 Sequential sub-lattice update method

It is clear from the basic description in Figure 4.5 that the implementation of the sub-lattices
for computation is not a trivial task. This manipulation of the original data is generally
referred to as pre-processing, while combining all the data after processing is referred to as
post-processing. Two trains of thought exist regarding parallel computation. The one point
of view is that pre- and post-processing of the data do not involve the actual computation
and should therefore be neglected when compared to the speed of a single machine. A second
viewpoint holds that, since the pre- and post-processing is only necessary when you want to
do parallel computations, the cost must be reported when comparing speed.

In order to determine the difference between the two methods and to ensure that the pre- and
post-processing is performed well, a program is first written to perform the pre- and post-
processing on a single system. By doing this testing, the implementation is simplified, while
simultaneously ascertaining the influence. It is also possible to see the influence the pre- and
post-processing have on the CA evolution and the total computational time required.

The system used for the bench marking is an Intel PH 300MHz PC running RedHat Linux
6.2. The operating system comes with a utility that is very useful when doing these tests:
by combining the binary with the time program through the command "time -v binary", all
the data regarding the process can be obtained. For example

Command being timed: "t"
User time (seconds): 19.84
System time (seconds): 0.04
Percent of CPU this job got: 96%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:20.64
Average shared text size (kbytes): 0
Average unshared data size (kbytes): 0
Average stack size (kbytes): 0
Average total size (kbytes): 0
Maximum resident set size (kbytes): 0
Average resident set size (kbytes): 0
Major (requiring I/O) page faults: 130
Minor (reclaiming a frame) page faults: 232
Voluntary context switches: 0
Involuntary context switches: 0

 
 
 



Swaps: 0
File system inputs: 0
File system outputs: 0
Socket messages sent: 0
Socket messages received: 0
Signals delivered: 0
Page size (bytes): 4096
Exit status: 0

In this case we are intersted in the user time of the process. The system time reported is the
time the process uses to communicate with other parts of the computer. The wall clock time
is the total time elapsed since the beginning of the process has started. By using the user
time on the same computer, it is easy to see whether or not the pre- and post-processing
have any significant influence on the processing time. Table 4.1 shows the time comparisons
for the setup used. Some interesting results are obtained. The table shows two columns for
each number of cells, the task time in seconds and the number of iterations it takes for the
solution to converge.

N sub- 40000 cells 4096 cells 1024 cells 256 cells
lattices time (s) iterations time (s) iterations time (s) iterations time (s) iterations

1 880.39 16789 19.88 3937 1.52 1216 0.10 349
4 854.14 16771 20.36 3894 1.60 1182 0.14 328
9 851.18 16638 21.07 3839 1.74 1159 0.15 315
16 874.17 16770 22.25 3836 1.90 1145 0.18 309
25 877.23 16557 23.29 3836 2.05 1117 0.21 291

Table 4.1: Sequential block update method with 32768 cell states and finite difference rule(N,
Number of sub-lattices)

We notice that as the number of sub-lattices increases, the number of iterations required
for convergence decreases. To understand why this happens we need to return to Figure
4.5. The first sub-lattice to be updated will be the one in the top left corner. Once this
sub-lattice has performed its update, the lattice to the right will start its update, but its left
boundary will already contain an updated boundary, and so on. In this manner, with the
exception of the first block, all the other blocks will receive either one, two or three updated
boundaries which cause the solution to reach a stable state in fewer iterations. This is very
similar to the FDM methods of successive approximation to increase convergence rate as
discussed in Section A.2.3. Since we are only interested in the final value, it is advantageous
to reach the solution in fewer steps.

Consider the example in which we used the greatest number of cells (40000). We note the
interesting trend: as mentioned previously the processing time actually decreases slightly and
then increases again as the number of sub-lattices increase. The minimum processing time
is required at nine sub-lattices. This happens even though the number of iterations actually
keeps on decreasing after nine sub-lattices. It can be expected that the processing time is
linearly dependent on the amount of iterations as shown in Figure 3.2. This trend illustrates

 
 
 



how the increase in the total amount of data in the system increases the computational need
in the parallel methodology.

This implemetation is still extremely ineffective since it combines and splits the lattice after
every iteration. But it is sufficient to prove that the effect of pre- and post-processing are
negligible in CA computations.

4.3.3 Parallel lattice computation

To introduce real parallel processing we need to expand our implementation to use the PVM
libraries to create different programs from our existing code. The first step in using CA in
parallel processing is to implement a basic program which can calculate the correct result
using separate tasks. The first iteration involves the data being split up and sent to the
different processors (slaves) to perform one iteration. The data is then sent back to the
master where the data is combined and then split up again. The slaves receive the new
problem and perform the calculations. By doing the implementation in this manner we
implement the sub-lattice boundary exchanges in a very easy way. This method proved to
be very ineffective since the amount of data that has to be transferred between machines is
too large for effective computations.
Since the slowest part of the PVM setup is the network connection, the optimum way of
improving the performance of the system is to decrease the amount of data that has to be
transferred, for a fixed amount of processing. The CA approximation for a linear elastostatic
analysis will always have to converge to a fixed state placing the simulation in class 2. So a
first attempt to improve the ratio is to allow each sub-lattice to converge on its own (local
convergence) before boundary exchanges take place. This will reduce the total number of
global iterations and thus the number of data exchanges. With the CA solution we are
studying, we are only interested in the final state, and the evolution of our CA with local
convergence will be different. We only require that this evolution yield the same answer
at the final convergence. Table 4.2 indicates that even for a small problem, we obtain a
speed-uo factor of roughly 2 in this fashion.

Number of
cells
8x8

16 x 16

Single iteration
time( s) Iterations
34.48 40
117.81 130

Local convergence
time( s) Iterations
16.21 18
37.81 29

Although the software created is capable of performing the parallel computation correctly, it
is by no means optimized since the data is first sent to the master before being communicated
to the correct slave. Although this helps to simplify programming, it does not give any
performance gain in the parallel computation. In order to see if parallel computations with
PVM would yield any significant performance gain, the parallel implementation has to be
modified.

 
 
 



Only the necessary data has to be communicated between slaves and the communication
has to be performed with direct slave communication. Implementing a method which would
involve inter-slave communication, needs the calculation of the direct neighbors to and from
which data has to be sent and received. Each sub-lattice has a maximum of eight neighboring
blocks, four sides of which each has to send and receive an array of data and four corner
points which is only a single value. Sending and receiving data between the master and
the slave programs when one big chunk of data is sent for computation already requires
complicated indexing. Allowing each slave to calculate how many different chunks of data
had to be sent and received as well as the position of each data set causes complex problems.

To solve this difficulty a flag is set for each data position. This flag is sent with the data
so that the receiving slave knows where the amount of data is going to be received and
where it had to be placed. This method saves greatly on data transfer since the data is
sent directly to the sub-lattice that requires it and not first via the master program. The
implementation of such a direct communication is by no means trivial. Although it has the
potential to greatly improve performance, it complicates the coding enormously. In fact, the
PVM portion of the program became the major part of the program.
Benchmarking on a single machine is already a very controversial issue. It cannot be seen
as a simple measurement to compare the performance of a single machine with that of
multiple machines with different hardware. All the machines in the cluster consist of different
configurations. The only real concept that can be gained from parallel benchmarking is if it
is possible to gain a speed improvement through parallel implementation of an algorithm (to
gain perspective into the complexity upper bound). It is common in the determination of a
systems complexity bounds of a system to use simplified models. It follows that the study
and the analysis, even if performed on simplified models, gives useful indications, provided
that a model expressing some of the particularities of parallel machines are used [45].

One way in which this can be done on our program in a very idealistic manner is to spawn
more than one slave on the same machine and check the user time of each slave (the actual
computation time for the slave) on the machine to determine an idealistic time that the
process would take on equivalent machines with no external network traffic. The algorithm
is tested on various problems and the results are shown in Table 4.3. The speed-up factor
is defined as the time used to solve a single problem divided by the time of the multiple
sub-lattice problem.

8 x 8
Number of sub-lattices Iterations global RMS error Time (s) Speed-up factor

1 1 1.93 0.006 1.00
4 21 1.93 0.172 0.04
9 26 1.93 0.276 0.02
16 32 1.93 0.463 0.01

16 x 16
Number of sub-lattices Iterations global RMS error Time (s) Speed-up factor

1 1 2.74 0.503 1.00
4 35 2.74 0.296 1.70
9 51 2.74 0.471 1.07
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16 58 2.74 0.856 0.59
32 x 32

Number of sub-lattices Iterations global RMS error Time (s) Speed-up factor
1 1 2.99 1.00
4 51 2.99 0.519 1.92
9 67 2.99 0.689 1.45
16 78 2.99 1.173 0.85

64 x 64
Number of sub-lattices Iterations global RMS error Time (s) Speed-up factor

1 1 2.69 1.503 1.00
4 38 2.69 0.764 1.97
9 49 2.69 0.679 2.21
16 70 2.69 1.231 1.22

128 x 128
Number of sub-lattices Iterations global RMS error Time (s) Speed-up factor

1 1 2.21 8.641 1.00
4 29 2.21 2.543 3.40
9 43 2.21 1.096 7.88
16 33 2.21 0.773 11.18

180 x 180
Number of sub-lattices Iterations global RMS error Time (s) Speed-up factor

1 1 1.98 12.666 1.00
4 37 1.98 6.033 2.10
9 54 1.98 2.556 4.96
16 41 1.98 1.293 9.80

256 x 256
Number of sub-lattices Iterations global RMS error Time (s) Speed-up factor

1 1 1.74 73.418 1.00
4 48 1.74 18.898 3.89
9 58 1.74 6.893 10.65
16 56 1.74 2.965 24.76

400 x 400
Number of sub-lattices Iterations global RMS error Time (s) Speed-up factor

1 1 1.46 339.141 1.00
4 62 1.46 103.431 3.28
9 69 1.46 31.546 10.75
16 73 1.46 10.692 31.72

450 x 450
Number of sub-lattices Iterations global RMS error Time (s) Speed-up factor

1 1 1.39 286.200 1.00
4 66 1.39 107.253 2.67
9 73 1.39 33.712 8.49
16 73 1.46 16.191 17.68

512 x 512

 
 
 



Number of sub-lattices
1
4
9
16

Iterations global RMS error Time (s)
1 1.74 635.810
71 1.74 200.787
77 1.74 63.048
80 1.74 22.309

Table 4.3: Parallel computing speed performance of CA
with PVM

Speed-up factor
1.00
3.17
10.08
28.50

Spawning all the slaves on the same machine, however, does not reflect the true nature
of the problem since the network connection between machines which causes the biggest
bottle neck in the whole system, is not accounted for. It does, however, give us insight into
the approximate complexity upper bound and the evolution of the parallel implementation
methodology. We notice that on smaller mesh sizes, there is no gain in parallel processing
speed of the solution. We only start seeing a significant speed improvement at a mesh size
of 128 x 128.

For more sub-lattices with bigger mesh sizes, the speed-up factor seems to become greater
than the number of sub-lattices.

For a mesh of 256x 256 with 16 sub-lattices we obtain a speed improvement of 24. This seems
impossible, supposing that we have a process that takes a certain time x on a single processor.
It is clear that if we have n of the same processors the same number of computations cannot
be performed in less than £ of the time. In our definition of a speed-up factor for 16n
processors we cannot obtain a speed-up factor larger than 16. But on each of our larger
problems we obtain values greater than this limit. We should, however, be aware that we
are not comparing the same problem. Each sub-lattice division of the problem has a different
evolution, although their evolutions lead to the same final state.

Let us consider the factors that cause this phenomenon. The more sub-lattices we have, the
more data has to be exchanged per global iteration. The number of global iterations also
increases as the amount of sub-lattices increases, since the evolution of the CA is very de-
pendent on the boundary conditions supplied to the problem. Subsequently each sub-lattice
obtains boundary conditions at every global iteration, which causes the sub-problem to evolve
in a very different way than it would in the single problem. The parallel implementation
creates more complicated tendencies as seen in Figure 4.6.

In Figure 4.6 we see that in the first iteration two of the sub-lattices converge very quickly
while the other two sub-lattices take much longer to converge. It is clear through the whole
simulation that only two of the sub-lattices keep the other processes waiting. (One sub-lattice
requires the largest amount of computations.) This process keeps all other processes waiting
and thus determines the speed of the whole system. We note the difference in computational
requirements for the different sub-lattices.

Running all the processes on the same machine implies that as soon as one slave has stopped
processing, the other slaves take up a larger percentage ofthe central processing unit (CPU).
The change in CPU usage causes a small error in the CPU time reported, since the program
keeping track of the process only updates at discrete intervals. Investigating the total impact

 
 
 



Figure 4.6: Convergence of four sub-lattices (green=processing; white=waiting; red=data
communication)

of this error is not possible and also unnecessary, because it only impacts on our already
idealized system.

There is a clear pattern that can be observed: as the problem gets closer to convergence, the
time between data transfers decreases. By measuring this time one would be able to deter-
mine if the problem is converging or diverging. The closer the problem gets to convergence
the more frequently data transfer takes place, thereby reducing the computational efficiency
of the problem.

4.4 Parallelization of a genetic algorithm

Parallelization of a GA enables us to extract cell rules for larger mesh sizes of the CA. Since
the function evaluations become very expensive for large mesh sizes, it allows more than one
member of the population to be evaluated simultaneously and thus reduces the total time
required for the optimization. The implementation of the GA has a further advantage in
that the only data that has to be sent over the network is the cell rule and the function value.
The fact that only a small amount of data has to be sent forth makes the implementation
of the GA in PVM very attractive.

In the CA parallel program, the master is only used to perform the pre- and post-processing
of the problem. The master program in the GA performs most of the GA calculations
and the slaves are only involved in performing the function evaluations (CA). For big mesh
sizes, the function evaluation becomes the most processor intensive part of the calculation.
The master initializes each of the slaves (population member) with the whole problem and
solution. From this point onwards, the GA (master) performs the usual calculations and
sends only the rule to evaluate to each of the slaves. The slave uses the CA rule for the
evolution of the problem and once it has converged, compares it to the prescribed solution

 
 
 



and calculates a RMS error which is returned back to the master. This process continues
until the maximum number of generations is reached.

The nature of the problem that is being optimized is such that some CA rules will converge
very quickly, some take long, while others may diverge. Since the optimization is performed
using discrete variables, there is no way of predicting the outcome and the simulation must
be performed. This means that the master program still has to wait for all slaves to finish
before it can calculate the values for the next population.
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Figure 4.7: Calculation with nine population members (green=processing; white=waiting;
red=data communication)

Figure 4.7 shows a typical performance for the parallel GA. Although it is clear that the data
transfer is immediate, it is also clear that one or two processes keep the others waiting. To
obtain an idea of what possible speed improvement can be obtained, think of the time it takes
for the slowest machine on the PVM network to reach the maximum number of iterations that
is required for divergence and multiply this time with the number of generations. The result
indicates the longest time the PVM program could run. Since the values the GA assigns to
the slaves to evaluate is based on random numbers, it is not possible to run a benchmark on
the program as was done with the CA. It is, however, clear in finding optimum solutions that
this method saves time. By trial and error it is found that the program deliverers relatively
good results when approximately three slaves are spawned on the same machine, thus setting
the population size to three times the number of machines used. This works relatively well
since it rarely happens that more than one slave on the same machine diverges and all the
processors are used for almost the whole run.
In actual fact, by changing the number of population members the complexity bounds are
adjusted. If we increase the population size we increase the amount of computations re-
quired per generation, thereby increasing the complexity lower bound. By not being able to

 
 
 



determine the complexity upper bound and just increasing the lower bound we increase the
average of the operational area and thereby gain more performance from the entire system.

4.5 Computational conclusions

The basic principles of, and the gains that can derived from, parallel processing are clear
and transparent. However, the determination of optimum configurations in a parallel envi-
ronment are not so simple. One may in fact consider this problem as complex and quite
demanding. The existing technologies that allow for different parallel processing capabilities
are diverse, and all subject to different limitations.

In this chapter, the possibilities of parallel processing were investigated using a simple,
inexpensive setup, consisting of a cluster of personal computers (PCs) using freely available
software. The free standing computers in the cluster contribute processing power to an
infrastructure commonly known as a parallel virtual machine (PVM).

While the parallel implementations considered herein are not necessarily optimal, it suffices
to demonstrate that a cluster of machines set up from obsolete resources allows for the
calculation of solutions faster than is possible on unconnected, free standing resources. Since
the cluster can be constructed with no software implementations whatsoever, it makes such
a setup ideal for large computational problems when little financial resources are available.

For the parallel implementation of the CA considered in this chapter, a notable performance
increase is demonstrated for both the sequential sub-lattice update and the parallel sub-
lattice update methods, which are both a direct consequence of the inherent parallelism of
CA. This creates the possibility of additional system performance increase by combining
these two methods. This combination has the possibility of being quite flexible, since it
would allow faster computers to process more than one sub-lattice, while waiting for slower
computers to "catch up". The coding involved in such a method is, however, complex and
involves the continuous monitoring of each machine in the PVM to allow the master to
determine how the calculation is to be distributed over all the available slaves.

It is demonstrated herein that the increase in computational efficiency when simulating CA in
parallel does not necessarily yield a monotone increase in gain as the number of sub lattices
increases. While this complicates the determination of the optimal division beforehand,
it is nevertheless an attractive method to reduce the computational effort associated with
machine learning in CA.

In addition, it is shown that parallel implementation of a GA allows for improved solutions
in deriving the CA cell rule. Solutions are obtained in a shorter time span, even though the
parallel configuration is once again not necessarily optimal.

The parallel GA implementation illustrates the possible benefits of parallel processing in
numerical optimization. If the problem (viz. a function evaluation) is evaluated directly by
each node, the data transfer between nodes becomes minimal. For computationally expensive
function evaluations this results in a fully utilized cluster.

 
 
 



Chapter 5

Concluding Remarks

In this thesis, the suitability of using CA in structural analysis is investigated. In addition,
simple approaches for the parallel execution of CA in structural analysis are implemented
to evaluate the possible benefits of distributed computing for CA. Machine learning using a
distributed genetic algorithm is used to determine the optimum cell rules for the CA, using
finite element, boundary element and analytical approximations as the basis for the machine
learning.

5.1 Summary of contributions

Firstly, the properties of CA are studied to develop a perspective on the possibilities and
limitations of this idealization in structural analysis. The CA is then applied to some simple
two-dimensional problems in structural analysis. An efficient formulation for the internal
representation of the CA parameters is proposed, which provides for the future modeling of
irregular geometries.

Machine learning, similar to the approach proposed by Hajela and Kim, is then used to
derive the optimum rules for the CA. It is demonstrated that CA are capable of predicting
reasonable approximations to problems in structural analysis, using few discrete elements.
The computing cost requirement seems competitive with approximate methods which are
currently popular, e.g. the finite element and boundary element method.

However, it is shown that the solutions obtained are not universally applicable, since they
vary from problem to problem. Put differently: CA fail to capture the governing equations of
structural mechanics, and optimal cell rules have to be determined for each problem studied.
Nevertheless, the extraction of the "laws of nature" for a specific problem gives insight in
how the CA parameters influence the obtained solutions.

In addition, it is demonstrated that the optimum cell rule is dependent on the number of
cell states used in the system. Hence optimal CA cell rules cannot be transferred between
meshes of different degrees of refinement for a given problem. Also, the number of cell states
used was found to be of lower importance than the total number of cells in the system.
The Moore neighborhood with r = 1 is proposed as the optimum cell representation in struc-

 
 
 



tural analysis, since it uses information from all the adjacent neighbors, without requiring
an overly complicated boundary cell description. This neighborhood also allows for a simple
parallel implementation, resulting in notable speed-up factors.

Furthermore, symmetric problems in structural analysis are analyzed using asymmetric rules
in the machine learning process, where the symmetry of the solution found is used as a
quantitative indication of the quality of the solution. It is demonstrated that the quality of
the asymmetric rules is superior to the quality of symmetric rules, even for those problems
that are symmetric in nature.

A parallel computing infrastructure was constructed, by combining 18 obsolete Pentium
computers in a single cluster. The software used in assembling the cluster is in the public
domain, and is available free of charge.

Finally, exploiting the inherent parallelism of CA, it is shown that distributed computing
greatly improves the efficiency of the CA simulation, even though the speed-up factor is not
necessarily proportional to the number of sub lattices used.

While CA are recent additions to the 'tools' used in structural analysis, increased use of CA
as distributed computing becomes more widely available is envisaged, even though the CA
rules are at this stage not transferable between different problems or even between meshes
of varying refinement for a given problem. However, CA remain attractive due to their
capability to reveal complex behavior and their ease of interaction on modern computing
systems.

CA allow for computations in a discrete system to be performed in parallel in a natural
way. By performing computations in parallel on different machines, the speed of execution
of a simulation can be improved dramatically. This provides for the continual incease in the
maximum size of a structure that can be solved. The implementation on distributed systems
is not ideal. However, as advanced technology becomes available that allows thousands of
prosesing units in a single computational device, CA will become increasingly suited to
parallel computations.

One can even visualize computers designed specifically for CA simulations, based on RISC-
like (Reduced Instruction Set Computing) processors. Such "computers" will exhibit great
performance gains since they will only require a small instruction set on the CPU itself.
Using a small instruction set (the cell rule in CA) will results in extremely fast computers.

1. Since prediction of good cell rules for CA in structural analysis remains the key issue,
increased efficiency and effectiveness in the cell rule learning process is desirable.

 
 
 



2. The use of artificial intelligence in deriving CA cell rules, e.g. using neural networks,
is of interest.

3. The efficiency of the simple approach to parallel implementation used herein should
be increased.

5. Finally, CA have been proved to be capable of simulating biological growth. When
designing cell rules which allow for material growth in areas of high stress, and con-
versely, the removal of material in regions of low stress, CA seem a natural candidate
for applications in topology optimization.
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