A TASK-SPECIFIC APPROACH TO JOB
ACCOMMODATION IN PHYSICALLY-DEMANDING
POSITIONS

by

GF BESTER

submitted in partial fulfillment of
the requirements for the degree

DOCTOR PHILOSOPHIAE

in the

FACULTY OF HUMANITIES
(Department of Biokinetics, Sport- and Leisure Science)

University of Pretoria

Promoter: Prof. PE Krüger

Pretoria

May 2008
DEDICATION

To Elana... I am truly blessed to have you in my life.
I also wish to acknowledge the following individuals:

Prof. PE Krüger : My promoter, for recognising the potential in the project, for sharing his knowledge and wisdom and for showing faith in me as a researcher and a student.

Japie Lubbe : For all the valuable advice and assistance as an expert in the field of physical work capacity.

Christine Smit : For assisting with the statistical analysis of the data.

SA ELEC employees : The supervisors, technicians and all other employees who assisted in the development of the task-specific job accommodation tool.

SA ELEC biokineticists : For assisting with the data collection process.

My parents : For all their encouragement and support during the course of this study.
SYNOPSIS

Title : A task-specific approach to job accommodation in physically-demanding positions
Candidate : George Francis Bester
Promoter : Prof. P E Krüger
Department : Biokinetics, Sport- and Leisure Science
Degree : Doctor Philosophiae

Throughout the world, including South Africa, various approaches have been identified and implemented in an attempt to ensure that employees in physically-demanding positions are properly managed from a physical work capacity point of view, the primary goal always being to return the employee in need of assistance to full working capacity as soon as possible. The burning question has, however, always remained: “What happens to the employee in the meantime?”

This study focused on exactly that question, the aim being to develop a comprehensive tool to assist all parties concerned in managing the affected employee through the application of task-specific job accommodation.

The predetermined goal of the study was to develop a task-specific job accommodation tool for a physically-demanding position. This was achieved through a number of steps, which included an extensive literature review, a thorough job analysis, identification of a suitable test battery with related minimum physical requirements and cut scores, interviews, and the eventual development of the tool.

Once the task-specific job accommodation tool was completed, the next step was to make use of three case studies to assist in illustrating the way the tool is to be implemented, as well as to show the potential value of its implementation. The information from three actual incapacity cases in the company concerned was used for these case studies.
The results from this study are extremely positive and the three case studies have provided a glimpse of the potential value that could be added through the implementation of the job accommodation tool. The final product will greatly assist the company concerned in managing incapacitated employees in a manner that is beneficial to both the company and the individuals involved. Hopefully, this study will contribute to bring about a new era in the way South African companies and their occupational health departments approach the management of their incapacitated employees.

Keywords

- critical physical demands
- incapacity
- inherent requirements of a job
- job accommodation
- job analysis
- minimum physical requirements
- physical ability testing
- physical work capacity
- physically-demanding job outputs
- physically-demanding positions
- physically-demanding tasks
- task-specific
SAMEVATTING

<table>
<thead>
<tr>
<th>Titel</th>
<th>'n Taak-spesifieke benadering tot werksaanpassing in poste wat fisiek van aard is</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kandidaat</td>
<td>George Francis Bester</td>
</tr>
<tr>
<td>Promotor</td>
<td>Prof. P E Krüger</td>
</tr>
<tr>
<td>Departement</td>
<td>Biokinetika, Sport- en Vryetydswetenskappe</td>
</tr>
<tr>
<td>Graad</td>
<td>Doctor Philosophiae</td>
</tr>
</tbody>
</table>

In Suid-Afrika, asook regoor die wêreld, word daar van ’n groot verskeidenheid benaderings gebruik gemaak in ’n poging om te verseker dat werknemers in poste wat fisiek van aard is doeltreffend bestuur word uit die oogpunt van fisieke werkskapasiteit. Die primêre doel met sulke benaderings hou gewoonlik verband met die vinnige herstel van fisiek-onbevoegde werknemers ten einde so gou as moontlik hul volle kapasiteit om werk te kan verrig terug te kry. So ’n benadering is goed en wel, maar die kwelvraag in so ’n geval bly steeds die volgende: “Wat gebeur in die tussentyd met die werknemer?”

Gedurende hierdie studie het die fokus juis op bogenoemde vraag geval. Die mikpunt was om ’n omvattende instrument te ontwikkel ten einde al die partye wat betrokke is by die bestuur van die geaffekteerde werknemer te help om doeltreffende, taak-spesifieke werksaanpassing toe te pas.

Die voorafbepaalde doel van die studie was om ’n taak-spesifieke instrument te ontwikkel vir ’n spesifieke, fisiek-veeleisende posisie. Hierdie doel is bereik deur ’n aantal stappe te volg wat onder andere die volgende ingesluit het: ’n omvattende literatuurstudie, ’n deeglike posontleding, die identifisering van ’n gepaste toetsbattery met gepaardgaande minimum fisieke vereistes en afsnytellings, gepaste onderhoude, asook die ontwikkeling van die instrument.

Na die voltooing van die taak-spesifieke werkaanpassingsinstrument was die volgende stap om van drie gevallestudies gebruik te maak ten einde te illustreer hoe
die instrument geïmplementeer moet word, met die verdere doel om die potensiële waarde van implementering aan te dui. Drie ware gevalle in die maatskappy waarop daar tydens hierdie studie gefokus is, is gebruik vir die gevallestudies.

Die resultate wat uit die studie voortgespruit het is uiterst positief, en die drie gevallestudies het ’n mate van insig verskaf betreffende die potensiële waarde wat toegevoeg kan word deur die implementering van die werkaanpassingsinstrument. Die finale produk sal ongetwyfeld ’n groot bydrae lever om die betrokke maatskappy te help met die bestuur van geaffekteerde werknemers op ’n wyse wat voordele sal inhou vir die maatskappy en die betrokke individue. Daar word vertrou dat hierdie studie ’n nuwe era sal inlei in die benaderings wat gevolg sal word tydens die bestuur van fisiek onbevoegde werknemers. Dit geld vir alle soortgelyke Suid-Afrikaanse maatskappye, asook die gesondheidsdepartemente in hierdie maatskappye.

Sleutel terme

- fisiek veeleisende poste
- fisiek veeleisende werkstake
- fisiek veeleisende werksuitsette
- fisieke-bekwaamheidstoetsing
- fisieke onbevoegdheid
- fisieke werkskapasiteit
- inherente vereistes van die werk
- kritieke fisieke vereistes
- minimum fisieke vereistes
- taak-spezifiek
- werksaanpassing
- werksanalise
TABLE OF CONTENTS

CHAPTER 1: THE PROBLEM

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>Introduction</td>
</tr>
<tr>
<td>1.2.</td>
<td>Motivation</td>
</tr>
<tr>
<td>1.3.</td>
<td>Research question</td>
</tr>
<tr>
<td>1.4.</td>
<td>Research hypothesis</td>
</tr>
<tr>
<td>1.5.</td>
<td>Goal of the study</td>
</tr>
<tr>
<td>1.6.</td>
<td>Objectives of the study</td>
</tr>
<tr>
<td>1.7.</td>
<td>Research approach</td>
</tr>
<tr>
<td>1.8.</td>
<td>Research design</td>
</tr>
<tr>
<td>1.9.</td>
<td>Research procedure and strategy</td>
</tr>
<tr>
<td>1.10.</td>
<td>Definitions of key concepts</td>
</tr>
</tbody>
</table>
CHAPTER 2: LITERATURE REVIEW

2.1. Physical ability testing (PAT) for physically-demanding work 14
 2.1.1. What is PAT? 14
 2.1.2. Why implement PAT? 15
 2.1.3. Important considerations in developing PAT 18
 2.1.3.1. Job analysis 18
 2.1.3.2. Safety 19
 2.1.3.3. Validity 19
 2.1.3.4. Reliability 20
 2.1.3.5. Objectivity 20
 2.1.3.6. Performance credibility 21
 2.1.3.7. Standardisation 21
 2.2. Important physiological components involved in physical ability testing 22
 2.2.1. Muscular strength 22
 2.2.1.1. Isotonic contraction 23
 2.2.1.1.1. Muscle length–tension relationship 23
 2.2.1.1.2. Angle of pull of muscle 24
 2.2.1.1.3. The speed of shortening 24
 2.2.1.2. Isometric contraction 26
 2.2.1.3. Eccentric contraction 26
 2.2.1.4. Isokinetic contraction 27
 2.2.2. Muscular endurance 27
 2.2.3. Flexibility 28
 2.2.4. Cardiovascular fitness 29
 2.2.5. Muscle fatigue 34
 2.2.5.1. Fatigue at the neuromuscular junction 35
 2.2.5.2. Fatigue within the contractile mechanism 35
 2.2.5.3. The central nervous system and local muscular fatigue 37
 2.3. Job analysis 38
2.3.1. Questionnaires 39
2.3.2. Interviews 40
2.3.3. Job descriptions 40
2.3.4. Videotapes 40
2.3.5. Job-site assessments 41
2.3.6. Observation 41
2.4. Identifying the test battery for physical ability testing 43
2.4.1. Dynamic strength 44
2.4.2. Trunk strength 45
2.4.3. Static strength 45
2.4.4. Explosive strength 45
2.4.5. Extent flexibility 45
2.4.6. Dynamic flexibility 46
2.4.7. Gross body co-ordination 46
2.4.8. Balance or equilibrium 46
2.4.9. Stamina 46
2.4.10 Approaches to strength testing 48
2.4.10.1. Dynamometry 51
2.4.10.2. Cable tensiometry 51
2.4.10.3. One-repetition maximum (1-RM) 51
2.4.10.4. Electromechanical apparatus 52
2.5. Calculating minimum physical requirements (MPR), or “cut-off scores” 55
2.6. Women in physically-demanding positions 61
2.6.1. The international trend 61
2.6.2. Female workers and injuries 63
2.7. Ageing workers in physically-demanding positions 66
2.7.1. Physical work capacity and ageing 67
2.7.1.1. Aerobic capacity 68
2.7.1.2. Muscular capacity 69
2.7.2. Physical workload, ageing and health effects 71
2.7.3. Physical workloads and its training effect 72
2.8. Occupational injuries in physically-demanding positions 73
2.9. Job accommodation – what is job accommodation? 79
CHAPTER 3: METHODS AND PROCEDURES: GATHERING INFORMATION

3.1. Literature search 93
3.2. The position identified for the purposes of this study 93
3.3. Identifying the test battery 93
3.3.1. Analysis of the job-description document 94
3.3.2. Interviews 94
3.3.3. Practical experience / observations and video recordings 94
3.3.4. Video analysis 95
3.3.5. The test battery 96
3.3.5.1. Safety tests 96
3.3.5.2. Physical ability tests 97
3.3.5.2.1. Hamstring- and lower back flexibility 97
3.3.5.2.1.1. Photo 97
3.3.5.2.1.2. Equipment 97
3.3.5.2.1.3. Test description 97
3.3.5.2.2. Hand grip strength (right and left) 98
3.3.5.2.2.1. Photo 98
3.3.5.2.2.2. Equipment 99
3.3.5.2.2.3. Test description 99
3.3.5.2.3. 3 minute step test 99
3.3.5.2.3.1. Photo 99
3.3.5.2.4. Arm / shoulder muscle strength 100
3.3.5.2.4.1. Photo 100
3.3.5.2.4.2. Equipment 101
3.3.5.2.4.3. Test description 101
3.3.5.2.5. Back muscle strength 102
3.3.5.2.5.1. Photo 102
3.3.5.2.5.2. Equipment 103
3.3.5.2.5.3. Test description 103
3.3.5.2.6. Leg muscle strength 104
3.3.5.2.6.1. Photo 104
3.3.5.2.6.2. Equipment 105
3.3.5.2.6.3. Test description 105
3.3.5.2.7. Stomach muscle endurance 105
3.3.5.2.7.1. Photo 105
3.3.5.2.7.2. Equipment 106
3.3.5.2.7.3. Test description 106
3.3.5.2.8. Arm strength above the head 107
3.3.5.2.8.1. Photo 107
3.3.5.2.8.2. Equipment 108
3.3.5.2.8.3. Test description 108
3.3.5.2.9. Lifting strength from the floor (right and left) 109
3.3.5.2.9.1. Photo 109
3.3.5.2.9.2. Equipment 109
3.3.5.2.9.3. Test description 110
3.3.5.2.10. Arm adduction strength 111
3.3.5.2.10.1. Photo 111
3.3.5.2.10.2. Equipment 111
3.3.5.2.10.3. Test description 112
3.3.5.2.11. Shoulder endurance at eye-level (right and left) 113
3.3.5.2.11.1. Photo 113
3.3.5.2.11.2. Equipment 114
3.3.5.2.11.3. Test description 114
3.3.5.2.12. Balance test 115
3.3.5.2.12.1. Photo 115
3.3.5.2.12.2. Equipment 116
3.3.5.2.12.3. Test description 116
3.3.5.3. Pre-testing procedure 117
3.3.5.4. Procedure during testing 118
3.3.5.5. Post-testing procedure 118
3.4. Calculating the minimum physical requirements (MPR) 119
3.4.1. Statistical analysis 119
3.4.2. The minimum physical requirements 120
3.5. Job accommodation tool – breaking the job outputs down into critical tasks 122
3.5.1. Job analysis 122
3.5.1.1. Step 1: Analysis of the job-description document 122
3.5.1.1.1. Maintenance 123
3.5.1.1.2. Repair 125
3.5.1.1.3. Building 126
3.5.1.1.4. Health and safety 126
3.5.1.1.5. Customer service 127
3.5.1.1.6. House keeping (maintain an ergonomically sound and hygienic workplace) 127
3.5.1.2. Step 2: Video analysis 127
3.5.1.3. Step 3: Observations 128
3.5.1.4. Step 4: Interviews (with the use of a questionnaire) 128

CHAPTER 4: METHODS AND PROCEDURES: DEVELOPING THE JOB ACCOMMODATION TOOL

4.1. Determine which tests are applicable to which tasks 129
4.1.1. Task observation 130
4.1.2. Video analysis 130
4.1.3. Task performance 131
4.1.4. Professional opinion 131
4.1.5. Practical experience 131
4.2. Determine the weighting of each physically-demanding job output 132
4.2.1. Calculation of actual weightings of work outputs for the technician position 134
CHAPTER 5: RESULTS

5.1. The final product
5.1.1. The link between each critical physical demand and the job outputs
5.1.2. The link between each critical physical demand and the tasks
5.2. Implementation of the job accommodation tool

CHAPTER 6: IMPLEMENTATION OF THE FINALISED JOB ACCOMMODATION TOOL (THREE CASE STUDIES)

6.1. Case study A
6.1.1. Subject A
6.1.2. Specific information on the disability
6.1.3. Job accommodation for subject A
6.1.3.1. Informed consent
6.1.3.2. Physical ability test data
6.1.3.3. Job accommodation mask
6.1.3.4. Job accommodation report
6.1.4. Outcome of case study A
6.1.5. Return on investment for case study A
6.1.5.1. Cost
6.1.5.2. Financial benefits
6.1.5.2.1. Cost saving due to sick leave reduction
6.1.5.2.2. Productivity during job accommodation period
6.1.5.2.3. Financial benefits to SA ELEC
6.1.5.3. Financial return
6.2. Case study B
6.2.1. Subject B
6.2.2. Job accommodation for subject B
6.2.2.1. Informed consent
6.2.2.2. Physical ability test data
6.2.2.3. Job accommodation mask
6.2.2.4. Job accommodation report
6.2.3. Outcome of case study B
6.2.4. Return on investment for case study B
6.2.4.1. Cost
6.2.4.2. Financial benefits
6.2.4.2.1. Cost saving due to sick leave reduction
6.2.4.2.2. Productivity during job accommodation period
6.2.4.2.3. Financial benefits to SA ELEC
6.2.4.3. Financial return
6.3. Case study C
6.3.1. Subject C
6.3.2. Specific information on the disability
6.3.3. Job accommodation for subject C
6.3.3.1. Informed consent
6.3.3.2. Physical ability test data
6.3.3.3. Job accommodation mask
6.3.3.4. Job accommodation report
6.3.4. Outcome of case study C
6.3.5. Return on investment for case study C
6.3.5.1. Cost
6.3.5.2. Financial benefits
6.3.5.2.1. Cost saving due to sick leave reduction
6.3.5.2.2. Productivity during job accommodation period
6.3.5.2.3. Financial benefits to SA ELEC
6.3.5.3. Financial return
CHAPTER 7: SUMMARY, CONCLUSION AND RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.</td>
<td>Introduction</td>
<td>161</td>
</tr>
<tr>
<td>7.2.</td>
<td>Summary</td>
<td>161</td>
</tr>
<tr>
<td>7.2.1.</td>
<td>Summary of the literature review</td>
<td>161</td>
</tr>
<tr>
<td>7.2.1.1</td>
<td>Physical ability testing (PAT) for physically-demanding work</td>
<td>162</td>
</tr>
<tr>
<td>7.2.1.2</td>
<td>Important physiological components involved in physical ability testing</td>
<td>163</td>
</tr>
<tr>
<td>7.2.1.3</td>
<td>Job analysis</td>
<td>163</td>
</tr>
<tr>
<td>7.2.1.4</td>
<td>Identifying the test battery for physical ability testing</td>
<td>164</td>
</tr>
<tr>
<td>7.2.1.5</td>
<td>Calculating minimum physical requirements (MPR) or “cut-off scores”</td>
<td>166</td>
</tr>
<tr>
<td>7.2.1.6</td>
<td>Women in physically-demanding positions</td>
<td>167</td>
</tr>
<tr>
<td>7.2.1.7</td>
<td>Ageing workers in physically-demanding positions</td>
<td>168</td>
</tr>
<tr>
<td>7.2.1.8</td>
<td>Occupational injuries in physically demanding positions</td>
<td>169</td>
</tr>
<tr>
<td>7.2.1.9</td>
<td>Job accommodation – what is job accommodation?</td>
<td>170</td>
</tr>
<tr>
<td>7.2.1.10</td>
<td>Job accommodation – why implement job accommodation?</td>
<td>171</td>
</tr>
<tr>
<td>7.2.2.</td>
<td>Summary of the course of this study</td>
<td>172</td>
</tr>
<tr>
<td>7.3.</td>
<td>Conclusion</td>
<td>173</td>
</tr>
<tr>
<td>7.3.1.</td>
<td>The goal, the objectives and the hypothesis</td>
<td>173</td>
</tr>
<tr>
<td>7.3.2.</td>
<td>The task-specific job accommodation tool</td>
<td>174</td>
</tr>
<tr>
<td>7.4.</td>
<td>Recommendations</td>
<td>176</td>
</tr>
</tbody>
</table>

REFERENCES 179

ANNEXURE 1 202
ANNEXURE 2 206
ANNEXURE 3 207
ANNEXURE 4 208
ANNEXURE 5 216
ANNEXURE 6 223
ANNEXURE 7 227
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Strength testing: Advantages, Disadvantages and Devices</td>
<td>49</td>
</tr>
<tr>
<td>2.2</td>
<td>Parts of the body most frequently injured during electric utility work</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>(a comparison between males and females)</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>The minimum physical requirement (MPR) and the cut score for each test</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>in the physical ability test battery for the “technician” position</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Example of a grid with the tests and critical physical demands on the</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>one axis and the work tasks on the other axis</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>The 3 scales used to determine the weighting of each job output</td>
<td>133</td>
</tr>
<tr>
<td>4.3</td>
<td>The actual scores, percentages and weightings for each work output</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>in the technician position</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>The link between each critical physical demand and the job outputs</td>
<td>140</td>
</tr>
<tr>
<td>5.2</td>
<td>The link between each critical physical demand and the tasks</td>
<td>142</td>
</tr>
<tr>
<td>6.1</td>
<td>Test scores and ratings (M or D) for subject A</td>
<td>145</td>
</tr>
<tr>
<td>6.2</td>
<td>Test scores and ratings (M or D) for subject B</td>
<td>151</td>
</tr>
<tr>
<td>6.3</td>
<td>Test scores and ratings (M or D) for subject C</td>
<td>156</td>
</tr>
<tr>
<td>Figure</td>
<td>Page Number</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>136</td>
<td></td>
</tr>
</tbody>
</table>

Graphic view of weight of each work output
LIST OF PHOTOS

<table>
<thead>
<tr>
<th>Photo</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Lateral view of “hamstring- and lower back flexibility”</td>
<td>97</td>
</tr>
<tr>
<td>3.2</td>
<td>Anterior view of “grip strength test” (right hand)</td>
<td>98</td>
</tr>
<tr>
<td>3.3</td>
<td>Lateral view of “3 minute step test”</td>
<td>99</td>
</tr>
<tr>
<td>3.4</td>
<td>Anterior view of “arm / shoulder muscle strength test”</td>
<td>101</td>
</tr>
<tr>
<td>3.5</td>
<td>Anterior view of “back muscle strength test”</td>
<td>102</td>
</tr>
<tr>
<td>3.6</td>
<td>45° view of “leg muscle strength test”</td>
<td>104</td>
</tr>
<tr>
<td>3.7</td>
<td>Lateral view of “stomach muscle endurance test”</td>
<td>106</td>
</tr>
<tr>
<td>3.8</td>
<td>45° view of “arm strength above head”</td>
<td>107</td>
</tr>
<tr>
<td>3.9</td>
<td>Lateral view of “lifting strength from the floor” (right hand)</td>
<td>109</td>
</tr>
<tr>
<td>3.10</td>
<td>Lateral view of “arm adduction strength”</td>
<td>111</td>
</tr>
<tr>
<td>3.11</td>
<td>Adduction bars with grip strength dynamometer in place (ready for use)</td>
<td>112</td>
</tr>
<tr>
<td>3.12</td>
<td>Lateral view of “shoulder endurance at eye level” (left shoulder)</td>
<td>113</td>
</tr>
<tr>
<td>3.13</td>
<td>Anterior view of “balance test”</td>
<td>115</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Output score</td>
</tr>
<tr>
<td>ADA</td>
<td>Americans with Disabilities Act</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>beats/min</td>
<td>beats per minute</td>
</tr>
<tr>
<td>C</td>
<td>Cut score</td>
</tr>
<tr>
<td>CA++</td>
<td>Calcium</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>D</td>
<td>Does not meet minimum physical requirement</td>
</tr>
<tr>
<td>DND</td>
<td>Did not do</td>
</tr>
<tr>
<td>FCE</td>
<td>Functional capacity evaluation</td>
</tr>
<tr>
<td>FT fibre</td>
<td>Fast twitch muscle fibre</td>
</tr>
<tr>
<td>H⁺</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>kcal</td>
<td>kilocalories</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>kgf</td>
<td>kilogram force</td>
</tr>
<tr>
<td>l/min</td>
<td>liters per minute</td>
</tr>
<tr>
<td>M</td>
<td>Meets minimum physical requirement</td>
</tr>
<tr>
<td>ml/kg/min</td>
<td>millilitre per kilogram body mass per minute</td>
</tr>
<tr>
<td>mmHg</td>
<td>millimetre mercury</td>
</tr>
<tr>
<td>MPR</td>
<td>Minimum physical requirements</td>
</tr>
<tr>
<td>ms</td>
<td>millisecond</td>
</tr>
<tr>
<td>N</td>
<td>Number of subjects</td>
</tr>
<tr>
<td>PAT</td>
<td>Physical ability testing</td>
</tr>
<tr>
<td>PC</td>
<td>Phosphocreatine</td>
</tr>
<tr>
<td>pH</td>
<td>Level of acidity</td>
</tr>
<tr>
<td>Pi</td>
<td>Inorganic phosphate</td>
</tr>
<tr>
<td>R</td>
<td>Rand</td>
</tr>
<tr>
<td>reps/min</td>
<td>repetitions per minute</td>
</tr>
</tbody>
</table>
RPE - Rate of perceived exertion
SA ELEC - South African Electricity Supply Company
sec - seconds
ST fibre - Slow Twitch muscle fibre
USA - United States of America
VO₂ - Oxygen consumption
VO₂ max - Maximal oxygen consumption / aerobic capacity
∑ - Sum
1-RM - One-repetition maximum
$ - United States dollar
% - Percentage
˚ - Degrees