DESIGNING A PROTOCOL AND COMPARATIVE NORMS FOR THE
IDENTIFICATION AND SELECTION OF TALENT AMONG ELITE AGE-GROUP
RUGBY PLAYERS IN SOUTH AFRICA

by

CONRAD BOOYSEN

submitted in partial fulfilment of the requirements for the degree

DOCTOR PHILOSOPHIAE

in the

Faculty of Humanities
Department of Biokinetics, Sport and Leisure Sciences
University of Pretoria

December 2007
Pretoria

Supervisor: Prof. P.E. Krüger
DEDICATION

This work is dedicated to my Lord and Saviour and my two girls; Chantél my wife and Zoey my daughter.

Without you in my life, I am nothing and I amount to nothing.

Thank you!
I would like to take the opportunity to thank the following individuals and groups for standing by me and assisting me in the successful completion of this study.

To My Lord and Saviour Jesus Christ: You came into my life at a young age and have been there ever since. I have made mistakes and you have picked me up. I have needed help and you’ve been there. But, above all else I would like to thank you for dying for me on the cross and for choosing me to be your servant. It is my aim in life to glorify you and to let you shine. You are my Alpha and Omega, my beginning and my end.

To Chantél and Zoey: My two girls. You have brought unending joy and happiness into my life and I thank the Lord every day for blessing me with you both. Chantél, you’re everything I could ever have asked for and more. Thank you for standing by me in this study and for always believing in me. Zoey, you entered into our lives during the course of this study and we thank the Lord for you daily. You are such a blessing to us and have made us so happy. May we successfully raise you in the ways of the Lord so that you honour and glorify Him with your life and your all. I love you both so much!

To my Parents: Mom and Dad, your example has been of immeasurable value to me in my life. Your humility, your years of humble service in the ministry to the King, and your endless sacrifices for me and Anton have meant so much to us. This example and experience is engraved upon our hearts forever. Thank you for always believing in me; you made me believe in myself! I love you.

To Anton, Carla, Ian and Clayton: Anton, as my older brother you always stood up for me and protected me, sometimes to your own detriment. You’re a role model and an example to me. Carla, Ian and Clayton, you’re all much loved and we look forward to many years of happiness and productivity together as a family.
To Mom Denise: Thank you for accepting and treating me as your son. You are so loving and kind and supportive. Thank you for raising such beautiful and loving children and for setting the example to Chantel and Sunet that you did. You are our mother and “mother to many.” May God richly bless you.

To Professor P.E. Krüger: As my Supervisor I cannot say thank you enough. Sir, you have always been available and accessible and willing to help. I truly appreciate your patient endurance with me and your guidance. I have immeasurable respect for you and this deepens the more I work with you. Thank you Sir.

To Elim Full Gospel Church and the @ELIM Student Ministry: As my congregation you have interceded for me and stood by me. You have also allowed me the time to complete this study. I truly appreciate each and every one of you and I thank you earnestly. My time will always be dedicated to the service of the Master and to you. You overwhelm me with your love and support. You are too many to mention, but thank you to everyone.

To all my Friends and Colleagues: Thank you so much for your constant enquiries and support in prayer and other means. It is so humbling to be surrounded by individuals who care so much. I can only hope I can be of similar support and comfort in your time of need.

To the Following in no Particular Order: Elsa Coertze (my information specialist); Irene Bower (transcriber); Carmen Jacobs (my “other” sister and interview transcriber); Cosmos Shatto (proofreading); Christine Smit (my statistician); Denise Swanepoel (proofreading). You have all been of such immeasurable assistance and I have you to thank for the completion of this study.

Philippians 1:6: “And I am convinced and sure of this very thing, that He Who began a good work in you will continue until the day of Jesus Christ [right up to the time of His return], developing [that good work] and perfecting and bringing it to full completion in you.” (AMP)
SUMMARY

<table>
<thead>
<tr>
<th>TITLE</th>
<th>Designing a protocol and comparative norms for the identification and selection of talent among elite age-group rugby players in South Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANDIDATE</td>
<td>Conrad Booysen</td>
</tr>
<tr>
<td>SUPERVISOR</td>
<td>Prof. P.E. Krüger</td>
</tr>
<tr>
<td>DEPARTMENT</td>
<td>Biokinetics, Sport and Leisure Sciences</td>
</tr>
<tr>
<td>DEGREE</td>
<td>D.Phil</td>
</tr>
</tbody>
</table>

Talent identification and the subsequent development of those individuals with the most potential to succeed is currently of great concern for sporting bodies in a number of countries and South Africa is no exception. Sport in South Africa holds a position of great prominence and has been used in many instances to facilitate national unity and pride.

Rugby Union is one of the most prominent sports in South Africa and it is in this sport that South Africa has achieved a great measure of success, both historically and currently. It is a sport in which the future sustainability of this success is high on the agenda. There have been a number of studies on talent identification in rugby and this study aims to contribute to that body of knowledge. To achieve this contribution, this study has two primary goals and aims.

This study has as its primary goals and aims: 1) to have a sound theoretical base provided by in-depth and up to date research that will form the foundation for, 2) reviewed and alternative sport and position-specific testing protocols as well as comparative results consisting of norms and scores that will adequately identify and select those capable of participating in elite age-group rugby union.
Contained in the theoretical base of this study is a review of the physical parameters required to succeed in sport, a discussion of the nature vs. nurture debate and a review of the developmental approaches to talent and ability. Other factors such as psychological skills, abilities and attributes and a historical review of talent identification models and approaches world-wide as well as in South Africa have also been provided. In all, the first primary aim and goal of this study has therefore successfully been achieved.

Thereafter, the reviewed and alternative test protocol has been presented, discussed and executed, followed by an analysis of the results obtained. Specific achievements of this study are that new and modified tests (3x5x22m Anaerobic capacity test, S-Test and the Kick-for-distance and accuracy test) for talent have been developed and that specific scores and norms for these new tests, as well as other pre-existing tests, have been established for future reference. In noting the success of the alternative, broad-position specific protocol and the establishment of scores and norms, the second primary goal and aim of this study can be said to be achieved. This study then ends with conclusions and further proposed recommendations.

It can therefore be concluded with a great amount of certainty that this study has been successful not only in presenting as up to date research as possible in the fields of excellence and elite sport, but that furthermore, this study has provided a robust test protocol with comparative norms that can be used as an alternative identification and selection tool.

Key words:
rugby sustainability

talent physical parameters

identification psychological skills, abilities and attributes

selection historical approaches

protocol comparative norms
OPSOMMING

<table>
<thead>
<tr>
<th>TITEL</th>
<th>Die ontwerp van ‘n protokol en vergelykende norms vir die identifisering en seleksie van talent in elite ouderdoms-groep rugby spelers in Suid Afrika.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KANDIDAAT</td>
<td>Conrad Booysen</td>
</tr>
<tr>
<td>PROMOTOR</td>
<td>Prof. P.E. Krüger</td>
</tr>
<tr>
<td>DEPARTEMENT</td>
<td>Biokinetika, Sport and Vryetydwetenskappe.</td>
</tr>
<tr>
<td>GRAAD</td>
<td>D.Phil</td>
</tr>
</tbody>
</table>

Talent identifisering en die daaropvolgende ontwikkeling van daardie individue met die meeste potensiaal is huidiglik van groot belang vir sportliggame in talle lande. Suid Afrika is geen uitsondering nie. Sport in Suid Afrika is in ‘n posisie van groot prominensie en was al gebruik in baie gevalle om nasionale eenheid en trots te bewerkstellig.

Rugby is een van die mees prominente sportsoorte in Suid Afrika, en dit is in hierdie sport dat Suid Afrika groot suksesse behaal het, beide histories gesproke en huidiglik. Dit is ‘n sport waarin die toekomstige handhawing van hierdie sukses hoog op die agenda is. Daar was al ‘n aantal studies met betrekking tot talent identifisering in rugby en hierdie studie beoog om ‘n bydrae maak tot daardie kennis. Om hierdie bydrae te maak het hierdie studie twee doelwitte en oogmerke.

Die twee primêre doelwitte is: 1) om ‘n grondige teoretiese basis te skep deur deurtastende en kontemporêre navorsing wat grondliggend sal wees vir, 2) oorsigtelike en alternatiewe sport en posisie-spesifieke toetsprotokolle wat daardie individue genoegsaam sal identifiseer wat die nodige vaardighede en karaktertrekke het vir elite ouderdomsgroeprugby.
Bevat in die teoretiese basis van hierdie studie is ’n oorsig van die fisiese paradigmas nodig vir sukses in sport, ’n bespreking van die “aard vs. opvoeding” debat en ’n oorsig van die ontwikkelings benaderings tot talent en vaardighede. Bykomende faktore soos sielkundige vaardighede, vermoëns en karaktertrekke en ’n historiese oorsig van talent identifisering’s modelle en benaderings oor die wêreld sowel as in Suid-Afrika word bespreek. Dus is die eerste primêre doelwit van hierdie studie suksesvol behaal.

Daarna word die alternatiewe toets protokol aangebied, bespreek en uitgevoer, gevolg deur ’n analise van die resultate wat behaal is. Spesifieke prestasies van hierdie studie is dat nuwe en gemodifiseerde toetse (3x5x22m Anaerobiese kapasiteitstoets, S-Toets en die Skop-vir-afstand en akkuraatheidstoets) vir talent ontwikkel is en dat spesifieke tellings en norms vir die nuwe toets en ander voorafgaande toetse vir toekomstige gebruik opgestel is. As gevolg van die sukses van die alternatiewe, breë posisie-spesifieke protokol sowel as die opstelling van tellings en norms, is die tweede primêre doelwit vir hierdie studie ook suksesvol behaal. Daarna volg die gevolgtrekkinge en verdere aanbevelinge vanuit hierdie studie.

Daar kan met groot sekerheid gesê word dat hierdie studie geslaagd is in die aanbieding van navorsing so op datum as moontlik in die gebiede van uitnemendheid en elite sport, maar dat hierdie studie ’n robuuste toets protokol aanbied met vergelykende norms wat gebruik kan word as ’n alternatiewelike identifiserings en seleksie werktuig.

Sleutel woorde:
rugby volgehoudendheid
talent fisiese parameters
identifisering sielkundige vaardighede, vermoëns, karaktertrekke
keuring historiese benaderings
protokol vergelykende norms
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>v</td>
</tr>
<tr>
<td>OPSOMMING</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxvi</td>
</tr>
</tbody>
</table>

CHAPTER ONE: RESEARCH PROBLEM AND GOAL OF STUDY

1.1 INTRODUCTION 1
1.2 STATEMENT OF PROBLEM 7
1.3 GOAL OF STUDY 12
1.3.1 Primary goals and aims 12
1.3.2 Secondary goals and aims 13
1.4 HYPOTHESIS 13
1.5 METHODS 13
1.5.1 Literature review 13
1.5.2 Empirical investigation 14
1.5.2.1 Design 14
1.5.2.2 Measuring instruments 16
1.5.2.2.1 Final test protocol 17
1.5.2.3 Data analysis and assimilation 18

CHAPTER TWO: TALENT IDENTIFICATION: ORIENTATION OF TERMS AND CONCEPTS
CHAPTER FOUR: TALENT IDENTIFICATION: PHYSICAL PERSPECTIVES, NATURE VERSUS NURTURE AND DEVELOPMENTAL CONSIDERATIONS

4.1 INTRODUCTION
4.1.1 Chapter outline
4.2 PHYSICAL PARAMETERS AND FACTORS IN SPORT AND RUGBY
4.2.1 Anthropometric and physiological variables
4.2.2 Sport-specific skill variables
4.3 MATURATION, GROWTH AND DEVELOPMENT
4.3.1 Periods of life-span development
4.3.2 Phases of motor-behaviour development
4.3.3 Early maturation and sport
4.3.4 Relative-age effect
4.4 NATURE AND GENETICS VERSUS NURTURE AND DEVELOPMENT
4.4.1 Specific genetic explanations for elite performance in sport and physical proficiency with associated rebuttals
4.4.1.1 Genetic explanations of elite performance in sport and physical proficiency
4.4.1.2 Rebuttals, environmental and developmental considerations of talent and ability
4.4.1.2.1 Rebuttals to genetic constraints on Performance
4.4.1.2.1a Genetic constraints on VO₂ max
4.4.1.2.1b Genetic constraints on muscle fibre types
4.4.1.2.1c ACE I/D gene findings
4.4.2 Role of significant others in the development of talent and excellence in sport
5.3.1.1 Background
5.3.1.1.1 Cognitive revolution
5.3.1.1.2 Information-processing approach
5.3.1.2 Leading research findings
5.3.1.2.1 Information recall, retention and recognition
(Helsen & Starkes, 1999)
5.3.1.2.2 Sport specific knowledge
(Bock-Jonathan et al., 2007)
5.3.1.2.3 Faster and more efficient processing of Information
(Starkes et al., 2001)
5.3.1.2.3a Situational probabilities
(Williams et al., 2004:332)
5.3.1.2.3b Visual search behaviour
(Williams et al., 2004:330)
5.3.1.2.3c Advanced cue utilisation
(Williams & Ward, 2007:205)
5.3.1.2.4 Trainability and transferability of perceptual-cognitive abilities
5.3.2 Perceptual-motor abilities and skills
5.3.2.1 Ecological psychology
5.3.2.2 Dynamical systems theory
5.4 MENTAL TOUGHNESS
5.4.1 Recent studies on mental toughness
5.4.1.1 Mental toughness framework (Jones et al., 2007)
5.4.1.2 Elite athlete development model (Cooper & Goodenough, 2007)
5.5 SUMMARY AND APPLICATION TO TALENT IDENTIFICATION
5.5.1 Interrelation of psychological skills, attributes and abilities
5.5.1.1 Motivation, commitment, practice and enjoyment
5.5.1.1.1 Commonalities
5.5.1.2 Role of practice in perceptual-cognitive and perceptual-motor skills
5.5.1.2.1 Practice and perceptual-cognitive skills 191
5.5.1.2.2 Practice and perceptual-motor skills 192
5.5.1.2.3 Practice and skill transfer 193
5.5.1.3 Impact of interrelatedness on talent identification and development 193
5.5.2 Incorporation of mental toughness measures in talent identification protocols 194
5.5.3 Recommendations regarding the inclusion of perceptual-cognitive and perceptual-motor tests within talent identification protocols 196
5.5.3.1 Film and video-based simulations, virtual-reality and field-based and methods 196
5.5.3.1.1 Eye movement recordings and visual occlusion techniques (Williams & Ward, 2007) 197
5.5.3.1.2 Protocol analysis (Hodges et al., 2007) 198
5.5.3.2 Recommendations for the inclusion of these methods in talent identification protocols 199

CHAPTER SIX: TALENT IDENTIFICATION: HISTORICAL AND CURRENT PRACTICES

6.1 INTRODUCTION 201
6.1.1 Chapter outline 203
6.2 HISTORICAL DEVELOPMENT OF TALENT IDENTIFICATION 204
6.2.1 Gimbel (1976) 207
6.2.2 Harre (1982) 209
6.2.3 Havlicek et al. (1982) 211
6.2.4 Bompa (1985) 212
6.2.5 Conceptual model for talent identification 218
6.2.5.1 Régnier (1987) 218
6.2.5.1.1 Identification of sport-specific requirements 218
7.2 REPORTING OF INTERVIEWS WITH NATIONAL AND INTERNATIONAL LEVEL COACHES

7.2.1 International and national level coaches and conditioners 269
7.2.1.1 Eugene Eloff 269
7.2.1.2 Jake White 269
7.2.1.3 Peter de Villiers 270
7.2.1.4 Ashley Evert and Pieter Terblanche 270
7.2.1.5 Nick Mallett 270
7.2.1.6 Robbie Deans 271
7.2.2 Results of interview 271
7.2.2.1 Tight forwards 272
7.2.2.1.1 General 272
7.2.2.1.2 Physical-motor 273
7.2.2.1.3 Position and game-specific skills 273
7.2.2.1.4 Psychological, vision, anticipation and reading of the game 274
7.2.2.2 Loose forwards 274
7.2.2.2.1 General 274
7.2.2.2.2 Physical-motor 275
7.2.2.2.3 Position and game-specific skills 275
7.2.2.2.4 Psychological, vision, anticipation and reading of the game 276
7.2.2.3 Backline players 276
7.2.2.3.1 General 277
7.2.2.3.2 Physical-motor 277
7.2.2.3.3 Position and game-specific skills 277
7.2.2.3.4 Psychological, vision, anticipation and reading of the game 278
7.2.2.4 Discussion of findings 279
7.3 FINAL TESTING PROTOCOL 281
7.3.1 Background 281
7.3.1.1 Anthropometry and physical-motor 281
7.3.1.2 Sport-specific skills 282
7.3.1.3 Sport vision testing 283
7.3.2 Sample group 283
7.3.3 Final test protocol 284
7.3.3.1 Anthropometrical measurements 284
7.3.3.2 Physical-motor measurements 284
7.3.3.3 Rugby-specific self-devised skills tests 285
7.3.3.4 Sport vision tests 285
7.3.4 In-depth discussion of final test protocol 285
7.3.4.1 Anthropometric measurements 286
7.3.4.1.1 Body mass 287
7.3.4.1.2 Body stature (height) 287
7.3.4.1.3 Skinfold measurements 287
7.3.4.2 Physical-motor measurements 291
7.3.4.2.1 Vertical jump 291
7.3.4.2.2 10m/40m dash 291
7.3.4.2.3 T-Test 292
7.3.4.2.4 3x5x22m Anaerobic capacity test 294
7.3.4.2.5 Description of the discarded physical-motor tests 296
7.3.4.3 Rugby-specific self devised skills tests 296
7.3.4.3.1 S-Test (core skills) 297
7.3.4.3.2 Kick for distance and accuracy (core skills) 300
7.3.4.3.3 Description of the discarded sport-specific skills tests 300
7.3.4.3.4 Description of the modified sport-specific skills test 304
7.3.4.4 Sport vision testing 305
7.3.4.4.1 Accuvision 1000 “30 accurate lights in total time” test 305
7.3.4.4.2 Description of the discarded sport vision test 306
7.4 STATISTICAL METHODS 307
7.4.1 The following statistical data analysis procedures were used 307
7.4.1.1 Descriptive statistics 307
7.4.1.2 Inferential statistics

7.4.1.2.1 Kruskal-Wallis One-Way Analysis of Variance

7.4.1.3 Norms

CHAPTER EIGHT: RESULTS AND DISCUSSION

8.1 INTRODUCTION
8.1.1 Statistical data analysis procedures

8.1.2 Chapter outline

8.2 DESCRIPTION OF THE DATA BY MEANS OF FREQUENCIES

8.2.1 Data sampling

8.3 DESCRIPTIVE STATISTICS OF VARIABLES THAT DID NOT REMAIN THE SAME ACROSS MEASUREMENTS OR VARIABLES WITH SMALL BASE SIZES

8.3.1 Protocol 1/Test 1: Blue Bulls U/21

8.3.2 Protocol 2/Test 2: South Africa U/21

8.3.3 Protocol 3/Test 3: TUKS Rugby Academy

8.4 NON-PARAMETRIC ONE-WAY ANALYSIS OF VARIANCE AMONGST DIFFERENT GROUPED POSITIONS

8.4.1 Anthropometric components

8.4.2 Physical-motor components

8.4.3 Sport vision testing

8.5 NORM TABLES OF COMPARABLE VARIABLES

8.5.1 Norm tables of S-test as determined for the second and third measurement combined

8.5.1.1 Implications of the scoring system for the S-Test

8.5.1.1.1 Zero score

8.5.1.1.2 Five score

8.5.1.1.3 Ten score

8.5.1.1.4 Twenty score

8.6 SUMMARY OF RESULTS
8.6.1 Summary of inconsistent tests 362
8.6.2 Summary of consistent tests 364

CHAPTER NINE: CONCLUSIONS AND RECOMMENDATIONS

9.1 INTRODUCTION 367
9.1.1 Chapter outline 367
9.2 CONCLUSIONS AND RECOMMENDATIONS FROM LITERATURE 368
9.2.1 Terms and concepts 368
9.2.2 Sport and rugby 369
9.2.3 Physical perspectives 369
9.2.3.1 Nature versus nurture 371
9.2.4 Psychological perspectives 373
9.2.5 Talent identification 374
9.2.5.1 Talent identification in SANZAR 375
9.3 CONCLUSIONS AND RECOMMENDATIONS FROM THE EMPIRICAL INVESTIGATION 376
9.3.1 Interviews with coaches and conditioning specialists 376
9.3.2 Test protocol evolution 377
9.3.3 Results obtained 377
9.3.1.1 Discarded tests 377
9.3.3.2 Final test protocol 378
9.4 CONCLUSIONS AND RECOMMENDATIONS REGARDING STUDY HYPOTHESIS 379

BIBLIOGRAPHY 380
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4.1: Developmental Model of Sport Participation</td>
<td>123</td>
</tr>
<tr>
<td>(Côté et al., 2007:197)</td>
<td></td>
</tr>
<tr>
<td>Figure 4.2: Button and Abbott’s (2007) Stages of Development</td>
<td>125</td>
</tr>
<tr>
<td>previously identified within sport</td>
<td></td>
</tr>
<tr>
<td>(adapted from Bloom, 1985 & Côté, 1999)</td>
<td></td>
</tr>
<tr>
<td>Figure 7.1: Illustration of the T-Test for agility</td>
<td>293</td>
</tr>
<tr>
<td>Figure 7.2: Illustration of the S-Test for passing accuracy</td>
<td>299</td>
</tr>
<tr>
<td>Figure 7.3: Illustration of the kick for accuracy (quadrant) test</td>
<td>302</td>
</tr>
<tr>
<td>Figure 7.4: Illustration of the scrumhalf tyre pass test</td>
<td>303</td>
</tr>
<tr>
<td>Figure 8.1: Differences between positions on anthropometrical</td>
<td>329</td>
</tr>
<tr>
<td>components</td>
<td></td>
</tr>
<tr>
<td>Figure 8.2: Differences between positions on anthropometrical</td>
<td>330</td>
</tr>
<tr>
<td>Components</td>
<td></td>
</tr>
<tr>
<td>Figure 8.3: Differences between positions on physical- motor</td>
<td>335</td>
</tr>
<tr>
<td>components (only best efforts)</td>
<td></td>
</tr>
<tr>
<td>Figure 8.4: Differences between positions on 3x5x22m Anaerobic</td>
<td>338</td>
</tr>
<tr>
<td>Capacity Test</td>
<td></td>
</tr>
</tbody>
</table>
Figure 8.5: Differences between positions on the Accuvision1000
“30 lights in fastest time” test (best efforts only)
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1: Heritability and genetic estimates on selected motor, physical and physiological abilities and variables</td>
<td>98</td>
</tr>
<tr>
<td>Table 4.2: Characteristics of talented performers (and their mentors and parents) at various stages of their careers (Bloom, 1985).</td>
<td>115</td>
</tr>
<tr>
<td>Table 6.1: Testing protocol of South African Rugby Union</td>
<td>252</td>
</tr>
<tr>
<td>Table 6.2: Testing Protocol of New Zealand Rugby Union</td>
<td>257</td>
</tr>
<tr>
<td>Table 6.3: Testing protocol of Australian Rugby Union</td>
<td>261</td>
</tr>
<tr>
<td>Table 6.4: Performance rating scale of the ARU for rugby-specific Skills (Provided by Ben Whitaker, ARU)</td>
<td>263</td>
</tr>
<tr>
<td>Table 7.1: Body fat % versus skinfold thickness-male subjects (Harpenden Skinfold Caliper, 2007:npn)</td>
<td>290</td>
</tr>
<tr>
<td>Table 8.1: Teams included in the study</td>
<td>312</td>
</tr>
<tr>
<td>Table 8.2: Grouped positions</td>
<td>313</td>
</tr>
<tr>
<td>Table 8.3: Age</td>
<td>313</td>
</tr>
<tr>
<td>Table 8.4: Injuries indicated by players</td>
<td>315</td>
</tr>
</tbody>
</table>
Table 8.5: Descriptive statistics for protocol one/test one-variables changed and with small base sizes (Blue Bulls U/21) 317

Table 8.6: Descriptive statistics for protocol two/test two-variables changed and with small base sizes (South Africa U/21) 320

Table 8.7: Descriptive statistics for protocol three/test three-variables changed and with small base sizes (TUKS Rugby Academy) 322

Table 8.8: Results of Kruskall-Wallis Test on anthropometrical components 325

Table 8.9: Descriptive statistics per group on anthropometrical components 326

Table 8.10: Results of Kruskall-Wallis Test on physical-motor variables (best- effort) 331

Table 8.11: Descriptive statistics per group on physical-motor variables (best effort) 332

Table 8.12: Results of Kruskall-Wallis Tests on 3x5x22m Anaerobic capacity test 336

Table 8.13: Descriptive statistics per group on 3x5x22m Anaerobic capacity test 337

Table 8.14: Results of Kruskall-Wallis Test on Accuvision 1000 “30 accurate lights in fastest time test” 339

Table 8.15: Descriptive statistics per group on Accuvision1000 “30 accurate lights in fastest time test” 339

Table 8.16: Norms for tight-forwards on anthropometrical components 344

Table 8.17: Norms for tight-forwards on physical-motor: vertical jump 345
Table 8.18: Norms for tight-forwards on physical-motor skills:
10/40m dash and T-Test 346

Table 8.19: Norms for tight-forwards on physical-motor skills:
3x5x22m Anaerobic Capacity and sport vision
skills: Accuvision1000 “30 lights in fastest time” test 347

Table 8.20: Norms for loose-forwards on anthropometrical
Components 348

Table 8.21: Norms for loose-forwards on physical-motor skills:
vertical jump 349

Table 8.22: Norms for loose-forwards on physical-motor skills:
10/40m dash and T-Test 350

Table 8.23: Norms for loose-forwards on physical-motor skills:
3x5x22m Anaerobic Capacity and sport vision
skills: Accuvision1000 “30 lights in fastest time” test 351

Table 8.24: Norms for backs on anthropometrical components 352

Table 8.25: Norms for backs on physical-motor skills: vertical jump 353

Table 8.26: Norms for Backs on Physical Motor Skills – Dash and
T-test 354

Table 8.27: Norms for backs on physical-motor skills: 3x5x22m
Anaerobic Capacity and sport vision skills:
Accuvision1000 “30 lights in fastest time” test 355
Table 8.28: Mean scores on recoded time taken to complete the S-Test per positional grouping
358

Table 8.29: Frequencies for tight-forwards best attempt on S-Test computed total
358

Table 8.30: Frequencies for loose-forwards best attempt on S-Test computed total
359

Table 8.31: Frequencies for backs best attempt on S-Test computed total
359
LIST OF APPENDICES—See Attached CD

APPENDIX A: Questionnaire Pertaining to Talent Identification Structures in South African/New Zealand/Australian Rugby CD

APPENDIX B: Interview form for DPhil study CD

APPENDIX C: Final test protocol CD

APPENDIX D: Descriptive statistics per group per variable CD

APPENDIX E: Simulated data CD