IMMITTANCE IN INFANTS 0 – 12 MONTHS:
MEASUREMENTS USING A 1000 Hz PROBE TONE

BY
SONIA VAN ROOYEN

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE
MCOMMUNICATION PATHOLOGY
IN THE DEPARTMENT OF COMMUNICATION PATHOLOGY,
FACULTY OF HUMANITIES, UNIVERSITY OF PRETORIA

OCTOBER 2006
Dedicated to my loving parents -

Who always encouraged me to aim higher…
Sincere gratitude and appreciation especially to

~ Dr De Wet Swanepoel for his continued guidance and support throughout the entire process of this study and for sharing in highlights along the way…

~ Dr Maggi Soer for valuable contributions in the final completion of this script

~ Rina Owen for statistical support and analysis of the data

~ Caroline Munro, Advisory Teacher of the Deaf, Nuffield Hearing and Speech Centre, London, UK for proofreading an earlier version of this script

~ My family and friends for their devoted support and prayers

~ My husband, Danny, for his unconditional love, understanding and immeasurable support during trialling times

~ My heavenly father who gave me the strength to complete this project – “…our sufficiency is of God” (2 Cor 3:5b)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>i</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>OPSOMMING</td>
<td>vii</td>
</tr>
</tbody>
</table>

1. INTRODUCTION, BACKGROUND AND RATIONALE OF STUDY

1.1 INTRODUCTION .. 1
1.2 BACKGROUND .. 2
1.3 RATIONALE .. 8
1.4 PROBLEM STATEMENT .. 10
1.5 DIVISION OF CHAPTERS ... 11
1.6 DEFINITION OF TERMS ... 12
1.7 SUMMARY ... 13

2. CRITICAL REVIEW OF MIDDLE EAR ASSESSMENT IN INFANTS

2.1 INTRODUCTION ... 15
2.2 CURRENT ISSUES IN THE ASSESSMENT OF MIDDLE EAR FUNCTIONING IN INFANTS .. 16
2.3 ANATOMICAL STRUCTURE AND PHYSIOLOGY RELEVANT TO THE ASSESSMENT OF THE INFANT MIDDLE EAR ... 18
2.3.1 Middle ear structure and function ... 19
2.3.2 Tympanic membrane ... 20
2.3.3 Eustachian tube and its relation to middle ear function 21
2.4 FACTORS AFFECTING MIDDLE EAR STATUS IN INFANTS 23
3.5 ETHICAL CONSIDERATIONS ... 61
3.5.1 Potential harm to research subjects 61
3.5.2 Informed consent .. 61
3.5.3 Research fieldworkers ... 62
3.6 RESEARCH SUBJECTS .. 62
3.6.1 Selection criteria .. 63
3.6.2 Inclusion and exclusion criteria for compilation of norms .. 64
3.6.3 Subject selection procedures 64
3.6.4 Description of subjects .. 65
3.7 MATERIAL AND APPARATUS 66
3.8 DATA COLLECTION PROCEDURES 68
3.9 DATA PREPARATION AND ORGANISATION PROCEDURES .. 72
3.9.1 Division of case sample into two subgroups based on middle ear function 73
3.9.2 Procedures for classification of tympanograms 75
3.10 DATA ANALYSIS ... 79
3.11 SUMMARY ... 79

4. RESULTS AND DISCUSSION ... 80
4.1 INTRODUCTION ... 80
4.2 DESCRIPTION OF ADCMITTANCE (Ya) TYPANOGRAM SHAPES AND CHARACTERISTICS WITHIN SUBGROUPS A AND B .. 82
4.2.1 Associations between results of OAE-testing and tympanogram shape 84
4.2.2 Maximum admittance and tympanometric peak pressure values for Ya tympanograms within subgroups A and B .. 87
4.2.3 Double peaked tympanograms 92
4.3 SUSCEPTANCE (Ba) AND CONDUCTANCE (Ga) TYPANOGRAM ANALYSIS AND DESCRIPTION 96
4.4 ACOUSTIC REFLEXES USING A HIGH FREQUENCY PROBE TONE ……………………………………………………………. 102
 4.4.1 Comparison of acoustic reflex measurement results with OAE and tympanometry results ……………….. 103
4.5 HIGH FREQUENCY (1000 Hz) IMMITTANCE NORMS ….. 105
4.6 SUMMARY ……………………………………………………… 119

5. CONCLUSIONS AND RECOMMENDATIONS 121
 5.1 INTRODUCTION ………………………………………………… 121
 5.2 CONCLUSIONS ……………………………………………….. 122
 5.3 IMPLICATIONS OF FINDINGS ………………………………. 125
 5.4 CRITICAL EVALUATION OF RESEARCH PROJECT ……. 127
 5.5 CLINICAL GUIDELINES FOR INTERPRETATION OF HIGH FREQUENCY IMMITTANCE …………………….. 128
 5.6 RECOMMENDATIONS FOR FUTURE RESEARCH ……… 128
 5.7 FINAL COMMENTS …………………………………………… 129
 5.8 SUMMARY ……………………………………………………… 129

REFERENCE LIST 130

APPENDICES 141
Appendix A: DATA SHEET …………………………………………………….. 141
Appendix B: ETHICAL CLEARANCE …………………………………………. 148
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Graphic illustration of impedance (Z) vs. admittance (Y) tympanograms</td>
<td>33</td>
</tr>
<tr>
<td>2.2</td>
<td>Diagram of electroacoustic immittance instrumentation</td>
<td>34</td>
</tr>
<tr>
<td>2.3</td>
<td>Influence of frequency on admittance vector system</td>
<td>38</td>
</tr>
<tr>
<td>2.4</td>
<td>Vanhuyse classification model</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Research methods representing the research design of the current study</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>Age distribution of infants (n = 510)</td>
<td>65</td>
</tr>
<tr>
<td>3.3</td>
<td>Three stage data collection procedure</td>
<td>69</td>
</tr>
<tr>
<td>3.4</td>
<td>Procedures performed (n = 1020 ears)</td>
<td>72</td>
</tr>
<tr>
<td>3.5</td>
<td>OAE results acclaimed for division of groups</td>
<td>74</td>
</tr>
<tr>
<td>3.6</td>
<td>Flowchart of research process</td>
<td>77</td>
</tr>
<tr>
<td>3.7</td>
<td>Illustration of research process according to main and sub-aims</td>
<td>78</td>
</tr>
<tr>
<td>4.1</td>
<td>Results of admittance (Y_a) tympanometry (n = 936)</td>
<td>83</td>
</tr>
<tr>
<td>4.2</td>
<td>Relationships between OAE and Tympanometry results (n = 936)</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>Independent relationships between OAE results and peak or flat tympanograms (n = 936)</td>
<td>86</td>
</tr>
</tbody>
</table>
Figure 4.4 Distribution of maximum Y_a-admittance values for ears with OAE pass and refer results (n = 934) ... 89

Figure 4.5 Distribution of tympanic peak pressure for ears with OAE pass and refer results (n = 917) 90

Figure 4.6 Gender relation of ears displaying double peaked tympanograms (n = 41) 92

Figure 4.7 OAE test results of ears that displayed double peaked tympanograms (n = 42) 93

Figure 4.8 Examples of double peaked tympanograms 95

Figure 4.9 Random examples of tympanograms recorded during this study at age groups of 1, 2, 6, 10, 14, 20, 36, 40 and 44 weeks ... 98

Figure 4.10 1000 Hz acoustic reflex results using a 1000 Hz probe tone (n = 914) .. 102

Figure 4.11 Distribution of acoustic reflex compared to OAE results...... 103

Figure 4.12 Relationship of tympanometry to acoustic reflex results (n = 882) .. 104

Figure 4.13 Distribution of admittance results for Y_a tympanograms (n = 809) .. 108

Figure 4.14 Mean values for Y_a tympanometric variables across age groups: (A) peak admittance in mmho, (B) tympanometric peak pressure in daPa .. 116

Figure 4.15 Peak admittance and pressure norms 117
LIST OF TABLES

Table 1.1 Outline and description of chapters 11
Table 1.2 Terminology list ... 12
Table 2.1 Normative Tympanometric Values from 1kHz
Tympanograms by Margolis et al., (2003:385) 50
Table 2.2 Normative data for 1000 Hz tympanometry by Kei et al.,
(2003:25) ... 51
Table 2.3 Comparison of methods for middle ear assessment in
infants ... 53
Table 3.1 OAE stimulus parameters (DPOAE 2) 68
Table 4.1 P-values for differences between left and right ears 81
Table 4.2 1000 Hz Admittance (Y\textsubscript{a}), Susceptance (B\textsubscript{a}) and
Conductance (G\textsubscript{a}) tympanometry norms (Total sample) 107
Table 4.3 Comparison between results obtained from the current
study and results by Margolis et al., (2003:386) 109
Table 4.4 1000 Hz tympanometry norms (Female ears) 110
Table 4.5 1000 Hz tympanometry norms (Male ears) 110
Table 4.6 Comparison between peak admittance values in Y\textsubscript{a}
tympanograms in male and female ears 111
Table 4.7 Norms for 1000 Hz admittance tympanometry across four
age groups .. 115
Table 4.8 1000 Hz probe tone acoustic reflex norms (n = 727) 118

Table 5.1 Conclusions according to sub-aims 122

Table 5.2 Strengths and limitations of the current study 127
Rapid implementation of universal newborn hearing screening programs has exposed a need for a reliable test of middle ear function for timely identification of middle ear pathology and for differentiation between true sensorineural and conductive hearing losses. Use of higher probe tone frequencies for the assessment of immitance measures have proven to be more reliable and accurate in identifying MEE in infants. However a lack of classification-guidelines and age specific normative data exists. This study investigated the characteristics and normative values of high frequency tympanometric and acoustic reflex results for infants (n = 936 ears). Participants were 510 infants (262 male, 248 female) aged 0 – 12 months (mean age = 12.8 weeks) recruited from primary health care and immunization clinics in a South African community. A three-part procedure was performed on each test ear: 1) OAEs were recorded and pass results served as control variable for normal middle ear functioning; 2) 1000 Hz probe tone admittance, susceptance and conductance tympanograms were recorded and analysed in terms of shape, tympanometric peak pressure and maximum (peak) admittance; 3) 1000 Hz probe tone acoustic reflexes, measured with a 1000 Hz ipsilateral stimulus, were recorded and thresholds determined. Significant associations were observed between tympanogram shape, and OAE pass or fail results. 93% of ears with an OAE pass result displayed peaked tympanograms, while 79% of ears with absent OAE’s displayed flat tympanograms. Single peaked tympanograms were recorded in 782 ears (84%), double peaked tympanograms in 41 (4%) ears and flat sloping tympanograms in 112 (12%) ears. Admittance (Y_a) tympanograms for the total sample displayed a mean admittance value of 2.9 mmho, with a standard deviation of 1.1 mmho. The 90th percent range was determined at 1.5 mmho (5th percentile) to 4.9 mmho (95th percentile). Mean tympanometric peak pressure in Y_a tympanograms was 0.1 daPa, with a standard deviation of 61 daPa. The 90th percent range was -110 daPa to 90 daPa for the 5th and 95th percentiles respectively. Gender specific norms indicated a higher admittance for male ears. Age specific norms indicate a gradual increase in admittance indicating the need for age specific normative classification systems. Ipsilateral 1000 Hz stimuli acoustic reflex measurement proved successful with a 1000 Hz stimuli.
probe tone and present reflexes were recorded in 84% of ears tested. Significant association between acoustic reflex presence, OAE pass and peaked tympanogram results were observed. The normative tympanometric values derived from the cohort may serve as a guide for identification of middle ear effusion in neonates. High frequency tympanometry in combination with acoustic reflexes proves a useful measure for verifying middle ear functioning in young infants.

Key words: acoustic reflex, admittance, conductance, high frequency probe tone, immittance, middle ear effusion, neonatal hearing screening, peak admittance, susceptance, tympanometric peak pressure, tympanometry
DIE IMPLEMENTERING VAN UNIVERSELE NEONATALE GEHOORTOETSENDING HET 'N BEOEFTE ONTHUL AAN 'N BETROUBARE TOETS VIR MIDDELDOOR FUNKSIONERING VIR DIE TYDIGE IDENTIFIKASIE VAN MIDDELDOOR PATOLOGIE, EN OM SENSORIES-NEURALE EN KONDUKTIEWE GEHOORVERLISE TE KAN ONDERSKEI. DIE GEBRUIK VAN 'N HOËR FREKWENSIE MEETTOON IS AS MEER BETROUBAAR EN AKKURAAT BEWYS. 'N GEbrek AAN Klassifikasie-Riglyne en ouderdom-spesifiek normatiewe waardees bestaan egter tans. Hierdie studie het die eienskappe en normatiewe waardees van hoë frekwensie timpanometrie en akoestiese refleks resultate vir kinders (n = 936 ore) wat OAE toetsing geslaag het, beskryf. Deelnemers was 510 kinders (262 manlik, 248 vroulik) tussen die ouderdom van 0 – 12 maande (gemiddeld = 12.8 weke) wat gewerf is vanaf 6-week primêre gesondheidsorg en immuniserings klinieke in 'n Suid-Afrikaanse gemeenskap. 'N Dreivoudige prosedure is op elke van die deelnemers se ore uitgevoer: 1) OAE toetsing is uitgeoer en 'n slaag resultaat het gedien as kontrole vir normale middeloorfunksionering; 2) 1000 Hz meettoon admittansie-, suskeptansie- en konduktansie timpanogramme is opgeneem en geanaliseer na aanleiding van vorm, piek timpanometriese druk en maksimum (piek) admittansie; 3) 1000 Hz meettoon akoestiese refleks toetsing is uitgeoer met 'n 1000 Hz ipsilaterale stimulus en drempels is vasgestel. Betekenisvolle assosiasies is waargeneem tussen timpanogram vorm en OAE slaag of verwys resultate. 93% van ore met OAE slaag resultate het timpanogramme met duidelike pieke getoon, terwyl 79% wat ore met OAE verwys resultate plat timpanogramme vertoon het. Enkel-piek timpanogramme is in 782 (84%) van ore waargeneem, dubbelpiek timpanogramme in 41 (4%) van ore en plat timpanogramme in 112 (12%) ore. Admittansie (Y\text{a}) timpanogramme vir die totale groep het 'n gemiddelde admittansie waarde van 2.9 mmho, met 'n standaard afwyking van 1.1 mmho getoon. Die 90 % omvang was waargeneem tussen 1.5 mmho (5de persentiel) en 4.9 mmho (95ste persentiel). Gemiddelde timpanometriese piek druk in Y\text{a} timpanogramme was 0.1 daPa, met 'n standaard afwyking van 61 daPa. Die 90 % omvang was -110 daPa tot 90 daPa vir die 5de en 95ste persentiel afsonderlik. Geslag-spesifieke norme het 'n hoër gemiddelde admittansie waarde vir manlike ore getoon. Ouderdom-spesifieke norme dui op 'n geleidelike verhoging in admittansie wat
die behoefte aan ouderdom-spesifieke normatiewe klassifikasie-sisteme bevestig. Ipsilaterale 1000 Hz stimulus akoestiese refleks metings het getoon dat reflekse suksesvol waargeneem word wanneer 'n 1000 Hz meettoon aangewend word. Reflekse is waargeneem in 84% van die toetsore. Betekenisvolle assosiasies tussen die teenwoordigheid van 'n akoestiese refleks, OAE slaag resultaat en duidelik gepiekde timpanogramme is aangedui. Die normatie waardes kan dien as 'n riglyn vir die identifkasie van middeloor effusie in kinders. Hoë frekwensie timpanometrie tesame met akoestiese reflekse blyk 'n waardevolle metode vir evaluering van middeloor funksionering in jong kinders te wees.

Sleutel terme: admittansie, akoestiese refleks, hoë frekwensie meettoon, immittansie, konduktansie, middeloor effusie, neonatale gehoortoetsing, piek admittansie, suskeptansie, timpanometriese piek druk, timpanometrie