MODELLING LEAD AND CADMIUM UPTAKE BY STAR GRASS UNDER IRRIGATION WITH TREATED WASTEWATER

BY

SIMON MADYIWA

Submitted in partial fulfilment of the requirements for the degree of PHILOSOPHIAE DOCTOR

In the Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

March 2006
ABSTRACT

MODELLING LEAD AND CADMIUM UPTAKE BY STAR GRASS UNDER IRRIGATION WITH TREATED WASTEWATER

by

Simon Madyiwa

Supervisor : Professor C. F. Schutte
Department : Chemical Engineering
Degree : Philosophiae Doctor

This study was conducted to investigate the capacity of *Cynodon nlemfuensis* (star grass) to accumulate lead (Pb) and cadmium (Cd) and develop metal uptake models for sandy soils receiving treated sewage from domestic and industrial sources. The study area comprised a non-polluted area and an adjacent area that received treated sewage from Harare’s Firle Wastewater Treatment Plant for over 30 years.

Measured soil properties, total Pb and Cd in soils and grass and past records of Pb and Cd in treated sewage were analysed. Growing grass in a greenhouse in pots with previously non-polluted soils amended by single and mixed Pb and Cd salts and irrigated with treated sewage tested the uptake capacity of star grass. Yields, soil bio-available and grass Pb and Cd levels were measured and used to develop models for estimating critical soil and grass concentrations at which productivity declines. In the field, star grass grown in 10m x 10m plots in the non-irrigated and irrigated areas, received varying amounts of treated sewage over 11 months. Soil bio-available and grass metal contents were measured and used to develop field-based models to predict Pb and Cd content in star grass.

Star grass had a high Pb and Cd extraction capacity, making it unsuitable for pasture if grown on polluted soils. Correlation between total Pb and Cd in soils and grass was insignificant (p<0.05). Logarithm-based models of log_{10} bio-available soil levels and log_{10} grass metal levels provided the best-fit regression models for Pb and Cd predictions in grass. Toxicity levels of Pb and Cd that were derived for star grass from pot-based models were higher than levels recommended for pasture. Toxicity occurred without visible signs on grass, making it difficult to recognise toxicity without testing. The field-based uptake models predicted safe bio-available limits for pasture on sandy soils. The co-presence of Pb and Cd resulted in increased Cd uptake but did not significantly affect Pb uptake. Star grass can accumulate more than 1 mg/kg of Cd at total soil Cd levels of less than 1 mg/kg, suggesting that the soil limit may be too high for a sandy soil.

Key words: Modelling Pb and Cd; Cynodon nlemfuensis; Sandy soil; Treated sewage
EXECUTIVE SUMMARY

MODELLING LEAD AND CADMIUM UPTAKE BY STAR GRASS UNDER IRRIGATION WITH TREATED WASTEWATER

<table>
<thead>
<tr>
<th>Supervisor</th>
<th>Professor C. F. Schutte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>University</td>
<td>University of Pretoria</td>
</tr>
<tr>
<td>Degree</td>
<td>Philosophiae Doctor</td>
</tr>
</tbody>
</table>

This study was conducted to investigate the capacity of *Cynodon nlemfuensis* (star grass) to accumulate lead (Pb) and cadmium (Cd) from a sandy soil irrigated with treated sewage. It also aimed to develop soil-vegetative tissue uptake models for predicting Pb and Cd levels in star grass using measured soil concentrations.

By growing star grass in pots with sandy soils amended using different levels of single and mixed inorganic salts of Pb and Cd and applying treated sewage, this study established that star grass is a high accumulator of Pb and Cd. It also established that the co-presence of Pb and Cd in the soil leads to increased uptake of Cd but does not significantly affect uptake of Pb by star grass. Star grass accumulated 8 times and 18 times the maximum levels of 40 mg/kg Pb and 1 mg/kg Cd recommended for pasture (United Kingdom Statutory Instrument No. 1412, 1995), respectively. The co-presence of Pb and Cd led to a 2.6-fold increase in uptake of Cd but did not significantly affect Pb bio-available soil levels and uptake by star grass.

Using the pot experiment, this study established that soil bio-available metal levels significantly (p≤0.05) correlate with plant metal levels through logarithm-based single-factor linear regression models of $\log_{10}(\text{above-ground tissue metal concentrations})$ versus $\log_{10}(\text{soil bio-available metal concentrations})$. The models predict toxicity in star grass to occur at 53.7 mg/kg Pb and 3.2 mg/kg Cd, corresponding to soil bio-available levels of 186.2 mg/kg Pb and 8.3 mg/kg Cd. Since toxicity occurred at metal levels higher than recommended for pasture without visible signs showing, the study recommends that visual signs of toxicity should not be used to decide when to stop grazing animals. Regular monitoring of bio-available levels of Pb and Cd is recommended.
In the field experiment where Pb and Cd levels in field plots were varied among treatments by applying different quantities of treated sewage, this study produced a significant (p≤0.05) model:

\[
\log_{10}(\text{above-ground tissue Pb concentration}) = 0.3949 \log_{10}(\text{soil bio-available Pb concentration}) + 0.7880
\]

for Pb and a strong (but marginally insignificant) model:

\[
\log_{10}(\text{above-ground tissue Cd concentration}) = 0.363 \log_{10}(\text{soil bio-available Cd concentration}) + 0.2987
\]

for Cd. The models predict that, to maintain Pb and Cd levels in star grass below recommended limits, soil bio-available levels should not exceed 115.2 mg/kg Pb and 0.20 mg/kg Cd. Therefore this study recommends management of soil bio-available Pb and Cd in sandy soils below 115.2 mg/kg and 0.20 mg/kg respectively, to ensure that star grass pasture is safe for animal consumption. The field-based models are considered suitable where animals graze regularly, facilitating re-growth of star grass over time.

Other results from this study suggest that the recommended limit of 1 mg/kg total Cd in soils may be too high for sandy soils under repeated disposal of treated sewage. In this study, some samples of mixed kikuyu and star grass from a sandy soil exposed to 29 years of treated sewage disposal tested up to 1.2 mg/kg despite the soil having a total Cd of 0.65 mg/kg.
A comparison of the capacity of the *Cynodon nlemfuensis* (star grass) to accumulate Pb and Cd, obtained from this study, and that of other plants contributes vital information towards the search for hyper-accumulators. By absorbing 4 592 mg/kg Pb, star grass ranks as a strong Pb accumulator among grasses, considering that hyper-accumulating grasses such as *Lolium perenne* (rye grass) accumulated 5 390 mg/kg Pb (US Department of Energy, 1998). However overall, star grass ranks as a medium accumulator of Pb when compared to hyper-accumulating plants such as *Ipomea* which accumulated 15 000 mg/kg in shoot tissue (Rhyne and Gosh, 2002). Given that grasses within a species have similar uptake characteristics (McDonald et al., 1995), these findings suggest that the *Cynodon* species of grasses has uptake capacities close to 4 592 mg/kg, accompanied by very low yields. This implies that the *Cynodon* species may be a medium Pb extractor whose use in phyto-remedying polluted soils may be limited.

Prior to this study, Pb and Cd uptake characteristics that are critical to the growth and monitoring of suitability of star grass pasture, growing on soils polluted with Pb and Cd were not known. No known models were available for estimating Pb and Cd levels in star grass growing on sandy soils on which treated sewage is disposed. This study contributed to the development of soil-plant metal uptake models by combining the use of bio-available concentrations in soils and the concept of log-transforming soil and metal concentrations in grass to produce single-factor regression models for estimating Pb and Cd levels in grass based on bio-available soil levels. Using the models, the study estimates that toxicity of Pb and Cd in star grass occurs at 53.7 mg/kg Pb and 3.2 mg/kg Cd corresponding to critical soil bio-available levels (extracted using 1 M ammonium acetate) of 186.2 mg/kg Pb and 8.3 mg/kg Cd.

Furthermore, the study provides an indication of the critical levels of soil concentrations that should not be exceeded in order to ensure that levels in star grass are below recommended maximum levels. Using regression models:

(1) \[\log_{10} (\text{above-ground tissue Pb concentration}) = 0.3949\log_{10} (\text{soil bio-available Pb concentration}) + 0.7880 \]

(2) \[\log_{10} (\text{above-ground tissue Cd concentration}) = 0.363\log_{10} (\text{soil bio-available Cd concentration}) + 0.2987, \]
developed under field conditions, the study estimated that soil bio-available levels should be maintained below 115.2 mg/kg Pb and 0.20 mg/kg Cd to ensure compliance of star grass metal content with recommended limits of 40 mg/kg Pb and 1 g/kg Cd (United Kingdom Statutory Instrument No. 1412, 1995) for pasture grass.

Literature presents what appears to be conflicting evidence on the influence of Pb on Cd and *vice versa* on uptake by plants. By assessing the effect of the co-presence of Pb and Cd in the soil on uptake of the metals by star grass, this study contributes towards increasing available information on interactions of the metals in plants. This study found that the addition of Pb and Cd to the soil increased uptake of Cd 2.6-fold over uptake observed with single metals added to the soil, while uptake of Pb was not affected significantly in star grass. Therefore available information on interactions of Pb and Cd may not be conflicting but an indication of different uptake characteristics of plants. It may also be argued that besides reducing Cd levels in treated sewage, reduction of Pb levels can contribute towards reducing uptake of Cd.
ACKNOWLEDGEMENT

I wish to express my appreciation to the following organisations and persons who made this thesis possible:

(a) This thesis is based on a bigger research project entitled Pollution Implications of Using Wastewater for Irrigating Pasturelands, that was undertaken from 2001 to 2003. Permission to use the material is gratefully acknowledged. The opinions expressed are those of the author and do not necessarily represent the policy of the Water Research Fund for Southern Africa (WAFSAR) or the University of Pretoria.

(b) WAFSAR for sponsoring a large part of this study, the Institute of Water and Sanitation Development (IWSD) and University Lake Kariba Research Station (ULKRS) for jointly administering funding from WARFSA, National Testing Laboratory, then Blair Research Institute for hosting workshops on the study, the University of Zimbabwe (UZ) for providing greenhouses for laboratory experiments, the Soil Research Institute of the Department of Agricultural Research and Extension (AREX) for providing laboratory facilities and assistance in carrying out chemical tests, Harare City Council for provision of data and access to the study site and Blair Research Institute for provision of camping equipment for field studies and conference facilities during the course of this study.

(c) The following persons are gratefully acknowledged for their assistance during the course of the study:
 (1) The late Dr. N. Ndamba
 (2) Dr. J. Nyamangara
 (3) Mr. C. Bangira
 (4) Dr. S. Mukaratirwa

(d) Professor C. F. Schutte, my supervisor, for his guidance and support.

(e) Professor. M. Chimbari for guidance and supervision on practical field work and support throughout this study.

(f) My wife Regina Madyiwa and two daughters, Sandra and Millicent for their encouragement and support during the study.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>i</td>
</tr>
<tr>
<td>THESIS CONTRIBUTION TO KNOWLEDGE</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
</tbody>
</table>

1.0 INTRODUCTION

1.1 Environmental and human health concerns of Pb and Cd
1.2 Metal pollution from wastewater
1.3 Paucity of data on accumulation of Pb and Cd in star grass
1.4 Challenges in modelling plant metal uptake from soils
 1.4.1 Soil metal concentrations and sampling depth
 1.4.2 Differences in uptake characteristics of plants
 1.4.3 Influence of uptake by other metals
1.5 Objectives of study
1.6 Scope of study
1.7 Organisation of thesis

2.0 LITERATURE REVIEW

2.1 Essential and non-essential heavy metals for plants
2.2 Sources of Pb and Cd
 2.2.1 Lead
 2.2.2 Cadmium
2.3 Treated wastewater as source of Pb and Cd
2.4 Chemistry of Pb and Cd
 2.4.1 Lead
 2.4.2 Cadmium
2.5 Metal contamination and toxicity
 2.5.1 Lead
 2.5.2 Cadmium
2.6 Bio-availability of heavy metals
2.7 Lead and cadmium health hazards to humans
2.8 Plants as soil cleaners and pathway of Pb and Cd to food chain 19
2.9 Treated sewage as source of Pb and Cd hazard to grazing animals via plants 20
2.10 Potential of grasses to accumulate Pb and Cd 21
2.11 *Cynodon nlemfuensis* 21
2.12 Reliability of standard permissible toxic metal guidelines 22
2.13 Reliability of guidelines of loading rates for wastewater on soils 23
2.14 On land sewage disposal methods 26
2.15 Influence of plant and other chemical species on metal uptake 26
2.16 Models for heavy metal content prediction 27
 2.16.1 Mass balance approach 27
 2.16.2 Use of soil-plant system models for metal prediction 28
2.17 Metal uptake in sewage amended soils 30
2.18 Review of methods of measuring bio-available metal concentrations 30
2.19 Review of some findings of pot and field methods for determining metal Uptake 32
2.20 Review of sewage treatment systems in Zimbabwe 33
2.21 Problem statement and hypotheses 35
 2.21.1 Problem statement 35
 2.21.2 Potential benefits of study 36
 2.21.3 Hypotheses 37

3.0 METHODOLOGY 38
3.1 Introduction 38
3.2 Background of study area 38
 3.2.1 Location of study area 39
 3.2.2 Sources of pollutants for study area 40
 3.2.3 Treatment plants 41
3.3 Study design 41
 3.3.1 Baseline assessment of Pb and Cd levels in study area 43
 3.3.2 Greenhouse Pb and Cd uptake by star grass under treated sewage application 45
 3.3.3 Field assessment of Pb and Cd uptake 47
4.0 BASELINE ASSESSMENT OF LEAD AND CADMIUM LEVELS IN STUDY AREA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>51</td>
</tr>
<tr>
<td>4.2 Objectives</td>
<td>51</td>
</tr>
<tr>
<td>4.3 Detailed methods and materials</td>
<td>51</td>
</tr>
<tr>
<td>4.3.1 Analysis of past records on levels Pb and Cd in treated sewage</td>
<td>51</td>
</tr>
<tr>
<td>4.3.2 Baseline assessment of chemical characteristics of study area</td>
<td>52</td>
</tr>
<tr>
<td>4.4 Results</td>
<td>54</td>
</tr>
<tr>
<td>4.4.1 Analysis of past records on levels of Pb and Cd in treated sewage</td>
<td>54</td>
</tr>
<tr>
<td>4.4.2 Chemical characteristics of study area</td>
<td>55</td>
</tr>
<tr>
<td>4.5 Discussion</td>
<td>59</td>
</tr>
<tr>
<td>4.5.1 Analysis of past records on levels of Pb and Cd in treated sewage</td>
<td>59</td>
</tr>
<tr>
<td>4.5.2 Pb and Cd accumulation in soils and grasses</td>
<td>60</td>
</tr>
<tr>
<td>4.5.3 Implications of findings</td>
<td>63</td>
</tr>
</tbody>
</table>

5.0 ASSESSMENT OF LEAD AND CADMIUM UPTAKE BY *Cynodon nlemfuensis* UNDER REPEATED APPLICATION OF TREATED WATER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>66</td>
</tr>
<tr>
<td>5.2 Objectives</td>
<td>67</td>
</tr>
<tr>
<td>5.3 Detailed methods and materials</td>
<td>67</td>
</tr>
<tr>
<td>5.3.1 Experimental set-up</td>
<td>67</td>
</tr>
<tr>
<td>5.3.2 Grass establishment</td>
<td>68</td>
</tr>
<tr>
<td>5.3.3 Soil treatment and irrigation application</td>
<td>69</td>
</tr>
<tr>
<td>5.3.4 Soil sampling and testing</td>
<td>70</td>
</tr>
<tr>
<td>5.3.5 Grass sampling and testing</td>
<td>70</td>
</tr>
<tr>
<td>5.3.6 Sewage effluent and sludge collection and testing</td>
<td>70</td>
</tr>
<tr>
<td>5.3.7 Data analysis</td>
<td>71</td>
</tr>
</tbody>
</table>
5.4 Results

5.4.1 Bio-available Pb and Cd content of soils
5.4.2 Extraction capacity of star grass
5.4.3 Grass metal content response to bio-available soil metal content in single treatments
5.4.4 Yield response to Pb and Cd content of grass in single treatments
5.4.5 Interactions of Pb and Cd in mixed treatments
5.4.6 Correlations of Pb and Cd in grass
5.4.7 Yield response to combined Pb and Cd
5.4.8 Yield, grass and soil metal content models and critical limits of Pb and Cd
5.4.9 Pb and Cd levels in effluent and sludge mixture

5.5 Discussion

5.5.1 Extraction capacity of star grass
5.5.2 Grass yield response to Pb and Cd
5.5.3 Metal uptake models and critical metal limits
5.5.4 Implications of findings

6.0 FIELD ASSESSMENT OF LEAD AND CADMIUM UPTAKE BY Cynodon nlemfuensis UNDER REPEATED APPLICATION OF TREATED WASTEWATER

6.1 Introduction
6.2 Objectives
6.3 Detailed methods and materials
6.3.1 Estimated irrigation requirements of star grass
6.3.2 Experimental set-up
6.3.3 Preparation of field plots
6.3.4 Irrigation of grass
6.3.5 Soil sampling and testing
6.3.6 Grass sampling and testing
6.3.7 Sewage effluent and sludge sampling and testing
6.3.8 Data analysis

6.4 Results
6.4.1 Soil pH, cation exchange capacity and clay content 101
6.4.2 Bio-available Pb and Cd content of soils and grass 103
6.4.3 Soil bio-available Pb and Cd response to treatment 106
6.4.4 Grass Pb and Cd content response to treatment 107
6.4.5 Correlations between bio-available and grass Pb and Cd contents for each grass crop 108
6.4.6 Correlation between average bio-available Pb and Cd in soils and average Pb and Cd contents in grass 110
6.4.7 Rate of metal application from treated sewage 112

6.5 Discussion 113

7.0 GENERAL DISCUSSION 116
7.1 Long-term Pb and Cd accumulation in soils and bio-available levels 116
7.2 Capacity of star grass to absorb Pb and Cd 117
7.3 Yield responses to increasing bio-available Pb and Cd 118
7.4 Yield-metal uptake models for Pb and Cd and toxic limits in grass 118
7.5 Soil bio-available-grass metal uptake models and critical metal limits 118
7.6 Co-presence of Pb and Cd 120
7.7 Appropriate Pb and Cd levels in effluent and digested sludge 120

8.0 CONCLUSIONS AND RECOMMENDATIONS 122

8.1 Main conclusions 122
8.2 Recommendations 125

TABLES

Table 2.1 Sewage type, loading rates and soil type (Source: Chatterjee, 1987) 24
Table 2.2 German standards for heavy metals in soil and sludge (Pescod et al, 1985) 24
Table 2.3 Recommended maximum concentrations of trace elements in irrigation Water (adapted from Pescod, 1992) 25
Table 4.1 Average (range) concentration (mg/l) of heavy metals in samples
of digested sludge and effluent (Source: Harare City Council records, 1991-1994)

Table 4.2 Selected properties of a sandy soil in the irrigated and control areas

Table 4.3 Average total soil metal concentrations in horizons of soil profile of the irrigated and control areas

Table 4.4 Average total metal levels (mg/kg) in 0-20cm soil depth and mixed grass

Table 5.1 Soil metal and grass concentrations, yields and metal extraction levels

Table 5.2 Pb concentrations in samples of treated effluent and sludge mixture

Table 6.1 Estimated crop water and irrigation requirements of star grass

Table 6.2 Mean soil properties and soil depth

Table 6.3 Correlation coefficients for pH, cation exchange capacity and clay content versus soil depth

Table 6.4 Mean soil profile bio-available metal and grass concentrations

Table 6.5 Correlation coefficients for soil depth and bio-available soil metal concentration

Table 6.6 Average bio-available Pb and Cd levels in soils and grass (mg/kg)

Table 6.7 Quantities of treated sewage and computed average metal concentrations applied to plots

Table 6.8 Average increase in profile Pb and Cd levels above levels in the control (mg/kg)

LIST OF FIGURES

Figure 2.1 Generalised dose-response curve for nutrient metals

Figure 3.1 Schematic diagram of study area

Figure 5.1 Log_{10} soil bio-available level versus log_{10} Pb level in grass in single treatments

Figure 5.2 Log_{10} bio-available Cd level versus log_{10} Cd levels in grass in single treatments

Figure 5.3 Log_{10} Pb level (mg/kg) in grass versus log_{10} grass yield (g/pot)
Figure 5.4 Log$_{10}$ Cd level (mg/kg) in grass versus log$_{10}$ yield of grass (g/pot) in single Cd treatments

Figure 5.5 Effect of treatment on bio-available levels of Pb in single and mixed treatments

Figure 5.6 Effect of treatment on levels of Pb in grass in single and mixed treatments

Figure 5.7 Log$_{10}$ bio-available soil Pb levels (mg/kg) versus log$_{10}$ Pb levels in grass re-growth (mg/kg) in mixed treatments

Figure 5.8 Effect of treatment on bio-available levels of Cd in single and mixed treatments

Figure 5.9 Effect of treatment on bio-available Cd levels in grass in single and mixed treatments

Figure 5.10 Log$_{10}$ bio-available Cd soil levels (mg/kg) versus log$_{10}$ Cd levels in grass re-growth in mixed treatments

Figure 5.11 Correlation of metal contents of Pb and Cd in grass in single and mixed treatments

Figure 5.12 Yield response to concentrations of Pb and Cd in mixed Pb and Cd treatments

Figure 6.1 Plot layout at Churu farm

Figure 6.2 Treatment versus log$_{10}$ bio-available soil Pb concentration

Figure 6.3 Treatment versus log$_{10}$ bio-available Cd soil concentration

Figure 6.4 Treatment versus log$_{10}$ grass Pb concentration

Figure 6.5 Treatment versus log$_{10}$ grass Cd concentration

Figure 6.6 Log$_{10}$ bio-available soil Pb versus log$_{10}$ Pb level in grass in field experiment

Figure 6.7 Log$_{10}$ bio-available soil Cd level versus log$_{10}$ Cd level in grass

Figure 6.8 Log$_{10}$ mean bio-available soil Pb versus log$_{10}$ mean Pb level in grass

Figure 6.9 Log$_{10}$ mean bio-available soil Cd versus log$_{10}$ mean Cd level in grass
LIST OF REFERENCES

APPENDICES

Appendix 1 Sewage treatment processes at Firle Wastewater Treatment Plant 135
Appendix 2 Randomised block design layout of pots in greenhouse 137
Appendix 3 Quantities of treated sewage and metals applied to field plots 138
Appendix 4 Mean soil bio-available concentrations (standard deviations), mg/kg and soil depth 140