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CHAPTER 2

FOUR-DIMENSIONAL QZPSK
SIGNALLING: THEORETICAL
FOUNDATION

In this chapter the concepts of four-dimensional Quadrature Quadrature Phase-
Shift Keying (Q*PSK) are considered, as a means of improving communication
efficiency on the bandlimited Gaussian channel. Investigations into the constraints
imposed by finite bandwidth on the dimensionality of the spectrally and power
efficient Q*PSK modulation strategy are carried out. In particular, attention is
focused on the derivation of a suitable four-dimensional orthonormal set of basis
functions for, and channel capacity of Q*PSK. The capacity is then compared to
that of two-dimensional Multiple Phase-Shift Keying (M-PSK) signals.

2.1 FOUR-DIMENSIONAL SIGNALLING

The term signal constellation is defined as the geometric arrangement of symbols within a given
signal space. The power efficiency of a signal constellation is defined as
- T

free
A=z ——— 2.1
B, ( )

where d%___ is the minimum squared Euclidean distance between any pair of signals, £, is the
average energy per symbol, and R, is the symbol rate. The energy efficiency largely depends
on the signal space geometry. The main objective of a digital communication system design is to
minimise the average energy requirement. Specifically, the Four-Dimensional (4D) design problem is
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to locate M signal points in 4D space, R%, so that for a given minimum Euclidean distance between
signals, dfrcc, the average (or peak) energy is minimised. Letting 3; denote signal locations and
| - | the norm, the problem to be solved is

NI N M

minimise - ; | 5 | (2.2)
subject to | s; — 5; |> dfree, ¢ # j. This is the classical sphere packing problem for which
ample previous work has been done [16, 50]. For illustrative purposes, a Two-Dimensional (2D)
arrangement is considered. For large M the best arrangement in 2D places signal points on vertices
of equilateral triangles, which tessellate the plane. This is sometimes referred to as a hexagonal
lattice, as the decoding regions are hexagons centered at each signal point. For finite M in 2D, the
paper by Foschini et al. [50] provides optimal constellations as well as symmetrical constellations.
For example, the optimum M = 16 constellation in 2D has the arrangement shown in Figure 2.1a,
while Figure 2.1b illustrates the standard symmetric 16-point Quadrature Amplitude-Shift Keying
(16-QASK) design, which may be visualised as a Cartesian product of two One-Dimensional (1D)
4-level Amplitude Modulation (AM) systems.
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Figure 2.1: 16-ary constellations in Two-Dimensions (2D): (a) Optimal 16-ary design. (b) Stan-
dard 16-QASK design.

The optimal constellation is more complicated to implement, especially as far as the receiver is
concerned. The concepts of the foregoing example may be extended to three and four dimensions, as
illustrated in [51]. Related work may be found on Four-Dimensional (4D) modulation in the papers
by Welti and Lee [17] and of Zetterberg and Brindstrdm [18]. The Zetterberg and Brandstrém
codes have the property that signal vectors lie on a 4D sphere (equal-energy), whereas Welti and
Lee codes are allowed to consume all of the 4D space within the sphere. The equal-energy constraint
constitutes a significant penalty as M becomes large, in the same way as M-ary PSK become less
efficient than M-ary amplitude/phase modulation in 2D signal space. For the rest of the chapter
specific 4D designs are considered, where the symbols coincide with the vertices of a hypercube. A
detailed analysis and discussion of these signalling schemes can be found in the book by Wozencraft
and Jacobs [22].
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2.2 Q?PSK SIGNALLING

In general, the available number of dimensions per second, D, is larger or equal to the symbol rate
Ry, D > R, since the number of vertices on a hypercube of N = DT, dimensions is 2P7¢ and the
number of signals required is M = 2f<T:, Tt is clear that not all the vertices need be used.

The Q2PSK signal space provides a 16-ary constellation in 4D with signals of the normalised form
(£1,£1,£1,£1),i.e. the vertices of a hypercube centered at the origin of the signal space [12, 11].
Since the usual association of each of the four bits with 1 modulation on a particular dimension
applies for detection, minimum bit error probability demodulation can be achieved by means of sign
detection in each coordinate direction. As stated in [16], it is difficult to find a 16-ary design that
outperforms 4D hypercube signalling, when evaluated in terms of spectral and energy efficiency, as
well as implementation complexity.

The double-sided Nyquist-sense definition of bandwidth is adopted throughout this dissertation [22].
[t states that theoretically a 4D modulation can transmit log, M bits per symbol with a pass band
signal bandlimited to a total bandwidth of W = 2/T}, where Ty is the 4D symbol duration. The
theoretical spectral efficiency for Q?PSK with M = 16, is therefore 0y = log, M = 4 bits/s/Hz.
The spectral efficiency depends only on M and not upon the constellation, whereas the energy
efficiency does depend on a specific geometry within the constellation.

Restricting the signals s;(t) to the vertices of a hypercube implies that each signal has the form

N
si(t) =D si9i(t), fori=0,1,...,M —1 (2.3)

J=1
where s;; = +\/En, N = DT, is the number of dimensions in time T,, and Ep is defined as the

available signal energy per dimension.

Consider the following 4D orthonormal basis set for Q?PSK:

2
Pi(t) = T q1(t) cos2m f,t
2 :
Po(t) = Nid q2(t) cos2m f.t
2
Pa(t) = T q1(t) sin 27 f.t
2
Pa(t) = T q2(t) sin 27 f.t (2.4)
defined over | ¢ |< T,/2, and zero outside this interval, where
q1(t) = cos2rfyt
q2(t) = sin2x fgt (2.5)

are the quadrature shaping pulses. Here f. and f; are the carrier and deviation frequencies,
respectively. In general the deviation frequency is related to 7 as:

h
= — 2.6
fa 3 (2.6)
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where A is the so-called deviation ratio, and Ts = 1/ fs the symbol duration. The basis set {t;(%)}
forms an orthonormal basis under the restriction

nh
fe=nfs=—, nel > 2. (2.7)
Ty '
The minimum value of % is 0.5, corresponding to the minimum frequency deviation necessary for
signals to remain orthogonal. In general, any other four mutually orthonormal waveforms could be
utilised, provided they conveniently represent the M = 16 signals in the 4D signal space.

A difficulty in transmitting sequences of orthonormal pulses is that most physical channels intro-
duce distortion, for instance when undistorted pulses that do not overlap tend to be "smeared”,
Le., spread over time greater than 7,. The result, called Intersymbol Interference (ISI), causes
loss of orthogonality, leading to a smaller value of D attainable in practice. In practice, the max-
imum number of essentially orthogonal waveforms that can be transmitted in time 7§ through a
channel with bandwidth W is limited to between T,W and 3/2 T,W, where T,W is the so-called
time-bandwidth product. With our previous definition of bandwidth (W = 2/T), the number of
orthogonal waveforms is limited between 2 and 3 waveforms.

The orthogonality of the basis set remains invariant under the translation of the origin by multiples
of T;. In other words, if the basis set defined in (2.4) is translated, then orthogonality will be
maintained over every interval of T centered around ¢ = mTy, with m an integer [12].

2.2.1 Q?PSK Modulation

The orthogonality of {;(t — mT;)} suggests the modulation scheme which is shown in Figure 2.2
[11, 12]. Data from a binary source at rate 1/7} is demultiplexed into four streams {a;(¢)},i =
1,...,4, with the duration of each data pulse equal to T = 4T}. Each data stream is multiplied by
the outputs of the basis signal generator {4;(¢)}, producing four mutually orthogonal data streams
which are summed to form the modulated Q*PSK signal.

ar(t) o~
J &
I ] [ [ 1]r,a g (#)
SQ2PSK
| ] Lo | et )
_ .
0% T, =4T, 1 i) \r P /
T
1(t) ¥a(t) vs(t) va(?)
Figure 2.2: Quadrature-Quadrature Phase-Shift Keying (Q*PSK) modulator.
From Figure 2.2 and (2.4), one can represent the Q*PSK signal as
T
s@apsk(t) = o= {a(t)$r(t) + az(t)va(t) + aa(t)¥a(t) + as(t)¥a(?)} (2.8)
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ay(t)qy(t) cos2x fet + ag(t)ga(t) cos 2z f.t
+ a3(t)q1(t)sin 27 fot + aq(t)ga(2) sin 27 f .t (2.9)
= ac(t)cos[2m fo + bo(t)27 fa] t + as(t) sin [27 f, + bs()27 fa] t (2.10)

where the additional 1/7,/2 is a normalising factor. Recall, that the deviation ratio is defined
as h = f4Ts = 1/2. The relationships between binary quantities a.(t), as(t), b.(t),bs(t) and the
information data streams, {a;(t)}], are given by

ac(t) = ay(t), be(t) = —aq(t)/as(t)
as(t) = acl»,(t), by(t) = -}—a;(t)/aS(t) (2.11)

The modulating signals {1;(¢)} affects the bit streams {a;(¢)} in two ways. Firstly shaping of the
symbol pulse. The second effect is to translate the baseband spectrum to a pass band region. It
should be noted that the two pulse trains associated with either of the two carrier are orthogonal
over any interval of duration 7 centered around mTs. Two of the dimensions come from the
orthogonality of the carriers, while the other two come from the orthogonality of the data shaping
pulses, ¢1(¢) and qo(t) (defined in (2.5)). In other words, two carriers and two data shaping pulses
are pairwise quadrature in phase. Hence, the name Quadrature-Quadrature Phase-Shift Keying.

At any instant the Q*PSK signal can be analysed as consisting of two signals: the one cosinusoidal
with frequencies (f. & f3), and the other sinusoidal with frequencies (f. + f;). The separation
between the two frequencies associated with either of the two signals is 1 /Ts. This is the minimum
spacing that one needs for coherent orthogonality of two FSK signals, as in MSK. The Q?PSK
signalling can be thought of as consisting of two minimum shift keying signalling schemes in parallel,
which are in quadrature with respect to each other. Since the two schemes are in quadrature, it
follows that the bandwidth efficiency will be twice that of conventional MSK.

2.2.1.1 Constant Envelope Q?PSK

One can write the Q?PSK signal, given in (2.8) as
sq2psk(t) = A(t) cos (27 fet + 6(t)) (2.12)

where A(%) is the carrier amplitude given by,

A(t) = (2 + [aul)as(t) + aa(t)aalt)] sin 2;) (2.13)

8§

and 6(t) is the carrier phase given by,

(2.14)

as(t) cos QT—’:t + ay4(t) sin QT—':*
ai(t) cos ZT—T + ay(t) sin %}?

6(t) = tan~! (—

The Q*PSK signal, in the absence of any additional constraint, does not maintain a constant
envelope. It is well known that constant envelope modulation techniques are desirable, as it makes
the modulated signal relatively immune to channel non-linearities. In other words, hard-limiting
should not degrade phase information. In addition, constant envelope techniques enable the use
of automatic gain controllers at the demodulators, and can even tolerate hard-limiting without
spectral degradation.

Department of Electrical and Electronic Engineering 16
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A simple block coding prior to modulation, proposed by Saha [11, 12], provides a constant envelope.
The block coding scheme can be described as follows: The coder accepts serial input data and for
every three information bits {ai,ay,as}, it generates a codeword {a,as,as,as}, such that the
fourth bit is an odd parity check for the three information bits, represented by

ay(t) - az(t)
as(t)
The constant envelope feature is, however, achieved at the expense of a 25% decrease in bandwidth

efficiency. This Constant Envelope (CE) Q?PSK scheme will be considered in more detail in Chapter
4,

as(t) = - (2.15)

2.2.1.2 Continuous Phase Q*PSK

In designing a modulation scheme, continuity of phase of the Radio Frequency (RF) carrier may be
an additional desirable feature in certain situations apart from the minimum energy and bandwidth
constraints. With continuity in phase, high frequency content , i.e., secondary sidelobes of the power
spectral density may be significantly reduced. This will bring about a sharper spectrum fall-off,
and relaxation of the restrictions on subsequent bandlimiting filters. This is desirable in certain
situations where the cost of filtering after modulation is prohibitive and out of band radiation needs
to be restricted at a low level. Also, in a bandlimited situation, faster spectral fall-off of the signal
itself may result in less ISI and hence, a lower average bit energy requirement for a specified bit
error rate.

Considering the expression for the carrier phase of Q*PSK in (2.14), it is noted that the carrier
phase does not maintain continuity in phase. The foregoing continuous phase benefits motivates
an investigation into the possibilities of achieving phase continuity in the Q?PSK signal. A wide
variety of continuous phase modulations are found in the open literature [52, 53, 54]. Many of the
better-known techniques, employ some sort of correlative coding which introduces finite memory
into the modulated signal. In order to achieve phase continuity, it is necessary only to modify one
of the two data shaping pulses, ¢;(t) or ¢2(¢). In other words phase continuity can be achieved
without the use of any modulation with memory.

The conventional Q?PSK scheme uses two data shaping pulses. One of them is a half cosinusoid.
q1(T'), and the other is a half sinusoid, g,(¢). If one replaces the half sinusoid by a full sinusoid
over the same signalling interval, | ¢ |< T,/2, the RF carrier will display phase continuity [12], but
at the expense of more bandwidth.

2.2.2 Q?’PSK Demodulation

2.2.2.1 Analogue implementation

Implementation of a Q?*PSK analogue demodulator was proposed by Saha and Birdsall [11] and
later on by De Gaudenzi and Luise [55], where traditional analogue techniques were considered.
At the demodulator, four identical coherent generators are available, and the orthogonality of the
orthonormal basis set is used to separate the four information bit streams, {a;(¢)}. In the presence
of AWGN, a correlation receiver will perform the process of demodulation in the optimum sense of
minimum probability of error sense.
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However, the tendency in communication systems is for the utilisation of digital techniques and al-
gorithms for the implementation of more efficient modems; direct translation of analogue techniques
to a digital implementation are far from being an optimal approach. Realisation of a fully digi-
tal implementation of the modem requires the utilisation of computationally efficient modulation,
demodulation, synchronisation and also coding algorithms.

2.2.2.2 Digital implementation

Feiz and Soliman followed DSP techniques to derived a Maximum Likelihood (ML) demodulator
for four dimensional modulation schemes. The work of Feiz and Soliman was developed having a
Q?PSK modem in mind, and resulted in a DSP solution with reasonable complexity. To this end a
conventional DSP based implementation of the Q?*PSK modulator and demodulator is considered
in this study, proposed and implemented by Acha [23]. In Chapter 4 more detail concerning the
realisation of the digital Q?PSK modem will be given.

2.2.3 Spectral efficiency analysis of Q*PSK

The data streams a;(t) ¢ = 1,...,4 used in (2.8) are assumed to be independent and at any instant
each stream can take on either the value +1 or —1 with a probability of one half. This implies that
in each T = 4T} (second) interval the Q2PSK signal can be one of M = 16 possible equally probable
waveforms. Let s;(f),7 =0,..., M — 1 represent these waveforms. Probability of occurrence of s;(¢)
is p; = 1/M for ali i. The signal set constituted by {s;(¢)} has the following characteristics:

e for each signal waveform s;(¢) of the set, there is also a negative waveform —s;(t)
e the stationary probabilities of s;(¢) and —s;(t) are equal, and
e the transition probability between any two waveforms is the same.
Such a signalling source is set to be Negative Equally Probable (NEP) [56]. Its overall spectrum is

characterised by the absence of a line spectrum and furthermore is independent of the transition
probabilities themselves. The overall spectral density is given by [56]

M-1
Sopse(f)= D pi | Si(f)| 2 (2.16)
=0
where S;(f) is the Fourier transform of s;(¢) and is given by
Sif)= [ sitt) et (2.17)
-0

2.2.3.1 Conventional Q*PSK

The time limited pulse shaping waveforms can be written in the following equivalent signal forms:

q(t) = HT%COS(%)  0E L £ T

- ) cos (;—Z) (2.18)
(2.19)

i
=)
Lo }

&

-t
e

et
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% it
g(t) = 1}Es1n (E) ;1 0<t<T,
= “/TE rect (Tis) sin (;—:) (2.20)

Suppose @Q1(f) and Q2(f) are the Fourier transforms of the normalised timelimited pulse shaping
waveforms, ¢1(f) and g¢o(t), respectively. Then, it can be shown, using results in [56, 57, 12], that
the equivalent baseband version of the Power Spectral Density (PSD) is given by

Sqresk = 5 [| @) P +1Qa(N) ] (2:21)
where
T T
o = Y (k) @59
/ 3 T
Qaf) = -j EiTSf (5;;:{_1) (2.23)

Substituting (2.22) and (2.23) into (2.21), the baseband power spectral density, So2psk(f), and
accordingly its Constant Envelope (CE) version, is given by

8T, cosTfT, \?
Sqepsk(f) = ( = ) (1+4f°T2) (Wi) (2.24)
Expressed in terms of bit duration, T, = 1/ f,
2
327, a2y [ €O84m fT
Sqrpsk(f) = (?) (1+64f°Ty) (W (2.25)

To provide a means of comparison, the PSDs of MSK and QPSK (with rectangular symbols)
signalling schemes, as functions of T}, are given by [57):

2Ty (sin 27 fT}\ 2
Sopsi(f) = 2 (D) (2:26)
2
16T, { cos2x fT,
Smsk(f) = wzb(mfﬂ’fg_bl) (2.27)

The power spectral densities of MSK, QPSK and Q?PSK are shown in Figure 2.3, as functions of
normalised frequency, fT}.

From these graphs, it is observed that MSK has a wider main lobe (the first null is at 0.75/T}),
than QPSK (the first null is at 0.5/7}), and also wider than Q*PSK (the first null is at 0.375/T}).
However, the PSD of MSK has lower sidelobes than QPSK and Q*PSK at frequencies removed
from the main spectral lobe.

In order to obtain quantitive information about the spectral compactness, a measure of the per-
centage of total power captured in a specified bandwidth has to be performed. This is plotted in
Figure 2.4. For a small specified bandwidth, the percentage power captured in Q2PSK is larger
than that in QPSK and MSK, when operating at the same bit rate. Beyond a bandwidth of 1.2/T},
the spectral behavior of QPSK and Q?PSK becames almost identical.
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Figure 2.3: Power spectral densities of MSK, QPSK and Q?PSK modulated signals.
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Figure 2.4: Power captured as function of bandwidth of MSK, QPSK and Q?PSK signals.
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2.2.3.2 Effect of constant phase on the PSD of Q*PSK

In order to maintain continuity in carrier phase, the data shaping pulse, g(%) is replaced by a full
sinusoid over the signalling interval 0 < ¢ < T, denoted by ¢4(t), written in the following equivalent

signal form:
gty = 1/%sin(2:;t> D2 t< T,
2 t . 27t
q/ﬁ rect (i) sin ( T ) (2.28)

Data shaping pulse, ¢;(¢) is not modified. Substituting the Fourier transform, Q4(f) of ¢4(t) into
(2.21), the baseband spectral density of the Continuous Phase (CP) Q?PSK signal is given by

2 2
4T, cos4r [T, sin 47 fT}
SCP—Q'A’PSR (f) T g2 {4 (64f2T(,2 _ 1) + (16f2Tb2 _ 1) } (229)

The power spectral densities of Q*PSK and CP-Q?PSK are plotted in Figure 2.5, as functions
of normalised frequency, fT3. In addition, the PSD of M-ary Continuous Phase Frequency Shift
Keying (M-CPFSK, M = 4) is included as a means of comparison. Figure 2.6 illustrates the
percentage of total power captured in a specified bandwidth for Q?PSK, CP-Q?PSK and 4-CPFSK.

In spite of the sharper asymptotic spectrum fall-off, the continuous phase version Q2PSK signal,
for a finite bandwidth, captures almost the same power as the original one. The continuous phase
version, therefore, does not seem to render any improvement with respect to conventional Q2PSK
in terms of energy efficiency.

2.2.3.3 Effects of Bandlimiting Q?PSK

When the spectral compactness of conventional Q*PSK (Figure 2.4) is considered, it is noted that
only 90.7% of the total power is transmitted within the Nyquist bandwidth, W = 2/T, = 1/(2T}).
Thus, nearly 10% of the total signal power will be lost in the process of band pass filtering, resulting
in spreading of the baseband data pulses, which in turn causes ISI. For the same finite bandwidth,
Continuous Phase (CP) Q?*PSK, captures only 88.3% of the radiated power. When a MSK signalling
scheme is considered, it is seen that almost the entire signal power (99.05%) is contained within
the bandwidth W.

The effect of bandlimiting on the BEP of Q*PSK will be evaluated by means of simulation in Part
II, Chapter 7 of this dissertation.

2.2.4 BER performance

The ultimate objective of all data communication systems is to achieve the minimum Bit Error
Rate (BER) with a minimum amount of average energy per bit, Ey. In practice, BER performance
1s usually evaluated under the assumption of a bandlimited channel corrupted by AWGN. The
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Figure 2.5: Power spectral densities of Q*PSK, CP-Q2?PSK and 4-CPFSK modulated signals.
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Figure 2.6: Power captured as function of bandwidth for Q2PSK and CP-Q?PSK signals.
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effect of bandlimiting is however not considered, i.e. an ideal (wideband) signal space geometry is
considered. The Q2PSK signal geometry has a Symbol Error Probability (SEP) given by [22]:

Pi=1-(1-p)* (2.30)

where

By
p=Q { QNO} (2.31)

In (2.31) E; is the signal energy and N,/2 is the two-sided AWGN spectral density. The SEP
provides upper and lower bounds on BEP, as follows:

B<PA<P, (2.32)

An exact calculation of P, is required when comparing two modulation schemes.

For the derivation of P, a N-dimensional hypercube is considered, positioned symmetrically around
the origin to minimise the average bit energy. The number of equally probable signals in the
modulated signal set is 2/, each presented by a combination of N bits. Each signal may be written
as a N-dimensional vector:

# = L8 0800y s BN )5 i=0,l,...,2N—1 (2.33)
where
+d/2
3i5 =4 O for all 7, j (2.34)
—d/2

represent the projections of the i-th symbol s; onto the N basis vectors of the N-dimensional signal

space, and d = 2\/E;/N = 2./E, [22].
The average BEP is given by

1 N
P, = = ¥ P = (2.35)
i=1

where P; is the probability of error in the i-th bit position. The last equality in (2.35) comes from
the equality of P; for all i, because of the symmetry in signal space geometry. In order to derive
an equation for Py, it is necessary to calculate Py;.

To calculate P, the signals within the signal space are divided into two sets: {+d/2, s;2, i, ..., SN}
and its image partner {—d/2,si2, 8i3,...,5n}. These two sets of signals will lie on two parallel
hyper planes of dimension (N — 1). The midway hyper plane of the same dimension is considered,
which separates the two sets and is equidistant from each original plane. The distance of any signal
in either set from the midway hyper plane is d/2 = +/E;. Thus, the signals with +d/2 in the first
bit position are on one side of this plane at distance 1/F}, while the signals with —d/2 in the first
bit position are on the other side of the midway hyper plane at the same distance.

The foregoing is geometrically illustrated in Figure 2.7, for N = 3, with midway hyper plane being
of dimension N — 1 = 2.

An error in the first bit position occurs when the noise component ng, associated with the first bit
position, displaces a signal to the other side of the midway hyper plane. The probability of such
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Figure 2.7: Signals on vertices of N = 3 dimensional hypercube.

an event is
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pno(z) - dz
| o pot2)

2F;
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where pno(z) is the probability density function of Gaussian noise with variance per dimension
N,/2, the overall BEP simplifies to

Fy = By

I
O
=

2E,
, } (2.37)

since the conditional probability P; is equal for all i. This probability of error holds for a hypercube
of any dimension N.

Recall, that the BEP of Binary Phase-Shift Keying (BPSK) is exactly the same as the BEP for
Q?PSK, given by (2.37). BPSK uses two antipodal signals that can be considered as the vertices
of a hypercube of dimension one. Similarly, QPSK and MSK, which use a set of four biorthogonal
signals, can be considered as using the vertices of a hypercube of dimension two. Further, it was
shown that Q*PSK uses the vertices of a 4D hypercube. Thus, BPSK, QPSK, MSK and Q2?PSK
belong to the same class of signalling schemes using the vertices of 1D, 2D and 4D hypercubes,
respectively. Also, each of them requires the same energy per bit, Fj, to maintain a specific level of
communication realiability. The latter is true when the channel is not bandlimited, and corrupted
only by AWGN.

In a practical situation channel bandlimiting causes ISI, which has a different effect on each of theses
schemes. Since the signal space of the hypercube no longer remains ideal, the energy efficiency is
degraded in the case of Q?PSK.
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2.3 ON THE CAPACITY OF Q?PSK FOR BANDLIMITED
AWGN CHANNELS

Shannon’s channel capacity theorem provides an upper bound on the bandwidth efficiency for a
given signal energy. Roughly speaking, this remarkable theorem states that there is a maximum
rate, called channel capacity, at which any communication system can satisfactory operate within
a given power constraint; operation at a higher rate will condemn the system to a high probability
of error, regardless of the choice of signal set or receiver.

Recalling that the number of dimensions, D, that can be accommodated per second by a bandlim-
ited channel is not sharply specified, the capacity theorem is stated in terms of the parameters
En and Ry, where Ry = R;/D again denotes the transmitter input rate in bits per second. The
‘energy of each signal is constrained to be no greater than N Ey, where N is the dimensionality of
the signal space and Ey is the average energy per dimension,

joules/s

Ey=—+7"—"-—""— 2.38
N dimensions/s (2:38)

In the particular case of transmission over an AWGN channel, the capacity theorem may be ex-
pressed in the form

1 En
Cn = §Iog2 (l +2 No) (2.39)

Cy is called the Gaussian channel capacity, measured in bits/dimension.

Let us examine the limits in performance gains that may be achieved when Q2PSK is considered,
excluding the effects of ISI (i.e., wideband transmission in AWGN). With perfect timing and carrier-
phase synchronisation, samples are taken at time instants ¢T,+7,, where 7, the appropriate sampling
phase. The output of the modulation channel becomes

=G+ (2.40)

where @; denotes a N-dimensional discrete channel signal vector transmitted at modulation time
1T, and ; is an independent normally distributed noise sample with zero mean and variance o2
along each dimension. The average SNR is defined as

_E{l@l} _ E{la@]}
SNR'—Eqnﬁ|}_ No? (2.41)

where N = 4 for Q?PSK. When normalised average signal power is assumed (E{| @ |} = 1), the
SNR is simply given by 1/4¢°.

The capacity, C* of a Discrete Memoryless Channel (DMC) in the case of a continuous-valued
output, assuming AWGN and equiprobable code occurrence, can be written as [27]:

1 M-1 M-1
C* = logy(M) — i Z E {logz Z exp(Az-k)} (2.42)
k=0 =0
where . . )
i e K
Ay = | o 1w} (2.43)
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Using a Gaussian random generator, C* has been evaluated by Monte Carlo averaging of (2.42) for
Q?PSK and Constant Envelope (CE) Q*PSK. Also, the results presented by Ungerboeck [27] for
2D M-PSK modulations are repeated here for comparison purposes. In Figure 2.8, C* is plotted as
a function of SNR. The value at which an uncoded symbol-error probability P, = 10~° is achieved
is also indicated for 4-PSK (QPSK), Q?PSK and its constant envelope version, CE-Q2PSK. These
results are summarised in Table 2.1.

6.0 =
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5.0 Bound
45
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ol = 16-PSK
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P 3D .
o - K
@ s CE-Q'PSK|. o\
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Figure 2.8: Channel capacity C* of 2D M-PSK (M = 4, 8 and 16, denoted by dashed lines) and
4D Q?PSK modulation for bandlimited AWGN channels.

Table 2.1: Comparison of required SNR to achieve a symbol-error probability, P, = 10~5.

I Modulation | Required SNR |
QPSK 12.9 dB
Q’PSK 14.5 dB

CE-Q’PSK 13.9 dB

To interpret Figure 2.8, consider uncoded 4-PSK operating at 2.0 bits/T, where P; = 10~° occurs at
SNE = 12.9 dB. If the modulation is changed from 2D to 4D, it is clear that by considering either
Q*PSK or CE-Q2PSK, error-free transmission at 2.0 bits/T is theoretically possible at SNR = 6.9
dB, constituting a gain of 6.0 dB compared to QPSK.

The latter observation indicates that if the modulation is changed from 2D to 4D, exploitation of
the extra dimensions for coding, can lead to a theoretical gain in the order of 4.8 dB. The net result
is a coding gain, achieved without alteration of the data throughput. The preceding discussion
provides the motivation for 4D modulation.
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The search for more effective modulation schemes, both from the energy and bandwidth saving
viewpoint, is unquestionably one of the relevant trends in modern communication system research.
As mentioned before, the key novelty of Q?PSK is the efficient use of degrees of freedom in an ex-
panded multidimensional (4D) signal space. The modulated signal bears a four-fold dimensionality
as opposed to the bidimensionality of conventional QPSK. The utilisation of a four-dimensional
modulation scheme may provide a theoretical bandwidth efficiency, 1y of 4 bits/s/Hz. In terms of
spectral efficiency Q?PSK outperforms the traditional workhorse of efficient modulations, MSK,
within similar energy constraints. This gain is attained even though the well-known features of
phase-continuity and constant envelope of MSK-signals are no longer shared (at least in the uncoded

case) by Q*PSK.

These observations are supported in the comparison of various measures of bandwidth listed in
Table 2.2.

Table 2.2: Bandwidth comparison of MSK, QPSK, 4-CPFSK, Q*PSK and CP-Q?PSK signalling
as a function of power containment.

Power Containment
Modulation Type | 77% 90% 99%
MSK 0.29/T; 0.39/T, 0.59/T}
QPSK 0.23/T, 0.34/T;, 1.24/T,
4-CPFSK 0.2/T) 0.25/T) 0.45/T
Q°PSK 0.2/T} 0.27/T; 1.0/Ty
CP-Q*PSK 0.32/T; 0.338/T) 1.25/Ty,

Comparing the curves of Figure 2.4 it is noted for a small specified bandwidth, the percentage power
captured in Q?PSK is larger than that in QPSK and MSK, when operating at the same bit rate.
Beyond a bandwidth of 1.2/T}, the asymptotic behavior of QPSK and Q?PSK (also CE-Q?PSK)
became almost identical. The continuous phase version CP-Q?PSK signal (see Figure 2.6), in spite
of the sharper asymptotic spectrum fall-off, captures almost the same power as the conventional
one for a finite bandwidth. For the CP-Q?PSK version the latter is achieved at a 25% decrease in
throughput. For this reason it does not seem feasible to pursue this technique further, with respect
to conventional Q?PSK in terms of energy efficiency.

When the bandwidth utilisation of conventional Q?*PSK is compared to that of 4-CPFSK (depicted
in Figures 2.5 and 2.6), it is noted that these techniques exhibit very similar spectrum utilisation
within a specified bandwidth. Considering the asymptotic behavior, it is clear that the continuous
phase 4-CPFSK definitely provides a better solution in terms of spectral fall-off. However, the
inherent phase trellis as a result of the memory employed, restricts the degrees of freedom provided
in 4-CPFSK. For this reason, the code structure of Q?PSK is better suited for the application of
sophisticated error correction techniques, without having to cope with restrictions on the availability
of the extra dimensions.

Considerations of channel capacity of Q*PSK for bandlimited AWGN channels have shown that a
theoretical gain of 6.0 dB in SNR can be expected when 4D modulation is used in the place of 2D
modulation. The latter observation is in effect an indication of the expected theoretical gain when
coding is employed. That is, changing the modulation from 2D to 4D and exploiting the extra
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dimensions to add coding, a theoretical gain in the order of 6.0 dB will result, without altering
the data throughput. The 4D Q?PSK signalling scheme can thus be used as a basis to implement
coded transmission.

In the following chapter the Q*PSK digital communication system is introduced and discussed in
detail, including the fading channel model and primary system specifications.
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