THE BEHAVIOURAL ECOLOGY OF REINTRODUCED LIONS AND CHEETAHS IN
THE PHINDA RESOURCE RESERVE, KWAZULU-NATAL, SOUTH AFRICA.

by

Luke T.B. Hunter

Thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in the

Faculty of Biological and Agricultural Sciences
University of Pretoria
Pretoria.

September 1998.
To my parents, Tim and Lois for their unfailing encouragement and love, and to my grandmother Dorothy Arthur, whose gift of a toy lion when I was three set me on an inevitable path to Africa.
THE BEHAVIOURAL ECOLOGY OF REINTRODUCED LIONS AND CHEETAHS IN
THE PHINDA RESOURCE RESERVE, KWAZULU-NATAL, SOUTH AFRICA.

by

Luke T.B. Hunter

Supervisor: Prof. J. D. Skinner
Mammal Research Institute
University of Pretoria
Pretoria.

ABSTRACT

An effort to re-establish lions and cheetahs into northern KwaZulu-Natal, South Africa, was studied for 40 months to collect information on the behaviour and ecology of reintroduced felids and to assess the success of such restoration attempts. ‘Soft-release’ methods including a period of captivity prior to release were employed for the release and probably increased project success. All reintroduced lions and cheetahs remained at the release site. Animals generally did not display ‘homing’ behaviour, though three groups of lions and cheetahs showed some evidence of homing for two months following release. Unfamiliar, unrelated animals socialised during the pre-release captivity period often remained together following release for long periods.

Reintroduced lions and cheetahs at Phinda established home ranges with similar characteristics and patterns to that observed in other ecosystems. All individuals which survived the early post-release period remained at Phinda and settled in ranges within the reserve which were largely stable for the duration of the study. Lions (of both sexes) and male cheetahs were territorial whereas female cheetahs showed no signs of establishing territories and used (in some cases) the entire reserve as their home range. The long-term nature of some individual’s ranges suggests that lions and cheetahs are able to establish a home-range following translocation, and therefore, that re-introduction may be a viable method for re-establishing resident felids in areas of their former distribution.

The greatest cause of mortality to reintroduced felids was as a result of human activity, particularly poaching. Inter and intra-specific conflict with other large carnivores was also a
significant factor. Despite mortalities, population characteristics suggested lions and cheetahs are rapid and effective in re-colonising vacant areas. Most lions and cheetahs survived the critical early post-release stage and a minimum of 60% of females of both species survived to reproduce. At least 43 lion cubs and 48 cheetah cubs were born during the study. High rates of cub and sub-adult survival contributed to rapid population growth. Population modelling suggested that low mortality rates for juveniles and sub-adults may be critical for re-establishment.

Re-introduced lions and cheetahs foraged successfully and their post-release survival was not affected by characteristics of food resources. Wildebeest, zebras, nyals and warthogs made up 86% of biomass killed by lions. Wildebeest were clearly the most important species to lions which were killed at three times their availability. Predation pressure on wildebeest resulted in a population decline during the study period, probably due to the lack of predation-free refuges inherent in small, enclosed reserves.

Cheetahs preyed upon reebucks at eight times their availability at Phinda and reebucks underwent a population decline. Nyals and impalas were the other two most important prey species to cheetahs, the former constituting almost 50% of biomass killed by cheetahs. This is the first study of cheetah feeding ecology in woodland habitat and the first to demonstrate that cheetahs can specialise on an ungulate species almost twice as heavy as ‘typical’ prey species from other ecosystems. Female cheetahs showed a pattern of hunting larger prey as litters grew, particularly where a high percentage of cubs survived.

Aside from evidence that predation affected some ungulate populations, the study demonstrated significant behavioural changes by herbivores in response to felid reintroduction. Wildebeest and impalas underwent a 200% increase in vigilance behaviour in the first five months following the release of lions and cheetahs. Wildebeest and impalas in exclusion areas free of reintroduced felids did not show any change in vigilance.

The study suggested that, contrary to most other efforts at large African carnivore translocation, reintroduction may be a viable method for re-population, at least in the short-term. Methodological and management issues which may be important for the longer term success of these types of projects are discussed.
ACKNOWLEDGEMENTS

The attempt to reintroduce large cats at Phinda involved the support, interest and expertise of many dozens of people and I am grateful to everyone who contributed. First, I thank my supervisor, Professor John Skinner who afforded me the opportunity to come to Africa to fulfil a dream and without whose guidance I may never have begun my research on large cats. The directors and staff of Phinda welcomed me from the day I arrived and made me feel at home. In particular, many thanks to Kevin Leo-Smith and Dave Varty for their ambitious plan to return lions and cheetahs to Maputaland and for permitting me to radio-collar and research them. I am especially grateful to Les Carlisle who had the project up and running when I arrived and whose enthusiasm for it and personal support for me has not wavered in the six years I have known him. Thanks also to Les’ wife Lynette for generous hospitality, home-cooked dinners and for ensuring phone calls from Australia always came through. Martin and Danny Rickleton were great friends from the start and among many other things, always ensured Camp Zinave was running smoothly. Colin Bennett, Johnny Raw and Karl Rosenberg were terrific mates in my first camp and provided many a beer and welcome distraction from field work after long stretches of following lions. Thanks also to the many other Phinda people who became friends and a source of support for my work. In particular, thanks to Iona Palmer, Linda Figuera, Lesley-Anne Tucker, Rory and Karin du Plessis, Tony and Dee Adams, Andrew Lewis and, Gavin and Jenny Hulett. A special thanks to Lizzie Allender for many things, but in particular the welcome sound of another Aussie accent in the sandforest. Thanks also to Lance and Lilla Coetzee and to Charles Skinner for taking me under their collective wing when I first arrived in Pretoria.

I am also indebted to Phinda’s rangers and trackers who were an invaluable source of information on lions and cheetahs, and of whom, many became good friends. In particular, I am grateful to John Dini, Andy Ewing, Tim Frayne, Ian Johnson, Neil Mostert, Steve Mulholland, Benson Ngubane, Karl Rosenberg, Jeremiah Skosana, Mark Tennant, Graeme Vercueil, and Carl Walker. To the many others who I haven’t named, your constant feedback and updates helped me present a more complete picture of the Phinda cats and added great value to the study.

Sean Carlisle deserves special thanks for carrying on the research in a prolonged absence of mine, as does Mario Barbafiera whose enthusiasm for finding cats was only hampered by the limitations of my vehicle. Gus van Dyk played a pivotal early role in getting me started at Phinda and has provided terrific technical expertise and friendship along the way. Thanks also to Martin Haupt for his telemetry work, and to Martin and other MRI
technicians Dominic Moss and Mike Hoffman for friendship, beer and conversation during my time in Pretoria. Thanks also to other MRI post-grad students, Tim Jackson, Theo Wassenaar and Andy Taylor for discussion and feedback. A special thanks to Mariana Erank for tea breaks, making sure the place ran smoothly and much more. Hector Dott, Andrew McKenzie, Phillip Richardson, Albert van Jaarsveld, Gus van Dyk and Debbie Wilson all gave valuable feedback during the planning stages of the project.

Hector Dott, Jackie Grimbeek and Elana Mauer were invaluable for advice and guidance on statistical matters. Bernard Nieuwoudt helped me extensively with database management. I am very grateful to Ian Mieklejohn for all his work in introducing me to GIS and for his work on the vegetation map of Phinda. Dean Fairbanks of the CSIR and Albert van Jaarsveld and his GIS team at UP assisted greatly during my later GIS analyses, and special thanks to Albert for allowing me unlimited access to his facilities. In particular, Belinda Reyers was a great help and very generously allowed me the use of her own printer. Thanks also to Barend Erasmus and Heath Hull who tackled some of my GIS problems with good cheer. Many thanks to Janet Casey of Ecological Consulting, Inc in Portland, Oregon for her donation of CAMRIS software and to Philip Hooge of the U.S. Geological Survey for his animal movement software for ArcView and his answers to my questions on its use. I am very grateful to Laurie Marker for allowing me use of her data on wild-caught cheetah weights and for many valuable discussions on cheetah behaviour and ecology. Similarly, thanks to Gay Bradshaw, Paul Funston, Karen Laurenson, Gus Mills, Craig Packer, Alex Sliwa, Rob Slotow and Gus van Dyk for input, comment and encouragement.

I am very grateful to the Schuette family of Bumbeni Game Ranch for permission to work on their property, particularly for my herbivore vigilance studies. Dr Dave Cooper (Natal Parks Board) performed post-mortem examinations of animals and Drs Pete Rogers and Jacques Flammand (then of the Natal Parks Board) were readily available for veterinary work and advice on cats. I am very grateful to Dr Andrew McKenzie who gave freely of his time and expertise to surgically implant a radio-transmitter in a lion. I would also like to thank members of the Biyala Farmer’s Association and representatives from the Mnqobogazi, Nibela and Mkasa Tribal Authorities for their contribution to and confidence in the project. I am very grateful to Peter Jackson of the IUCN Cat Specialist Group and Dr Bill Langbauer of the Pittsburgh Zoo for their interest and support. David Rowe-Rowe, Ian Rushworth and Dr Adrian Armstrong, all of the Natal Parks Board, were very helpful in providing data on past reintroduction attempts of cheetah. This research was funded by Conservation Corporation Africa, the IUCN Cat Specialist Group, a Pittsburgh Zoo Conservation Fund Award and a University of Pretoria Research Assistantship and grants from the Foundation for Research Development and W.H. Craib Memorial Trust.
A few very special people contributed in ways I can never repay. Helen Alevaki
sacrificed much to leave family and friends in Australia and be a warm, tolerant source of
support for my days of fieldwork. Jess Brown and her folks, Stan and Eugenie, welcomed me
as their own and became my Johannesburg surrogate family. Phil and Jo Tiffin, and Rex
Merrifield were unsurpassed providers of pizza, conversation and friendship while I was in
Pretoria. Josie Wentzel has been a constant source of terrific support and so much more
during my write-up, a time without the enjoyable distraction of the fieldwork. She deserves
much more than the thanks I can give her here.

Finally, very special thanks to my family, the Hunters and the Allenders, without
whose support and love I would never have made it this far.
CONTENTS

CHAPTER 1. General introduction ... 1

CHAPTER 2. The study area and methods .. 7
 Location ... 7
 Climate .. 9
 Habitat types ... 11
 Mammalian fauna ... 14
 The reintroductions: Historical framework and methodology 15
 Socio-political considerations ... 15
 Techniques .. 17
 General methodology .. 20
 Immobilisation and telemetering of felids ... 20
 Individual recognition of lions and cheetahs 21
 Observation of felids ... 22
 Statistical analysis of data .. 23

CHAPTER 3. Early post-release movements of reintroduced felids and technical considerations in large carnivore restoration ... 24
 Methods ... 25
 Results .. 27
 Discussion ... 32

CHAPTER 4. Characteristics of home-range establishment and habitat use in reintroduced lions and cheetahs ... 38
 Methods ... 40
 Results .. 42
 Lions ... 42
 Cheetahs ... 55
 Habitat use .. 66
 Discussion ... 69
CHAPTER 5. Population characteristics of reintroduced lions and cheetahs and persistence of reintroduced carnivore populations .. 76
Methods ... 78
Results .. 79
Mortality .. 79
Reproduction .. 82
Population simulation modelling: VORTEX .. 90
Discussion ... 98

CHAPTER 6. Feeding ecology and patterns of predation by reintroduced lions and cheetahs .. 104
Methods ... 106
Results .. 110
General patterns of predation .. 110
Patterns of lion predation .. 114
Patterns of cheetah predation .. 120
Discussion ... 125

CHAPTER 7. The impact of predation on herbivore populations in small reserves........ 134
Methods ... 135
Results .. 137
Discussion ... 149

CHAPTER 8. Vigilance behaviour in ungulates in response to felid reintroduction: the role of predation pressure ... 155
Methods ... 157
Results .. 159
Predation pressure .. 159
Herd size, location in herd and presence of juveniles 162
Discussion ... 166

CHAPTER 9. General conclusions and management implications for large carnivore reintroduction ... 169
Appendix I. Common and scientific names of all species mentioned in the text and list of mammal species occurring at Phinda ... 195

Appendix II. Implanted and external tracking transmitters: a comparison of performance in different habitat types in lions ... 197
 Materials and methods .. 198
 Results ... 199
 Discussion .. 201

Appendix III. A case of cannibalism in male cheetahs ... 204
 Study site and subjects .. 204
 Results ... 204
 Discussion .. 205
LIST OF TABLES

Table 1. Part attempts to reintroduce cheetahs in KwaZulu-Natal province, South Africa .. 15

Table 2. Details of lions and cheetah released, arranged chronologically .. 18

Table 3. Mean ± SD distance (km) of released cats from boma ... 27

Table 4. Mean ± SD distance (km) travelled by released cats ... 28

Table 5. Results of One-Sample Test for the Mean Angle indicating homing behaviour 32

Table 6. Details of monitoring periods for home-range estimations for reintroduced lions and cheetahs at Phinda. ... 43

Table 7. Seasonal home-range estimations for lions ... 44

Table 8. Home range sizes of lionesses when with young cubs (<4mo) .. 51

Table 9. Seasonal home-range estimations for cheetahs ... 56

Table 10. Habitat use by lions .. 67

Table 11. Habitat use by cheetahs .. 68

Table 12. Mean ± SD post-release survival time of reintroduced lions and cheetahs ... 80

Table 13. Minimum survival time of animals still living, translocated or whose fate was uncertain 80

Table 14. Causes of mortality of reintroduced lions and cheetahs ... 81

Table 15. Details of lion and cheetah litters born at Phinda .. 84

Table 16. Annual mortality rates for cubs, subadults and adults used as input parameters for VORTEX ‘base scenario’ simulations ... 92

Table 17. The ‘Base Scenario’ parameters for VORTEX population simulations .. 94

Table 18. VORTEX predictions of the probability of extinction for the Phinda lion and cheetah populations under different mortality and reproduction regimes .. 95

Table 19. Results of Chi-squared analysis comparing occurrence of large vs small kills for three methods of data collection on lion and cheetah feeding ecology ... 110

Table 20. Complete list of all prey species of lions and cheetahs at Phinda, Winter 1992-Winter1995 111

Table 21. Origin of carcasses on which lions and cheetahs fed .. 112

Table 22. Details of unobserved kills for lions and cheetahs .. 113

Table 23. Population and kill ratios of eight common prey species of lions and cheetahs .. 113

Table 24. Lion prey by sex classes .. 114

Table 25. Lion prey by age classes .. 115

Table 26. Lion kills made in each habitat type ... 116

Table 27. Mean ± SD rate of carcase utilisation (kg/min) per individual for increasingly large groups of lions ... 118

Table 28. Cheetah prey by sex classes .. 120

Table 29. Cheetah prey by age classes .. 121

Table 30. Cheetah kills made in each habitat type .. 122

Table 31. Mean ± SD rate of carcase utilisation (kg/min) per individual for increasingly large groups of cheetah females with cubs ... 123
LIST OF FIGURES

Figure 1. Location of Phinda showing proximity to surrounding conservation areas 8
Figure 2. Detail of Phinda showing location of pre-release enclosures 9
Figure 3. Monthly maximum and minimum temperatures .. 10
Figure 4. Monthly rainfall for the study period ... 10
Figure 5. Distribution of vegetation types at Phinda ... 13
Figure 6. Direction of lion movements following release for all-female groups 29
Figure 7. Direction of lion movements following release for all-male groups 30
Figure 8. Direction of movements by cheetahs following release 31

Figure 9. Kernel estimation (50%, 75% and 95% probability) of the home range of the lionesses LF1 and LF2.. 45
Figure 10. Kernel estimation (50%, 75% and 95% probability) of the home range of the lioness LF2.. 46
Figure 11. Kernel estimation (50%, 75% and 95% probability) of the home range of the lionesses LF5, LF6 and LF7.............................. 47
Figure 12. Kernel estimation (50%, 75% and 95% probability) of the home range of the lionesses LF8, LF6 and LF10..................... 48
Figure 13. Kernel estimation (50%, 75% and 95% probability) of the home range of the lions LM3 and LM4... 49
Figure 14. Kernel estimation (50%, 75% and 95% probability) of the home range of the male lions LM11, LM12 and LM13 50
Figure 15. Distribution of location points for the lion males LM11, LM12 and LM13 following the deaths of the males LM3 and LM4.... 52
Figure 16. Distribution of location points for the lionesses LF5, LF6 and LF7 following expulsion from their original home range 53
Figure 17. Distribution of location points for the lioness LF2 following the death of her companion LF1 ... 54
Figure 18. Kernel estimation (50%, 75% and 95% probability) of the home range of the cheetahs CF3 .. 57
Figure 19. Kernel estimation (50%, 75% and 95% probability) of the home range of the cheetah CF5 .. 58
Figure 20. Kernel estimation (50%, 75% and 95% probability) of the home range of the cheetahs CF4 .. 59
Figure 21. Kernel estimation (50%, 75% and 95% probability) of the home range of the cheetahs CF25 .. 60
Figure 22. Kernel estimation (50%, 75% and 95% probability) of the home range of the male cheetahs CM1 and CM2 61
Figure 23. Kernel estimation (50%, 75% and 95% probability) of the home range of the male cheetahs CM7, CM8 and CM9 62
Figure 24. Kernel estimation (50%, 75% and 95% probability) of the home range of the male cheetahs CM23 and CM24 63
Figure 25. Distribution of location points for the male cheetahs CM1 and CM2 following the removal of an internal fence (line) 64
Figure 26. Distribution of location points for the male cheetahs CM23 and CM24 following the deaths of the territorial males CM1 and CM2 65
Figure 58. Seasonal predation rates by lions on giraffe, kudu and reedbuck 148

Figure 59. Rate of looking by impala and wildebeest in low and high predation conditions .. 160

Figure 60. Proportion of time spent looking by impala and wildebeest in low and high predation conditions 161

Figure 61. Implant performance versus collar performance in three habitat types 200