EVALUATION OF RESISTANCE TRAINING EQUIPMENT USING THREE DIMENSIONAL MUSCULOSKELETAL MODELLING FOCUSING ON THE BIOMECHANICAL AND ANTHROPOMETRIC CONSIDERATIONS OF THE END-USER

by

Kim Nolte

Submitted in partial fulfilment of the requirement for the degree

DOCTOR PHILOSOPHIAE

In the

FACULTY OF HUMANITIES
(Department of Biokinetics, Sport and Leisure Sciences)

University of Pretoria

Promoter: Prof. PE Krüger

Pretoria

September 2011

© University of Pretoria
ACKNOWLEDGEMENTS

I would like to express my sincere thanks and gratitude to the following persons and institutions for their guidance, without whose assistance, this study would not have been possible.

Prof. PE Krüger (Department Biokinetics, Sport and Leisure Sciences, University of Pretoria): Who acted as my promoter, for his invaluable guidance and support.

Prof. S Els (Department of Mechanical and Aeronautical Engineering, University of Pretoria): Who acted as my co-promoter, for his guidance and wise input throughout my studies.

ERGONOMICS TECHNOLOGIES (ERGOTECH): For their willingness to allow me to use their facilities and equipment for the modelling process as well as their assistance with my training.

Dr. M Thoresson (ESTEQ Engineering): For his time, guidance and support regarding the MSC software system Adams and its plug-in Lifemodeler™.

Heinrich Nolte: To my very special husband, for his never failing encouragement, support and invaluable assistance throughout my studies. It has been an incredible journey completing our Doctoral studies together.

Yvonne De ‘Ath: My mother’s unconditional love and support in all my endeavours.
ABSTRACT

<table>
<thead>
<tr>
<th>TITLE</th>
<th>Evaluation of resistance training equipment using three dimensional musculoskeletal modelling focusing on the biomechanical and anthropometric considerations of the end-user</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANDIDATE</td>
<td>Kim Nolte</td>
</tr>
<tr>
<td>PROMOTER</td>
<td>Prof PE Krüger</td>
</tr>
<tr>
<td>CO-PROMOTER</td>
<td>Prof PS Els</td>
</tr>
</tbody>
</table>
| DEPARTMENT | Biokinetics, Sports and Leisure Sciences
University of Pretoria |
| DEGREE | Doctor Philosophiae |

The main goal of this study was to evaluate whether three dimensional musculoskeletal modelling (3D) is effective in assessing the safety and efficacy of resistance training equipment. The focus of the evaluation was on the biomechanical and anthropometric considerations of the end-user. 3D musculoskeletal modelling was used to evaluate four pieces of resistance training equipment, namely the seated biceps curl, abdominal crunch, seated row and chest press. Three anthropometric cases were created; these represented a traditional 5th percentile female as well as a 50th and 95th percentile male based on body mass index (BMI). Resistance on the training machines was set at fifty percent of the functional strength one repetition maximum (1RM), for each anthropometric case and piece of exercise equipment two repetitions were performed except for the abdominal crunch model during which four repetitions were simulated. Each piece of equipment presented unique challenges. In three of the four studies (seated biceps curl, seated row and chest press) the default model created by the modelling software was not adequate to solve the forward dynamics simulations and thus adjustments had to be made to the default model.
in order to complete the modelling process. 3D musculoskeletal modelling by means of LifeModeler™ software was able to identify some potential risk for musculoskeletal injury as well as highlight the discrepancies between the anthropometric cases, specifically the accommodation of the 5th percentile female and the machines’ engineered adjustability. 3D musculoskeletal modelling has the potential to indicate shortcomings in resistance training equipment design. Therefore it appears as if 3D musculoskeletal modelling can be used to evaluate resistance training equipment design however the limitations as indicated by this study must be taken into consideration especially when using default models.

KEY WORDS: Resistance training equipment, modelling, LifeModeler™, inverse dynamics, forward dynamics, biomechanics, anthropometric, musculoskeletal injury, safety, efficacy
OPSOMMING

TITEL

Evaluasie van weerstands oefenapparaat deur middel van driedimensionele muskuloskeletale modellering deur te fokus op die biomekaniese en antropometriese oorwegings van die end-gebruiker.

KANDIDAAT

Kim Nolte

PROMOTOR

Prof PE Krüger

MEDEPROMOTOR

Prof PS Els

DEPARTEMENT

Biokinetika, Sport- en Vryetydswetenskappe
Universiteit van Pretoria

GRAAD

Doctor Philosophiae

Die doel van die studie was om die effektiwiteit van driedimensionele (3D) muskuloskeletale modellering te evalueer in terme van die tegniek se vermoë om die veiligheid en doeltreffendheid van weerstands oefenapparaat te evalueer. Die fokus van die evaluasie was op die biomekaniese en antropometriese oorwegings van die end-gebruiker. 3D muskuloskeletale modellering was gebruik in die evaluasie van vier weerstands oefenapparate genaamd die sittende biceps krul, abdominale krul, sittende roei en sittende borsstoot. Drie antropometriese gevalle is geskep, die het ‘n tradisionele 5e persentiel vrou, sowel as ‘n 50ste en 95ste persentiel man voorgestel en was gebasseer op liggaamsmassa indeks waardes. Die eksterne weerstand van die apparaat was bepaal teen vyftig persent van die funsionele krag een-repetisie- maksimum vir elk van die antropometriese gevalle en twee repetisies is uitgevoer behalwe vir die abdominale krul waartydens vier repetisies gesimuleer is. Elke apparaat het unieke uitdagings gestel. In drie van die vier studies (sittende biceps krul, sittende roei en sittende borsstoot) was die standaard model van die sagteware
onvoldoende om die voorwaards dinamiese simulasie op te los en moes aanpassings aan die modelle gemaak word vir suksesvolle simulaties. Die modellerings proses met die Lifemodeler™ sagteware kon potensiële risiko vir muskuloskeletale besering sowel as verskille tussen die verskeie antropometriese gevalle uitwys. Dit was veral opvallend vir die akkomodasie van die 5\(^\text{e}\) persentiel vrou asook betreffende die apparaat se vervaardigde verstelbaarheid. 3D muskuloskeletale modellering beskik oor die vermoë om voorstelle vir verbetering in die ontwerp van weerstands oefenapparaat uit te wys. Dit blyk dus dat 3D muskuloskeletale modellering beslis gebruik kan word vir die evaluasie van weerstands oefenapparaat ontwerp, die beperkings van die studie moet egter in gedagte gehou word, veral wanneer standaard modelle gebruik word.

SLEUTELTERME: Weerstandsoefening apparaat, modellering, Lifemodeler™, omgekeerde dinamika, voorwaardse dinamika, biomekaniese, antropometriese, muskuloskeletale besering, veiligheid, doeltreffendheid
TABLE OF CONTENTS

CHAPTER 1: GENERAL INTRODUCTION
- 1.1 THREE DIMENSIONAL MUSCULOSKELETAL MODELLING 13
- 1.2 PROBLEM FORMULATION 14
- 1.3 GOALS AND OBJECTIVES 15
- 1.4 HYPOTHESIS 15
- 1.5 RESEARCH APPROACH 16
- 1.6 STRUCTURE OF THE THESIS 17
- 1.7 REFERENCES 19

CHAPTER 2: OVERVIEW (RESISTANCE TRAINING)
- 2.1 EXERCISE AND EXERCISE EQUIPMENT 22
- 2.2 RESISTANCE TRAINING 22
- 2.3 CONCLUSION 42
- 2.4 REFERENCES 43

CHAPTER 3: THREE DIMENSIONAL MUSCULOSKELETAL MODELLING OF THE SEATED BICEPS CURL RESISTANCE TRAINING EXERCISE FOCUSING ON THE BIOMECHANICAL AND ANTHROPOMETRIC CONSIDERATIONS OF THE END-USER
- 3.1 ABSTRACT 49
- 3.2 INTRODUCTION 51
- 3.3 METHODS 52
- 3.4 RESULTS 59
- 3.5 DISCUSSION 65
- 3.6 CONCLUSION 75
- 3.7 REFERENCES 76
CHAPTER 4: THREE DIMENSIONAL MUSCULOSKELETAL MODELLING OF THE ABDOMINAL CRUNCH RESISTANCE TRAINING EXERCISE FOCUSING ON THE BIOMECHANICAL AND ANTHROPOMETRIC CONSIDERATIONS OF THE END-USER

4.1 ABSTRACT 82
4.2 INTRODUCTION 84
4.3 METHODS 85
4.4 RESULTS 91
4.5 DISCUSSION 99
4.6 CONCLUSION 106
4.7 REFERENCES 106

CHAPTER 5: THREE DIMENSIONAL MUSCULOSKELETAL MODELLING OF THE SEATED ROW RESISTANCE TRAINING EXERCISE FOCUSING ON THE BIOMECHANICAL AND ANTHROPOMETRIC CONSIDERATIONS OF THE END-USER

5.1 ABSTRACT 111
5.2 INTRODUCTION 113
5.3 METHODS 114
5.4 RESULTS 121
5.5 DISCUSSION 129
5.6 CONCLUSION 134
5.7 REFERENCES 135

CHAPTER 6: THREE DIMENSIONAL MUSCULOSKELETAL MODELLING OF THE CHEST PRESS RESISTANCE TRAINING EXERCISE FOCUSING ON THE BIOMECHANICAL AND ANTHROPOMETRIC CONSIDERATIONS OF THE END-USER

6.1 ABSTRACT 140
6.2 INTRODUCTION 141
LIST OF FIGURES (Chapters 1 and 2)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>An example of a seated biceps curl machine</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Plate from the classical period in Greece shows two athletes using halters</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>Force ((F)) and moment arm ((FA)) of the biceps brachii muscle</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>Contraction of myofibril</td>
<td>31</td>
</tr>
<tr>
<td>2.5</td>
<td>Percentage of injuries at each body location for women and men</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>Example of LifeModeler™ musculoskeletal human model</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>Inverse and forward dynamics</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF TABLES (Chapters 1 and 2)

<table>
<thead>
<tr>
<th>Table 2.1</th>
<th>Data obtained (LifeModeler™)</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.2</td>
<td>LifeModeler™ default model muscles</td>
<td>40</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS (Chapters 1 and 2)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>Three dimensional</td>
</tr>
<tr>
<td>F</td>
<td>Force</td>
</tr>
<tr>
<td>T</td>
<td>Torque</td>
</tr>
<tr>
<td>FA</td>
<td>Force Arm / Moment Arm</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercially off the shelf</td>
</tr>
<tr>
<td>pCSA</td>
<td>Physiological Cross-sectional area</td>
</tr>
<tr>
<td>aCSA</td>
<td>Anatomical Cross-sectional area</td>
</tr>
<tr>
<td>F<sub>max</sub></td>
<td>Maximum force</td>
</tr>
<tr>
<td>M<sub>stress</sub></td>
<td>Maximum tissue stress</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional-integral-differential</td>
</tr>
<tr>
<td>P<sub>error</sub></td>
<td>(Target value – current value) / range of motion</td>
</tr>
<tr>
<td>D<sub>error</sub></td>
<td>First derivative of P<sub>error</sub></td>
</tr>
<tr>
<td>I<sub>error</sub></td>
<td>Time integral of P<sub>error</sub></td>
</tr>
</tbody>
</table>