

Multimetal complexes of Fischer carbenes

by

Daniela Ina Bezuidenhout

Submitted in partial fulfilment of the requirements of the degree

Philosophiae Doctor

In the Faculty of Natural and Agricultural Sciences

University of Pretoria Pretoria

Supervisors:

Professor Simon Lotz Doctor Marilé Landman

March 2010

Declaration

I declare that the thesis, which I hereby submit for the degree Philosophiae Doctor at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

The X-ray structure determinations reported in this thesis were performed by Mr DC Liles at the University of Pretoria.

Results obtained from this study have also been published in: D.I. Bezuidenhout, E. van der Watt, D.C. Liles, M. Landman, S. Lotz, *Organometallics* **2008**, *27*, 2447-2456.

Signature:

Date:

Acknowledgements

I would like to thank the following people for their contributions towards this thesis:

My supervisors, Prof. Simon Lotz and Dr. Marilé Landman, for their guidance, support and friendship. Thank you also for your enthusiasm towards research, and the freedom you have allowed me in this project.

Prof. Dwight A. Sweigart, for the opportunity to work in his laboratories at Brown University, USA, and his guidance in my electrochemical studies.

Mr Dave Liles, who performed the data collections and structure determinations of my single crystal X-ray diffraction results. Your inputs were very valuable, and are much appreciated.

Mr Eric Palmer, who kindly assisted with the recording of the NMR data far beyond the call of duty.

Werner Barnard, for his assistance not only with the measurement and interpretation of the Raman spectra, but for his generous sharing of scientific knowledge in general. Thank you for your unfailing friendship, enthusiasm and endless supply of entertainment throughout all the years! I cannot imagine a more loyal friend and dedicated scientist.

My fellow lab workers: Andrew Olivier, Elisia Swart, Jacorien Coetzee, Belinda van der Westhuizen and Nina van Jaarsveld. At different times in my career, you have suffered, laughed, and have faced many fiery situations together with me. Thank you for all your different contributions.

My parents, Danie and Ina Bezuidenhout, and sister Annalie, who have always believed in me, and provided all the inspiration needed to complete this degree.

Sean, for your love, support and encouragement. I could not have done it without you.

Daniela

Table of Contents

Summary	viii
List of Abbreviations	х
List of Compounds	xv

Chapter 1		Introduction	
1.1	Backg	jround	1
	1.1.1	Historical development of organometallic chemistry	1
	1.1.2	Early development of carbene chemistry	3
	1.1.3	Recent developments of polymetallic carbene complexes	6
1.2	Aim o	f the study	8

Chapter 2 Group VI Transition Metal Carbene Cluster Complexes

2.1	Introduction				
	2.1.1	Background			
	2.1.2	Hetero-atom bonded carbene ligand substituent			
	2.1.3	Carbon-bonded carbene ligand substituent	15		
		2.1.3.1 Ferrocenyl carbene ligand substituent	16		
		2.1.3.2 π -aryl carbene ligand substituent	18		
	2.1.4	Homo- and heteronuclear polymetallic biscarbene complexes	21		
		2.1.4.1 Conjugated bridging biscarbene complexes	22		
		2.1.4.2 Biscarbene complexes by connecting heteroatom			
		substituents	25		
2.2	Result	s and discussion	27		
	2.2.1	Focus of this study	27		
2.3	Synthesis				
	2.3.1	Synthesis of ferrocenyl mono- and biscarbene Cr and Mo			
		complexes	31		
	2.3.2	Synthesis of tungsten carbene complexes			
	2.3.3	Synthesis of mixed heteronuclear bridging biscarbene complex			
	2.3.4	Synthesis of π -aryl-Cr(CO) ₃ titanoxycarbene complexes of			
		chromium	37		

2.4	Spectroscopic characterization				
	2.4.1	¹ H NMR spectroscopy			
	2.4.2	¹³ C NMR spectroscopy	47		
	2.4.3	IR spectroscopy	51		
	2.4.4 Mass spectrometry				
	2.4.5 Single crystal X-ray crystallography				
		2.4.5.1 Molecular structures	59		
		2.4.5.2 Crystal packing	70		
2.5	Concluding remarks				

Chapter 3 Group VII Transition Metal Carbene Cluster Complexes

3.1	Introduction					
	3.1.1	Background				
	3.1.2	Monomanganese carbene complexes				
	3.1.3	π-arene substituted carbene complexes				
	3.1.4	Dirhenium carbene complexes	84			
	3.1.5	Axial or equatorial carbene ligands of nonacarbonyl dimetal				
		complexes	85			
	3.1.6	Different reactivities of manganese and rhenium complexes	87			
	3.1.7	Hydrido-acyl and hydroxycarbene transition metal complexes	90			
3.2	Result	Results and discussion				
	3.2.1	Focus of this study	95			
3.3	Synthesis					
	3.3.1	Synthesis of cyclopentadienyl manganese carbene complexes	98			
	3.3.2	Synthesis of dirhenium ethoxycarbene complexes	99			
	3.3.3	Synthesis of dirhenium cluster carbene cluster complexes	104			
3.4	Spectroscopic investigation					
	3.4.1	¹ H NMR spectroscopy				
	3.4.2	¹³ C NMR spectroscopy				
	3.4.3	IR spectroscopy				
	3.4.4	Mass spectrometry				
	3.4.5	Single crystal X-ray crystallography	137			
		3.4.5.1 Molecular structures	137			
		3.4.5.2 Crystal packing	147			
3.5	Concl	uding remarks	150			

Chapter 4		Investigation of substituent effect on carbene ligands		
4.1	Introduction			
	4.1.1	Background	153	
	4.1.2	Theoretical bonding model of carbene ligands	155	
4.2	Molecu	ılar modelling	157	
	4.2.1	The theoretical method	157	
	4.2.2	Molecular modelling of transition metal complexes	158	
	4.2.3	Modelling of Fischer carbene complexes	159	
	4.2.4	Substituent effect	162	
4.3	Electro	ochemical approach	166	
	4.3.1	Anodic electrochemical behaviour of Fischer carbene complexes	167	
	4.3.2	Cathodic behaviour of Fischer carbene complexes	170	
4.4	4.4 Results and discussion			
	4.4.1	Focus of this study	173	
4.5	Theore	etical investigation of substituent effect	175	
	4.5.1	Computational details	175	
	4.5.2	Theoretical results	177	
	4.5.3	Vibrational spectroscopy results	181	
	4.5.4	Molecular orbital analysis	185	
	4.5.5	Correlation between UV/Vis spectroscopy and MO analysis	193	
	4.5.6	Natural bond orbital analysis	197	
4.6	Electrochemical investigation of substituent effect			
	4.6.1	Cyclic voltammetric studies	202	
4.7	Conclu	iding remarks	207	
	4.7.1	Summary	207	
	4.7.2	Future work	209	

Chapter 5 Experimental

5.1	Standard operating procedure 210			
5.2	Characterization techniques 2			
	5.2.1	Nuclear magnetic resonance spectroscopy	210	
	5.2.2	Infrared spectroscopy	211	
	5.2.3	Raman spectroscopy	211	
	5.2.4	Fast atom bombardment mass spectrometry	212	

	5.2.5	X-ray cr	rystallography	212
	ole spectroscopy	213		
5.3	Electro	ochemist	ry	213
5.4	Prepa	ration of	compounds	214
	5.4.1	Prepara	tion of starting material compounds	214
		5.4.1.1	Triethyl oxonium tetrafluoroborate	214
		5.4.1.2	Chloromercury ferrocene	214
		5.4.1.3	Bromoferrocene	215
		5.4.1.4	lodoferrocene	215
		5.4.1.5	Trisammine tricarbonyl chromium	215
		5.4.1.6	η^5 -thiophene chromium tricarbonyl	216
		5.4.1.7	η^6 -benzene chromium tricarbonyl	216
	5.4.2	Prepara	tion of organometallic complexes	217
		5.4.2.1	General carbene preparation with direct lithiation of	
			ferrocene in the presence of TMEDA	217
		5.4.2.2	General carbene complex preparation with aryl lithiation	
			at low temperatures	219
		5.4.2.3	Preparation of mixed heteronuclear carbene complex	219
5.5	Analyt	ical data		221

Appendices

Attached compact disk

- Appendix 1 Crystallographic data of Complex 3
- Appendix 2 Crystallographic data of Complex 5
- Appendix 3 Crystallographic data of Complex 6
- Appendix 4 Crystallographic data of Complex 8
- Appendix 5 Crystallographic data of Complex **12**
- Appendix 6 Crystallographic data of Complex **13**
- Appendix 7 Crystallographic data of Complex 23
- Appendix 8 Crystallographic data of Complex 27
- Appendix 9 Crystallographic data of Complex 28
- Appendix 10 Crystallographic data of Complex 33

Summary

Multimetal complexes of Fischer carbenes

by

Daniela Ina Bezuidenhout

Supervisor: Prof S Lotz Co-supervisor: Dr M Landman Submitted in partial fulfilment of the requirements for the degree Philosophiae Doctor, Department of Chemistry, University of Pretoria

Fischer carbene complexes of the Group VI transition metals (Cr, Mo and W) containing at least two or three different transition metal substituents, all in electronic contact with the carbene carbon atom, were synthesized and studied both in solution and in the solid state. For the complexes of the type $[M(CO)_5{C(OR)R'}]$, the substituents chosen included (hetero)aromatic (benzene or thiophene) rings π -bonded to a chromium tricarbonyl fragment or ferrocene as the R'-substituent, while the OR-substituent was systematically varied between an ethoxy or a titanoxy group, to yield the complexes **1** (M = Cr, R = Et, R' = Fc), **2** (M = W, R = Et, R' = Fc), **5** (M = Cr, R = TiCp_2Cl, R' = Fc), **6** (M = W, R = TiCp_2Cl, R' = Fc), **7** (M = Mo, R = TiCp_2Cl, R' = Fc), **12** (M = Cr, R = TiCp_2Cl, R' = 2-thienyl) and **13** (M = Cr, R = TiCp_2Cl, R' = [Cr(CO)_3(\eta^6-phenyl)]).

Direct lithiation of the ferrocene with *n*-BuLi/TMEDA at elevated temperatures, followed by the Fischer method of carbene preparation, also resulted, in most cases, in the formation of the novel biscarbene complexes with bridging ferrocen-1,1'-diyl carbene ligands $[\mu$ -Fe{C₅H₄C(OEt)M(CO)₅}₂] (**3**: M = Cr, **4**: M = W) or the unusual bimetallacyclic bridged biscarbene complexes $[{\mu-TiCp_2O_2-O,O'}]{\mu-Fe(C_5H_4)_2-C,C'}{CM(CO)_5}_2]$ (**8**: M = Cr, **9**: M = W, **10**: M = Mo). It was attempted to prepare the mixed heteronuclear biscarbene complex **11** [W(CO)₅C{ μ -TiCp₂O₂-O,O'}(μ -Fe(C₅H₄)₂-C,C'}CCr(CO)₅], however the complex could not be fully characterized.

The investigation was expanded to include Group VII transition metals Mn and Re, and using the same methodology, the manganese complexes isolated included [MnCp(CO)₂{C(OR)Fc}] (22: R Et, **24**: R $TiCp_2CI$), = = 23 [µ- $Fe{C_5H_4C(OEt)MnCp(CO)_2}_2$ 25 $[{\mu-TiCp_2O_2-O,O'}]{\mu-Fe(C_5H_4)_2-}$ and C,C'[CMnCp(CO)₂]₂]. The different reactivity of the binary dirhenium decacarbonyl precursor complex, compared to that of the Group VI complexes, resulted in the formation of a range of complexes. The target compounds [Re₂(CO)₉{C(OR)Fc}] (26: R = Et, 31: R = TiCp₂Cl), 27 [μ -Fe{C₅H₄C(OEt)Re₂(CO)₉]₂] and 33 [{ μ - $TiCp_2O_2-O_1O_1^{+}{\mu-Fe(C_5H_4)_2-C_1O_1^{+}[CRe_2(CO)_9]_2}$ were isolated displaying a variety of different geometric isomers. In addition, acyl (30) and aldehyde (32) decomposition products, as well as hydrido (29), and hydrido acyl hydroxycarbene (34) complexes and the unique dichloro-bridged biscarbene complex (28) were also characterized. Most of these complexes displayed Re-Re bond breaking, and two probable mechanisms, either radical or ionic, were proposed involving either hydrogen transfer or protonation followed by hydrolysis.

Finally, the structural features and their relevance to bonding in the carbene cluster compounds of the Group VI transition metals were investigated as they represent indicators of possible reactivity sites in multimetal carbene assemblies. The possibility of using DFT calculations to quantify the effect of metal-containing substituents on the carbene ligands was tested and correlated with experimental parameters by employing methods such as vibrational spectroscopy, molecular orbital analysis, and cyclic voltammetry. The best results were obtained from the cyclic voltammetric studies, where the localized metal centre's oxidation potential correlated to both the calculated HOMO energy, and the effect of both the heteroatom substituent and the (hetero)arene substituent, as well as different combinations of the above.

List of Compounds

 $\label{eq:product} \textbf{9} \quad [\{\mu\text{-}TiCp_2O_2\text{-}O,O'\}\{\mu\text{-}Fe(C_5H_4)_2\text{-}C,C'\}\{CW(CO)_5\}_2]$

10 [{ μ -TiCp₂O₂-O,O'}{ μ -Fe(C₅H₄)₂-C,C'}{CMo(CO)₅}₂]

11 $[W(CO)_5C{\mu-TiCp_2O_2-O,O'}{\mu-Fe(C_5H_4)_2-C,C'}CCr(CO)_5]$

13 $[Cr(CO)_5 \{C(OTiCp_2CI)(\eta^1:\eta^6-C_6H_5)Cr(CO)_3]$

12 $[Cr(CO)_5 \{C(OTiCp_2CI)(C_4H_3S)]$

19 $[W(CO)_5 \{C(OEt)(\eta^1:\eta^6-C_8H_5S)Cr(CO)_3]$

OEt

CO ,co

15 $[W(CO)_5 \{C(OEt)(C_8H_5S)]$

ċο

17 [W(CO)₅{C(OTiCp₂Cl)(C₈H₅S)]

25 $[{\mu-TiCp_2O_2-O,O'}{\mu-Fe(C_5H_4)_2-C,C'}[CMnCp(CO)_2]_2]$

27 $eq, eq-[\mu-Fe{C_5H_4C(OEt)Re_2(CO)_9}_2]$

31 ax-[Re₂(CO)₉{C(OTiCp₂Cl)Fc}]

32 eq-[Re₂(CO)₉{C(OTiCp₂Cl)(Fc'CHO)}]

33 *ax, eq*-[{μ-TiCp₂O₂-O,O'}{μ-Fe(C₅H₄)₂-C,C'}{CRe₂(CO)₉}₂]

List of Abbreviations

ax	:	axial
Bu	:	butyl
br	:	broad (IR, NMR)
BT	:	benzothienyl
Ср	:	η^5 -C ₅ H ₅
d	:	doublet
DCM	:	dichloromethane
DEE	:	diethyl ether
dd	:	doublet of doublets
ddd	:	doublet of doublets of doublets
DFT	:	density functional theory
Et	:	ethyl
eq	:	equatorial
eq	:	equivalent
Fc	:	ferrocenyl
Fc'	:	ferrocen-1,1'-diyl
η ⁿ	:	hapticity of C _n H _n
НОМО	:	highest occupied molecular orbital
IR	:	infrared spectroscopy
J	:	coupling constant
LUMO	:	lowest unoccupied molecular orbital
m	:	medium (IR)
Me	:	methyl
MLCT	:	metal-to-ligand charge transfer
MO	:	molecular orbital
MS	:	mass spectrometry
NBO	:	natural bond orbital
NMR	:	nuclear magnetic resonance spectroscopy

n.o.	:	not observed
Ph	:	phenyl
R	:	alkyl group
RT	:	room temperature
S	:	singlet (NMR)
S	:	strong (IR)
т	:	thienyl
THF	:	tetrahydrofuran
TMEDA	:	N, N, N'. N'-tetramethylethylenediamine
UV	:	ultraviolet
Vis	:	visible
VS	:	very strong (IR)
vw	:	very weak (IR)
W	:	weak (IR)
Å	:	angstrom
δ	:	chemical shift
λ	:	wavelength

I think the ways by which people gain knowledge are almost as wonderful as the nature of the things themselves

> Johannes Kepler German Astronomer (1571 – 1630)