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CHAPTER 1 

 

General introduction 

 

Citrus is the most important fruit crop in the world in terms of production, with 122 million 

metric tonnes (Mt) produced in 2008 (FAO, 2010a).  Citrus is grown in more than 100 

countries all over the world in tropical and subtropical areas, located within 40° north and 

south of the equator (Davies & Albrigo, 1994; Spiegel-Roy & Goldschmidt, 1996).  Major 

citrus producing countries include China, Brazil, United States of America (USA), Mexico, 

India, Spain, Italy, Iran, Egypt and Turkey (FAO, 2010a). South Africa (SA) is the 12th 

largest producer of citrus world-wide with 2.2 Mt during 2008, consisting of sweet orange 

(Citrus sinensis Osbeck) (66% of production), grapefruit (Citrus paradisi Macf.) (17%), 

lemon (Citrus limon (L.) Burn. f.) and lime (Citrus aurantifolia Christm.) (11%) and 

mandarin (Citrus deliciosa Ten., Citrus reticulata Blanco and Citrus unshiu Marc.) (6%) 

(FAO, 2010a).   

 

Citrus production in SA is largely limited to irrigation areas and takes place in Limpopo (16 

255 ha), Mpumalanga (11 681 ha), Eastern Cape (12 923 ha), KwaZulu-Natal (4 004 ha), 

Western Cape (9 524 ha) and Northern Cape Province (639 ha) (Burger, 2009).  SA’s 

citrus industry are export-oriented with total exports averaging at about 65% of total 

production, while processing and local consumption are at about 25% and 10%, 

respectively (Siphugu, 2009).  In 2007, SA was world-wide the second largest exporter of 

fresh citrus, after Spain, at 1.4 Mt (FAO, 2010b).  Although production is relatively small 

compared to other countries, the citrus industry significantly contributes to the economy.  

In the 2007/2008 season, income from citrus showed the biggest increase of 35% from 

the previous year and amounted to R5 013 million (Burger, 2009).   

 

The genus Citrus L. belongs to the subfamily Aurantiodeae, within the family Rutaceae.  

The family contains about 150 genera and 1 600 species but true citrus and related 

genera all belong to Aurantioideae (Spiegel-Roy & Goldschmidt, 1996; Mukhopadhyay, 

2004).  The taxonomy of Citrus are complex and confusing, and complicated by several 

factors such as a long history of cultivation of over 4000 years, a high frequency of bud 

mutation, ability to reproduce asexually by seed through nucellar embryony, sexual 

compatibility between Citrus and related genera and the ability of species to hybridise 

naturally (Barrett & Rhodes, 1976; Federici et al., 1998; Nicolosi et al., 2000; Moore, 

2001).  Currently two different classification systems are used for citrus taxonomy, the 
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system of Swingle (1943, 1967) recognising 16 species and that of Tanaka (1954, 1961) 

recognising 162 species.   

 

Hybridisation has played an important role in the evolution of many, or even most, Citrus 

species. Many of the named species are clonally propagated hybrids and there is genetic 

evidence that even some wild, true-breeding species are of hybrid origin (Nicolosi et al., 

2000; Moore, 2001; Nicolosi, 2007).  Phylogenetic analyses, supported by biochemical 

and molecular markers, suggested that there are only three true species within the 

cultivated Citrus, i.e. Citrus medica L. (citron), Citrus reticulata Blanco (mandarin) and 

Citrus grandis (L.) Osb. (pummelo) (Scora, 1975; Barrett & Rhodes, 1976; Federici et al., 

1998; Nicolosi et al., 2000; Moore, 2001; Barkley et al., 2006; Nicolosi, 2007).   

 

Spread of citrus from its origin in the tropical and subtropical regions of Asia and the 

Malay Archipelago to other parts of the world occurred mainly through migration and trade 

(Reuter et al., 1967).  The most ancient Citrus species, citron, is probably native to India, 

while pummelo originated in Malaysia, Indonesia and Vietnam, and mandarin in southern 

China and Japan (Mukhopadhyay, 2004; Nicolosi, 2007).  Citrus appears to have spread 

relatively slowly over thousands of years south-east through the Philippines and the 

Pacific Islands and was subsequently introduced to Europe around 310 B.C., America in 

1493, southern Africa in 1654 and Australia in 1788 (Reuter et al., 1967; Spurling, 1969).  

Worldwide trade in citrus fruit did not appear until the 1800’s and trade in orange juice 

developed as late as 1940 (Reuter et al., 1967).   

 

Today there are five major citrus groups that are world-wide of commercial significance, 

viz. grapefruit, lemon, lime, mandarin and sweet orange (Davies & Albrigo, 1994; FAO, 

2010a, b).  Various cultivars within each species have developed, which differ in fruit size, 

shape, seed content, quality and season of maturity.  Sweet orange is the most widely 

distributed and produced citrus crop in the world, consisting of 55.5% of world production 

in 2008, followed by mandarin (23.4%), lemon and lime (11.0%) and grapefruit (4.1%) 

(FAO, 2010a). 

 

As with most agricultural crops, many factors are known to limit the production and quality 

of citrus.  Major constraints to citrus production involve management inefficiencies, 

susceptibility to pests and diseases and environmental challenges.  Citrus diseases can 

have a profound impact on citrus production by not only leading to increasing production 

costs, but also resulting in large losses of harvestable and/or marketable crop.  One of 

these diseases that has a profound influence on the marketability of citrus fruit, is citrus 

 
 
 



 3

black spot (CBS) caused by Guignardia citricarpa (Kiely) (anamorph Phyllosticta citricarpa 

(McAlpine) Aa).   

 

G. citricarpa occurs for a large part of its life cycle in an endophytic state and has been 

extensively isolated from healthy citrus tissue (Azevedo et al., 2000; Araújo et al., 2001; 

Baayen et al., 2002; Glienke-Blanco et al., 2002; Durán et al., 2005; Baldassari et al., 

2008).  The pathogen can cause a variety of cosmetic and superficial lesions on citrus 

fruit, leaves and twigs under favourable conditions.  Single lesions remain small and do 

not negatively influence the quality of fruit but symptomatic fruit are unacceptable to the 

fresh and export markets (Kotzé, 1981).   

 

Almost all commercial citrus species are susceptible to CBS, and lemons are the most 

susceptible.  When CBS is found in a new area, it is usually first observed on lemons 

before other citrus is affected (Kiely, 1948; Kotzé, 1981). Sour orange (Citrus aurantium 

L.) and its hybrids, rough lemon (Citrus jambhiri Lish.) and Tahiti acid lime (Citrus latifolia 

Tan.) are insensitive to the pathogen (Wager, 1952; Kotzé, 1981; Baldassari et al., 2008). 

 

CBS originated in South East Asia (Smith et al., 1997), but the symptoms were first 

described from infected sweet orange fruit by Benson (1895) in Australia.  Today the 

disease is widespread and occurs in Argentina, Australia, Bhutan, Brazil, China, Ghana, 

India, Indonesia, Kenya, Mozambique, Nigeria, Philippines, SA, Swaziland, Taiwan, USA, 

Uruguay, West Indies, Zambia and Zimbabwe (European Union, 1998; Baayen et al., 

2002; Paul et al., 2005; Lemon & McNally, 2010; Schubert et al., 2010).  The global 

distribution of the disease appears to partially follow citrus production patterns but is 

restricted by specific climatic parameters, of which cold wet conditions during winter were 

indicated as the main restrictive parameters (Paul et al., 2005; Yonow & Hattingh, 2009).  

CBS has not been recorded in citrus producing Mediterranean and European countries, or 

in Chile, Japan and New Zealand (European Union, 1998; Baayen et al., 2002; Paul et al., 

2005; Everett & Rees-George, 2006).  

 

The disease has resulted in barriers to trade, due to the potential phytosanitary risk 

associated with the export of fruit from CBS positive production areas to particularly the 

European Union (EU) and USA (European Union, 1998; Baayen et al., 2002).  Although 

CBS has recently been recorded in Florida, USA, trade restrictions regarding imports to 

the USA still apply (Lemon & McNally, 2010).  In addition to the phytosanitary trade 

barriers, economic losses attributed to CBS includes premature fruit drop in heavy 

infected orchards, lower market value of symptomatic fruit and higher production costs 
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due to extensive control programmes (Wager, 1952; Kellerman & Kotzé, 1973, 1977).  If 

not controlled, CBS may cause total loss of the marketable crop in some areas, and 

without effective CBS control programmes, citrus production will be unfeasible (Kotzé, 

1981; Smith, 1996).  The extent of post-harvest losses are not always apparent as latently 

infected, asymptomatic export fruit may develop CBS symptoms while in transit and may 

be rejected upon arrival (Kiely, 1948; Loest, 1958; Smith, 1962; Brodrick, 1969).  Whole 

consignments of fruit may be rejected at packinghouses or ports if, during inspection, they 

are found to contain affected fruit (Bonants et al., 2003).  Consequently, CBS has a great 

impact on global trade of citrus, and is of great concern to affected growers.   

 

Phytosanitary barriers to trade play a vital role in protecting a country from introduction of 

alien species by restricting the movement of plant material world-wide (European Union, 

1998; Baayen et al., 2002).  However, countries may not impose unnecessary restrictions 

on traded commodities and restrictions can only be imposed if based on scientifically 

justifiable principles (WTO, 1993).  Ideally, the potential risks of introduction and 

establishment of a pathogen or pest into a new geographical location should be 

determined through a Pest Risk Assessment (PRA) that is supported by scientific 

research (IPPC, 1996; Rafoss, 2003).  In PRA studies the life cycle, host specificity, and 

current and potential geographical distribution of the organism is considered (McKenney 

et al., 2003).  If findings suggest that the risk of introduction is very low, phytosanitary 

measures may be removed in part or all together.   

 

A PRA on the potential risk of CBS introduction into European countries through 

commercial citrus fruit exports were presented by SA to the European Commission in 

2000 in a request to amend the current phytosanitary regulations (Hattingh et al., 2000).  

The PRA suggested that the risk of introducing CBS based on the aetiology of the 

pathogen and epidemiology of the disease is very low.  In response, the European 

Commission stated that there is not enough scientific evidence to support a final decision 

to amend current phytosanitary regulations (European Union, 2001).  More research was 

then required on various epidemiological aspects of the disease and in particular on the 

risk of infected fruit as inoculum source for CBS free areas.  This study was designed to 

address this question as well as other epidemiological aspects of CBS that needed 

clarification. 

 

The main aim of this study was to further elucidate some of the epidemiology of CBS, 

including inoculum production on infected fruit and leaf litter, susceptibility of citrus leaves 
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and leaf litter to infection, detection and monitoring methods as well as non-chemical 

control.  

 

The approach was to: 

1. review our current knowledge of the pathogen and disease (Chapter 2); 

2. evaluate the likelihood of infection of leaf litter by symptomatic fruit (Chapter 3); 

3. evaluate susceptibility of citrus leaves to the CBS pathogen from emergence to 

fully developed (Chapter 4); 

4. evaluate ascospore production on leaf litter (Chapter 5); 

5. develop and standardise a method to detect the pathogen in symptomless leaves 

(Chapter 6); 

6. evaluate effect of leaf litter management on inoculum levels in a commercial 

orchard (Chapter 7). 

 

A summary of the conclusions is presented in Chapter 8. 
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CHAPTER 2 

 

Review of Guignardia citricarpa Kiely, the causal agent of citrus black spot 

 

2.1 The pathogen, Guignardia citricarpa 

2.1.1 Origin and distribution of Guignardia citricarpa 

Guignardia citricarpa Kiely originated collectively with its host, Citrus L., from South East 

Asia (Smith et al., 1997).  The asexual form of the fungus was first described by McAlpine 

in 1899 as Phoma citricarpa McAlpine from symptomatic citrus fruit in Australia.  Since 

then it had two name changes and Phyllosticta citricarpa (McAlpine) Aa is currently the 

accepted name (Van der Aa, 1973; Van der Aa & Vanev, 2002).  The sexual form was 

described by Kiely (1948b) as G. citricarpa from citrus leaf litter in Australia.  The 

spermatial state or synanamorph is a Leptodothiorella and the species has not been 

described (Van der Aa, 1973; Baayen et al., 2002).  

 

Today, the citrus pathogen is widespread and occurs in Argentina, Australia, Bhutan, 

Brazil, China, Ghana, India, Indonesia, Kenya, Mozambique, Nigeria, Philippines, South 

Africa (SA), Swaziland, Taiwan, United States of America (USA), Uruguay, West Indies, 

Zambia and Zimbabwe (European Union, 1998; Baayen et al., 2002; Paul et al., 2005; 

Lemon & McNally, 2010; Schubert et al., 2010).  G. citricarpa has not been recorded in 

Mediterranean and European countries, or in Chile, Japan and New Zealand (European 

Union, 1998; Baayen et al., 2002; Paul et al., 2005; Everett & Rees-George, 2006a).  

 

2.1.2 Guignardia species on citrus 

There are two main morphologically similar Guignardia species occurring on Citrus, G. 

citricarpa, causing black spot or symptomless infections in Citrus, and Guignardia 

mangiferae A.J. Roy, non-pathogenic to Citrus, causing only symptomless infections that 

remains latent (Meyer et al., 2001; Baayen et al., 2002; Bonants et al., 2003).  The 

endophytic nature of the fungi on citrus caused confusion in the past, since all isolates of 

Guignardia obtained from Citrus was considered to be the citrus pathogen, G. citricarpa.  

The latent or endophytic nature of G. citricarpa was first recognised by Cobb (1897), and 

the pathogen has ubiquitously been isolated from healthy citrus tissue (McOnie, 1964a, d; 

Araújo et al., 2001; Glienke-Blanco et al., 2002; Bonants et al., 2003; Baldassari et al., 

2008).   
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Both species of Guignardia may simultaneously colonise the same citrus tissue, being 

either symptomatic or symptomless leaves, twigs or fruit (McOnie, 1964a, d; Baayen et 

al., 2002; Bonants et al., 2003; Baldassari et al., 2006) and have been reported to coexist 

in a single black spot lesion (Baldassari et al., 2008).  Furthermore both species have 

been reported from cultivars not susceptible to CBS, including Seville sour orange (Citrus 

aurantium L.) and Tahiti acid lime (Citrus latifolia Tan.) (McOnie, 1964d; Baldassari et al., 

2008), contributing further to the uncertainty surrounding the identity of the pathogen for 

so many years. 

 

Apart from pathogenicity, these species differ in culture characteristics and host range.  

Isolates of G. citricarpa can be distinguished from G. mangiferae by a combination of 

several characteristics (Table 2.1), although none of the characteristics on its own was 

found to separate both species unambiguously (Baayen et al., 2002).  One of the more 

useful characteristics is the yellow pigment production at the edge of colonies on Oats 

agar (OA).  Only isolates of G. citricarpa produce a yellow pigment on OA and it is 

reported to be a consistent trait in G. citricarpa isolates from various citrus materials 

(Baayen et al., 2002; Baldassari et al., 2008).  However, Wulandari et al. (2009) reported 

three isolates of G. mangiferae producing yellow pigment on OA.  Also, sporulation is 

required for confirmation as other fungi may resemble G. citricarpa while still sterile.   

 

Another important characteristic is the production of spores in culture and although the 

feature is consistent in fresh isolates, there are numerous conflicting reports.  Isolates 

from G. citricarpa never produces ascospores in culture, irrespective of what growth 

media are used, and infertile pseudothecia has been reported to occur rarely (McOnie, 

1964b, d; Korf, 1998; Baayen et al., 2002; Baldassari et al., 2008).  Isolates of G. 

mangiferae produces both pycnidiospores and ascospores in culture, although not all 

isolates formed fertile pseudothecia (Kiely, 1948b; Baayen et al., 2002; Baldassari et al., 

2008).  All reports on isolates of G. citricarpa producing ascospores in culture (Frean, 

1964; Brodrick, 1969; Wager, 1952) are believed to be erroneous.  Results of Lemir et al. 

(2000), who claimed to have produced pseudothecia of G. citricarpa in culture, could not 

be repeated (Baayen et al., 2002; Baldassari et al., 2008; M. Truter, unpublished data). 

 

Molecular studies on Guignardia isolates from Citrus and other hosts indicated that G. 

citricarpa could clearly distinguished morphological similar isolates as a separate species 

(Meyer et al., 2001; Baayen et al., 2002; Wulandari et al., 2009).  Meyer et al. (2001) 
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Table 2.1.  Characteristics differing between Guignardia citricarpa and Guignardia mangiferae 

Characteristic Guignardia citricarpa Guignardia mangiferae Reference 

Growth rate in 

culture 

Slow growing, ca. 25-30 mm in 7 days Fast growing, ca. ≥ 40 mm in 7 days McOnie, 1964d; Baayen et al., 

2002 

    

Colony colour Dark brown with a wider translucent outer zone 

and lobate margin 

Dark brown, although darker than G. 

citricarpa; margin entire 

McOnie, 1964d; Baayen et al., 

2002; Baldassari et al., 2008 
    

Yellow pigment on 

Oats agar 

Present Absent Baayen et al., 2002; Baldassari 

et al., 2008 

    

Sporulation in 

culture 

Produce pycnidia and pycnidiospores and 

rarely infertile pseudothecia (never 

ascospores) 

Produce both pycnidia with pycnidiospores 

and pseudothecia with ascospores 

McOnie, 1964d; Kotzé, 1963; 

Baayen et al., 2002; Baldassari 

et al., 2008 

    

Symptoms  Spots on fruit, leaves and twigs of citrus only Small spots in guava and mango Baayen et al., 2002; Baldassari 

et al., 2008 
    

Host range Citrus, symptomatic and symptomless material  Endophytic in all woody plants, including 

Citrus 

Baayen et al., 2002 

    

Distribution Argentina, Australia, Bhutan, Brazil, China, 

Ghana, India, Indonesia, Kenya, Mozambique, 

Nigeria, Philippines, South Africa, Swaziland, 

Taiwan, United States of America, Uruguay, 

West Indies, Zambia and Zimbabwe  

World-wide  European Union, 1998; Baayen 

et al., 2002; Paul et al., 2005; 

Lemon & McNally, 2010 
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used restriction enzyme digestion fingerprints of the polymerase chain reaction (PCR) 

product of a portion of the internal spacer region (ITS) to indicate the two species, while 

Baayen et al. (2002) used ITS sequence analysis and amplified fragment length 

polymorphic fingerprint patterns.  These and other molecular studies on Guignardia 

isolates resulted in development of species-specific PCR primers that provided fast, 

accurate and reliable techniques to distinguish and detect the species without reservation 

(Meyer et al., 2001; Baayen et al., 2002; Bonants et al., 2003; Meyer et al., 2006; Everett 

& Rees-George, 2006b; Peres et al., 2007; Van Gent-Pelzer et al., 2007; Stringari et al., 

2009).   

 

It has been suggested that a third Phyllosticta species is associated with Citrus, but only 

as symptomless infections (Van der Aa & Vanev, 2002; Baayen et al., 2002).  Stringari et 

al. (2009) recently indicated that isolates from symptomless C. limon in Brazil belonged to 

Phyllosticta spinarum (Died.) Nag Raj & M. Morelet based on sequence data.  Wulandari 

et al. (2009) also referred to one of these isolates from Brazil, and subported that it could 

be P. spinarum.  Besides Possiede et al. (2009) referring to the same P. spinarum isolates 

on citrus as Stringari et al. (2009), no further record(s) of this fungus on citrus are known.   

 

A fourth Phyllosticta species, Phyllosticta citriasiana Wulandari, Crous & Gruyter, has 

recently been described from pummelo, Citrus maxima Merr., causing citrus tan spot 

(Wulandari et al., 2009).  The teleomorph was indicated as unknown.  All isolates from the 

newly described species were obtained from spotted fruit of C. maxima from China, 

Thailand and Vietnam (Wulandari et al., 2009).  Fruit symptoms are similar to those 

produced by G. citricarpa, consisting of shallow lesions with a small central grey to tan 

crater usually with a dark brown rim, 3-10 mm in diameter (Wulandari et al., 2009).  P. 

citriasiana can be distinguished from G. mangiferae by having smaller conidia with a 

narrower mucoid sheath, and from P. citricarpa by having larger conidia, longer conidial 

appendages and not producing any diffuse yellow pigment when cultivated on OA 

(Wulandari et al., 2009).  In culture, colonies of P. citriasiana are also darker shades of 

grey and black on OA, malt extract agar, potato-dextrose agar and cornmeal agar than 

observed in the other two species (Wulandari et al., 2009).   

 

2.1.3 Morphology of Guignardia citricarpa 

Pseudothecia are produced solitary (125-135 µm in diameter) or in groups of two (220-

240 µm) and three (340-360 µm).  Pseudothecial wall are 20-22 µm thick, carbonaceous 

dark brown by transmitted light and globose.  Pseudothecia are sub-epidermal, finally 

erumpent, no stroma present nor distinct beak, but an ostiole of 14-16 µm in diameter are 

 
 
 



 14

present at maturity.  Paraphyses and periphyses are absent.  Pseudothecia are produced 

on the ventral and dorsal surfaces of decaying citrus leaves, but have never been found 

on fruit (Kiely, 1948b; Van der Aa, 1973). 

 

Asci (50-85 x 12-15 µm) are produced from the base of a pseudothecium, 45 to 60 in 

number, clavate; cylindrical, eight spored and uniseriate (Kiely, 1948b).  Ascopsores are 

hyaline to granular grey, usually with one large central guttule at maturity.  Ascospores are 

non-septate but occasionally with septum near one end of the spore, 8.0-17.5 x 3.3-8.0 

µm with a small round clear gelatinous cap at each end (Kiely, 1948b). 

 

Pycnidia are produced on citrus leaves, petioles, twigs and fruit (Van der Aa, 1973).  

Pycnidia are 70-330 µm in diameter, subhyaline to brownish on leaves, brown to almost 

black on fruit, globose or depressed on leaves, pyriform on fruit, flat or conspicuously 

papillate with a circular pore of 10-15 µm diameter.  Stroma developed on fruit only, are 

subhyaline to dark brown and 5-18 µm in diameter.  Conidiogenous cells are cylindrical 

and 4-8 x 2-3.5 µm.  Under ideal conditions for their development, pycnidia are closely 

studded over the entire leaf surface.  They can occur on either the dorsal or ventral 

surfaces of the leaf, but are usually thickest on the one side only, the side or portion of the 

leaf exposed to the sun’s radiation (Darnell-Smith, 1918; Kiely, 1948b).   

 

Pycnidiospores still attached to the sporophore possess a terminal gelatinous cap, which 

later shrink to form the appendage, 5-15 µm in length.  Pycnidiospores are one-celled, 

obovoidal, ellipsoidal or subglobose, somewhat clavate when young, with a truncate base, 

broadly rounded apically and slightly indented, 6-13 x 5-9 µm, usually 9-10 x 6-7 µm (Van 

der Aa, 1973).  They may have one or two nuclei, generally two (Darnell-Smith, 1918).  

Pycnidiospores are usually hyaline with granular contents and sometimes having a 

greenish hue.  More than one crop of pycnidiospores can be produced as the 

sporogenous layer is regenerative (Kiely, 1948b).   

 

Spermatial state occurs both in pure culture and on the host and usually develops 

simultaneously with the conidial state, but is much more scarcely found (Van der Aa, 

1973).  Fruiting bodies are similar to those of the conidial state.  Spermatiogenous cells 

are elongated cylindrical and 4-10 x 0.5-2 µm.  Spermatia are dumb-bell shaped, seldom 

cylindrical, straight to slightly curved and 5-8 x 0.5-1 µm. 

 

The mycelium exhibits much diversity.  The extreme tips may be pointed or round, hyphae 

being thin, hyaline, and almost devoid of septa (Darnell-Smith, 1918).  Older hyphae 
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become thicker, septa more numerous and olive-green in colour.  In the older hyphae, 

septa are numerous, dark greenish-brown in colour, and the contents of the cells granular. 

The cells may be oblong or round and often carry numerous short, round, protuberances.  

Hyphae anastomose readily with one another (Darnell-Smith, 1918).   

 

Cultures of G. citricarpa on potato-dextrose agar are dark brown to black; mycelium is 

mostly submerged, thick and prostrate.  Colonies are slow growing, reaching a diameter 

of 70 mm in 20 days on various media at 24°C (Van der Aa, 1973).  Stromata develop 

within eight days as hard, black masses, resembling those on fruits, pyriform, globose or 

cylindrical, with one to numerous conidial and spermatial cavities in the upper region (Van 

der Aa, 1973).   

 

2.1.4 Sporulation  

All attempts to promote pseudothecial development of G. citricarpa in vitro were 

unsuccessful  (McOnie, 1964d; Korf, 1998; Baayen et al., 2002; Baldassari et al., 2008) 

and although Lemir et al. (2000) claim to have produced pseudothecia in culture, their 

results were never repeated.  With our current knowledge about G. mangiferae, we can 

conclude that reports on in vitro ascospore production of G. citricarpa (Frean, 1964, 1966; 

Brodrick, 1969; Wager, 1952) are erroneous.  Other methods for the production of 

pseudothecia on water agar medium augmented with leaf pieces were described, but for 

members of the genus Guignardia and not for G. citricarpa specifically (Petrini et al., 1991; 

Furukawa & Kishi, 2002).  

 

Brodrick and Rabie (1970) investigated the effects of light and temperature on the 

sporulation on artificial culture medium.  Incubation under continuous light resulted in 

significantly higher counts of pycnidiospores produced than under alternating light/dark or 

continuous dark.  Incubation at 27°C resulted in significantly more pycnidiospores 

produced on flavedo pieces than at 20°C, whereas the reverse was true for pycnidiospore 

production on Potato Dextrose Agar.  Numbers of pycnidiospores produced were 

significantly higher in all the treatments after 15 days than after 10 and 20 days.  At 20 

days, it was possible that the pycnidiospores remained embedded in the gelatinous matrix 

in the pycnidium and were not released under the conditions of the experiment.   

 

2.1.5 Spore germination 

Since ascospores of G. citricarpa cannot be produced in vitro, very few studies have 

investigated the germination of ascospores.  According to Kiely (1948b) ascospores take 

more than 24 h to germinate in vitro at 25°C and 4 days to reach 98% germination.  In 
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another study, germination was investigated in vitro and in plantae and germination of 

ascospores on lemon (Citrus limon (L.) Burn. f.) leaves varied from 14 to 91% after 24 h 

and most did not show an increase after 48 h compared to 24 h (McOnie, 1967).   

 

In vitro germination of pycnidiospores of P. citricarpa has been reported to be very slow, 

with only a few spores germinating after several days (Darnell-Smith, 1918).  Germination 

of pycnidiospores in tap water has been reported, albeit at varying degrees (Kiely, 1948b; 

Wager, 1952).  Spore germination was stimulated by extracts of orange peel or citric acid 

solutions at concentrations of 0.1-0.5% (Darnell-Smith, 1918; Kiely, 1948b).  Maximum 

germination of nearly 80% has been obtained using 0.3% citric acid solution and 

incubating spores for 4 days at 25°C in a damp chamber (Kiely, 1948b).  Freshly exuded 

mature pycnidiospores have been reported to lose their ability to germinate in about one 

month after they were produced (Kiely, 1948b).  Darnell-Smith (1918) also showed that 

the rapidity with which spores germinate depended largely on the age of the spores (time 

since released from pycnidia) with young spores germinating within 12 h and older spores 

taking several days to germinate while many failed to germinate.  

 

An extensive investigation on the germination of pycnidiospores of Phyllosticta ampelicida 

(Engleman) Van der Aa (teleomorph Guignardia bidwellii (Ellis) Viala & Ravaz) was 

undertaken mainly by K. Huo, H.C. Hoch and B.D. Shaw.  They indicated that 

pycnidiospores did not germinate readily unless they are attached to a hydrophobic 

surface (Kuo & Hoch, 1995, 1996a, b; Shaw & Hoch, 1999, 2000; Shaw et al., 1998, 

2006).  The requirement for pycnidiospore attachment to trigger germination was indicated 

to be pervasive to the genus Phyllosticta (Shaw et al., 2006).  Similar to other fungi where 

spores require attachment for germination, additional nutrients (e.g. host leaf extract) can 

overcome this requirement and germination on hydrophilic surfaces were improved 

(Darnell-Smith, 1918; Kiely, 1948b; Kuo & Hoch, 1996a; Shaw & Hoch, 1999, 2000).  

Since pycnidiospores are negatively charged, low pH reduces the inherent electro-

negativity of the surface components, thus reducing electrostatic repulsive forces and 

enhancing attachment (Shaw & Hoch, 1999).   

 

Pycnidiospore germination of P. ampelicida can be described by a sequence of events.  

Once spores came into contact with a hydrophobic surface, such as a leaf, spores 

attached passively to the surface in less than 0.03 s (Shaw & Koch, 2000).  Dead spores 

attached equally well to the substrate as viable ones and spore attachment to the host 

surface involved the surrounding extracellular matrix, consisting of carbohydrates, 

proteins and glycoproteins (Kuo & Hoch, 1995, 1996a; Shaw & Hoch, 1999).  Spores 
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germinated usually 40-60 min after attachment by forming a germ tube on either side of 

the spore (Kuo & Hoch, 1996b; Shaw & Hoch, 2000).  Appressoria started to form after 2-

3 h after attachment and mature, highly melanised appressoria were observed after 6 h 

following initial spore attachment (Kuo & Hoch, 1996b; Shaw & Hoch, 2000).  Germ tubes 

were mostly short (5 µm) on host leaves while longer germ tubes (20-40 µm) developed in 

vitro (Kuo & Hoch, 1995, 1996b; Shaw et al., 1998).  Although the last work of Shaw et al. 

(2006) included 14 species of Phyllosticta, G. citricarpa was not included as sporulation of 

available isolates was reported to be insufficient.  Nevertheless, it is likely that 

pycnidiospores of P. citricarpa would germinate in a similar manner than described for P. 

ampelicida.  

 

2.2 The host, Citrus 

Almost all commercial citrus species are susceptible to CBS, and lemons are the most 

susceptible.  When CBS is found in a new area, it is usually first observed on lemons 

before other citrus is affected (Kiely, 1948b; Kotzé, 1981). The disease can be serious on 

sweet orange (Citrus sinensis Osbeck), which is a late maturing cultivar (Kiely, 1948b; 

Wager, 1952). It may also cause significant losses on grapefruit (Citrus paradisi Macf.) 

and lime (Citrus aurantifolia Christm.) (Brodrick, 1969) and has been reported to occur on 

citron (Citrus medica L.), pummelo (Citrus grandis (L.) Osbeck) and mandarin (Citrus 

reticulata Blanco) (Kiely, 1948a; Brodrick, 1969; Kiely, 1970).  Seville sour orange (Citrus 

aurantium L.) and its hybrids, rough lemon (Citrus jambhiri Lish.) and Tahiti acid lime 

(Citrus latifolia Tan.) is regarded as insensitive to the pathogen (Wager, 1952; Kotzé, 

1981; Baldassari et al, 2008).  Although no CBS symptoms have ever been observed on 

sour orange and acid lime, the pathogen has been isolated from the cultivars and spores 

can be produced on the leaf litter (Baldassari et al., 2008).  The importance of these 

insensitive cultivars in disease dissemination and inoculum production should be 

investigated further. 

 

Various other woody plants were reported to carry latent infections of G. citricarpa and 

that these plants may act as a source of inoculum after the leaves die (Kiely, 1948a, b; 

Wager 1952).  It was first proved by McOnie (1964d; 1965a) with conventional methods 

and later by Baayen et al. (2002) and others with molecular techniques, that the isolates 

from the alternative hosts belonged to the non-pathogenic G. mangiferae and not G. 

citricarpa.  However, there has been one exception to this rule when Bonants et al. (2003) 

identified G. citricarpa from leaves of an unidentified Sapotaceae using a PCR-test.  The 

finding was not confirmed with subsequent supporting data and accuracy of the PCR-test 

is questionable.  Also, whether the pathogen could grow and sporulate within this host to 
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form a reservoir for inoculum of CBS is unknown. This new finding may be of particular 

importance in the context of quarantine regulations and calls for the screening of non-

citrus hosts in the proximity of citrus orchards for the presence of G. citricarpa.  Various 

highly specific PCR-tests are available (Bonants et al., 2003; Meyer et al., 2006; Peres et 

al., 2007; Van Gent-Pelzer et al., 2007) that could facilitate such research.  

 

Citrus fruit are susceptible to infection by either asco- or pycnidiospores for 20 to 24 

weeks after petal fall, after which time the fruit become resistant regardless of the 

prevailing weather conditions (Kotzé, 1981).  This is as a result of an increase in fruit 

resistance, rather than a decrease in inoculum (Whiteside, 1965).  Similarly, the 

susceptibility period of citrus leaves to infection by G. citricarpa was originally reported to 

be five weeks (Kiely, 1948b; McOnie, 1967), although subsequent field observations 

suggested that it could be five months (Kotzé, 1981).   

 

2.3 The disease, citrus black spot 

2.3.1 Origin and distribution of citrus black spot 

CBS originated in south east Asia (Smith et al., 1997), but the symptoms were first 

described from infected sweet orange fruit by Benson (1895) in Australia.  CBS occurs in 

all citrus producing countries where the pathogen has been recorded (see section 2.1.1 

Origin and distribution of Guignardia citricarpa).  The global distribution of the disease 

appears to partially follow citrus producing patterns but is restricted by specific climatic 

parameters, of which cold wet conditions during winter were indicated as the main 

restrictive parameter (Paul et al., 2005; Yonow & Hatting, 2009).   

 

Various citrus-growing areas within countries where the disease has been recorded have 

remained free of CBS.  In Australia, areas free of CBS include Sunraysia and mid-Murray 

areas of Victoria and NSW, Emerald in Queensland, as well as the two states Western 

Australia and South Australia (European Union, 1998; Paul, 2006).  In Brazil, CBS has 

only been recorded from the state of Rio de Janeiro, Rio Grande do Sul and São Paulo 

(European Union, 2000), whereas in China the distribution is restricted to the provinces of 

Fujian, Guangdong, Sichuan, Yunnan and Zhejiang (European Union, 1998).  In SA, citrus 

producing regions in the Northern Cape, Free State, North West and all the citrus 

producing regions within the south-western Western Cape Province are free of CBS 

(European Union, 1998; Mabiletsa, 2003; APHIS, 2009, Shea, 2010).  In the USA, CBS 

was recorded for the first time in March 2010 in Florida (Lemon & McNally, 2010; 

Schubert et al., 2010) and it is still uncertain if the disease can be contained or if it will 

spread to other citrus producing regions in the USA with suitable climates.   
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2.3.2 Economic importance of citrus black spot 

One of the first records of the economic impact of CBS is that of Benson (1895) indicating 

the disease caused great losses in many orange growing districts throughout Australia.  In 

1945, 90% of citrus fruit produced in unsprayed orchards in Northern and Mpumalanga 

Provinces, SA, were rendered unfit for export (Sutton & Waterson, 1966). This resulted in 

an oversupply of unwanted CBS infected fruit on the local market.  However, with the 

advent of the general application of fungicides for the control of fungal diseases in the 

early 1970’s (Brandes, 1971), major losses due to fruit symptoms have not again been 

reported in literature.  CBS control programmes are costly (Cobb, 1897; Kotzé, 1961), but 

necessary as total loss in exportable fresh fruit may be experienced in uncontrolled 

orchards (Seberry et al., 1967; Smith, 1996).   

 

Pre-harvest fruit drop due to excessive CBS infection do not readily occur within orchards 

where proper pre-harvest control is applied, but have been reported (McCleery, 1939; 

Wager, 1945, 1949, 1952).  Post-harvest CBS losses are not always apparent as infected, 

asymptomatic fruit may develop CBS symptoms while in transit to the markets resulting in 

possible rejection at local or overseas harbours when exported to CBS-sensitive markets 

(Brodrick, 1969; Kiely, 1948b; Loest, 1958; Smith, 1962; Kotzé, 1996). 

 

CBS gained prominence as a disease of great economical importance in recent years 

because of phytosanitary restrictions on the movement of fruit from CBS infected areas.  

Although the European Union allow import of fresh citrus fruit from CBS-positive areas, 

the presence of any symptomatic fruit at inspection results in the rejection of whole 

consignments, leading to great economical losses.  Even in local markets, CBS lesions 

significantly lowered the market value of fruit and resulted in the product being re-directed 

for processing (Calavan, 1960; Cobb, 1897; Kellerman & Kotzé, 1977; Wager, 1945).   

 

2.3.3 Inoculum 

2.3.3.1 Ascospores 

Windborne ascospores are seen as the primary source of inoculum in countries with only 

one fruit set per season, such as Australia and SA (Kiely, 1948b; Kotzé, 1963; Sutton & 

Waterson, 1966).  Ascospores are produced in pseudothecia only on leaf litter and these 

fruiting bodies have never been found on fruit, twigs or attached leaves (Kotzé, 1963; 

McOnie, 1965a; Truter et al., 2007).  Mature pseudothecia can be detected on leaf litter in 

30 to 180 days after leaf fall, depending on the prevailing temperature and the frequency 

of wetting (Kiely, 1948b; McOnie, 1964b; Lee & Huang, 1973).   

 
 
 



 20

 

Temperature influences the rate of pseudothecia maturation as well as the release of 

mature ascospores (Kotzé, 1963; Fourie et al., 2009).  Maturation of pseudothecia is 

seasonal, and mature spores are found within leaf litter mainly during summer months 

(Kotzé, 1963; McOnie, 1964b, c).  Data from spore traps combined with on-site weather 

stations indicated that most ascospores of Guignardia spp. are release when 

temperatures are 18°C or above (Fourie et al., 2009).   

 

Mature ascospores are forcibly released from the pseudothecia to a height of about 12 

mm during rainfall (Kiely, 1948b; Kotzé, 1963; McOnie, 1964b), sprinkler or micro-jet 

irrigation (Smith, 1996), heavy dew (Lee & Huang, 1973) or high humidity (Swart & Kotzé, 

2007) and are carried on air currents throughout the canopy (Kotzé, 1963; McOnie, 

1964c, 1965a; Sutton & Waterston, 1966).  Although ascospores are windborne, their 

ejection from the mature pseudothecia is dependent on wetting.  Therefore, the onset of 

rain, temperatures of 18°C or above, ascospore discharge and the infection period are 

closely related (Kotzé, 1963; McOnie, 1964b; Fourie et al., 2009).    

 

2.3.3.2 Pycnidiospores 

In addition to pseudothecia, pycnidia containing pycnidiospores are produced on dead 

leaves beneath trees (Kiely, 1948b). Pycnidia may also occur in fruit lesions, on dead 

twigs, and sparsely within lesions on attached leaves or on fruit stalks.  Production and 

maturation of pycnidia on leaf litter is considerable faster than pseudothecia and mature 

pycnidia can be detected on leaf litter weeks before the first pseudothecia are mature 

(McOnie, 1964b).  In wet weather, mature pycnidiospores ooze as a gelatinous mass from 

pycnidia contained in lesions on the rind of infected mature fruit hanging on the tree.  

These spores require water for dispersal (Sutton & Waterson, 1966; Whiteside, 1967).  

Similarly, masses of gelatinous pycnidiospores are produced from pycnidia on fallen 

leaves (McOnie, 1964b; Kotzé, 1996).   

 

Alternate wetting and drying of fallen leaves and variations in temperature provide optimal 

conditions for asco- and pycnidiospore formation and maturation (Kiely, 1948a, b; Lee & 

Huang, 1973).  Pseudothecia and pycnidia will not mature in areas where the leaf litter is 

either constantly dry or constantly wet (Kiely, 1948b; Wager, 1949; Lee & Huang, 1973).  

Maturation of pseudothecia and pycnidia is seasonal, and mature spores are found mainly 

during summer months (Kotzé, 1963; McOnie, 1964b, c).  In production areas with mild 

winters such as Tzaneen and Letsitele in SA and various areas in Australia, ascospores 

can be detected throughout the year (Kiely, 1948b; Swart & Kotzé, 2007).  In areas with 
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lower winter temperatures, maturation of spores was retarded and no or few spores were 

detected during late autumn to early spring (Kiely, 1948b; Kotzé, 1963; Smith, 1996).   

 

2.3.3.3 Symptomless infection 

Mycelium latently present in citrus trees may be a source of inoculum (Kiely, 1949).  If the 

CBS pathogen in such trees is introduced to new, uninfected citrus production areas, CBS 

might successfully establish in the new area (Calavan, 1960).  In the past, CBS have been 

transmitted to uninfected areas through infected, but symptomless nursery trees (Kiely, 

1949; Wager, 1952).  Symptomless infected fruit are not a source of inoculum as the 

latent infection remains localised within the fruit tissue for the lifespan of the fruit.  

Furthermore, pycnidiospores are only produced within lesions on fruit and never on 

symptomless fruit (Kotzé, 1981).  Symptoms may develop on fruit after harvest, but 

symptomatic fruit are not regarded as an important inoculum source. 

 

2.3.4 Infection  

Infection of susceptible citrus material takes place when a viable spore (either asco- or 

pycnidiospore) lands on suitable host material, attaches to the surface, and germinates.  

An appresorium may form sessile on the germinating spore or at the end of a short germ 

tube.  The appressorium attaches to the plant surface and a thin infection peg forms 

between the appressorium and plant tissue.  Penetration of the infection tube is by both 

mechanical pressure and enzymatic degrading of the cell wall (McOnie, 1967).  After 

penetrating the tissue, the fungus forms a resting body within the rind tissue of fruit, or just 

below the cuticula of leaves.  This resting body remains dormant until tissue maturity 

when conditions are conducive for further growth and spore production (Kiely, 1948b, 

1970; Kotzé, 1963).  This kind of infection is known as a latent or quiescent infection and 

the latent period may last several months (Kotzé, 1963; Kiely, 1969; Cook, 1975).  

Consequently, G. citricarpa may be isolated from apparently healthy citrus fruit tissues 

(Yin et al., 1981; Baldassari et al., 2008). 

 

It is widely accepted that ascospores are the major source of inoculum.  The critical period 

for ascospore infection is approximately within a single five-month window period when 

fruit set coincides with rainfall.  Late-hanging infected mature fruit are removed from trees 

a month before the new season’s fruit sets (Kiely, 1948b, 1970; Kotzé, 1963, 1996; 

McOnie, 1965a).  Therefore, pycnidiospores are not a major source of inoculum for fruit 

infection as mature CBS infected fruit and susceptible young fruit never occur 

simultaneously on the same trees.  However, this is not true for citrus produced in Brazil 
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where rain is not so confined to a single season and flowering may occur more than twice 

a year.   

 

Ascospore infection frequency is determined by the rainfall pattern whereas climatic 

conditions greatly influence the intensity of infection (Wager, 1952; Whiteside, 1967).  If 

conditions are not favourable for the development and maturation of the pathogen’s 

fruiting bodies, citrus fruit and leaves may escape ascospore infection (Whiteside, 1967).  

Additionally, availability of spore inoculum during the time when young fruit and leaves are 

susceptible has an important influence on the rate of infections and disease severity 

(Whiteside, 1965, 1967).  Any new leaf flushes that coincide with wet weather may 

become infected (Whiteside, 1965).  Leaf infections remain predominantly latent until leaf 

drop and desiccation, although lesions may appear on mature attached leaves, especially 

lemon leaves (Whiteside, 1965).  Infected leaves fall to the ground a year or longer after 

infection and eventually produce mature ascospores, which are forcefully released from 

pseudothecia and may infect young fruit and leaves and so complete the infection cycle 

(Whiteside, 1965).   

 

Infection by pycnidiospores happens when spores from late-hanging, infected, mature fruit 

are washed down to young susceptible leaves and fruit (Sutton & Waterson, 1966; 

Whiteside, 1965, 1967).  Pycnidiospores from fallen leaves and fruit are not thought to 

readily cause infection of fruit, since their dispersal to fruit hanging on the trees, unless 

splashed by raindrops, seems unlikely (McOnie, 1964b; Kotzé, 1996).  In rare cases a 

tear stain pattern of black spots are observed on infected fruit, indicating pycnidiospores 

rather than ascospores as source of infection (Fig. 2.1).  Pycnidiospores, although not 

important for fruit infections, may significantly contribute to leaf infections and play a part 

in the life cycle of the pathogen.   

 

2.3.5 Symptoms 

G. citricarpa mainly causes symptoms on citrus fruit and to a lesser extent on leaves and 

twigs.  Symptoms on fruit, leaves and twigs usually remain small and do not significantly 

reduce yield, but spotted fruit are unacceptable to fresh markets (local and export), 

resulting in reduction in marketable fruit.   
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Figure 2.1. Tear stain pattern of hard spot lesions on a mature Valencia orange fruit, 

typically formed from pycnidiospore infections of Guignardia citricarpa.  

 

 

2.3.5.1 Fruit symptoms 

Disease symptoms usually starts to develop around colour break and are most noticeable 

on fully matured fruit (Kiely, 1969), although symptoms may appear on immature fruit, 

especially lemons (Wager, 1952; Whiteside, 1965). Symptoms are confined to the surface 

of the fruit (Wager, 1952; Kotzé, 1981) and lesions may appear as a single spot or up to a 

thousand spots per fruit (Calavan, 1960). The disease rarely causes post harvest decay, 

even though the rind of infected fruit may become severely necrotic (Kotzé, 1981).  

Severely infected immature fruit have been reported to drop prematurely and go to waste 

(Wager, 1952).   

 

Disease expression (pre- or postharvestly) may be enhanced by numerous factors 

inducing stress on the host, e.g. heat, poor soil conditions, improper irrigation, nematodes 

and other diseases.  Expression is generally promoted by relatively high temperatures 

(>26°C) and high light intensities (Kotzé, 1963; Whiteside, 1967; Kiely, 1969; Brodrick & 

Rabie, 1970; Kotzé, 1971; Kellerman, 1976; Kellerman & Kotzé, 1977).  Temperatures 

below 21°C reduce the rate of fruit symptom development (Brodrick, 1969) while 

temperatures below 5°C could prevent symptom development for duration of cold storage 

(Korf, 1998; Korf et al., 2001). 
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Pre-harvest symptom development on fruit is dependent on weather conditions, and on 

the age and condition of the host tree (Kiely, 1969; Kotzé, 1996).  Consequently, trees 

older than 10 years (Kiely, 1948b), trees suffering from root rot (Whiteside, 1965), wilting, 

or element deficiencies (Kotzé, 1961); and trees affected by drought (Kiely, 1969) or hail 

damage (Kellerman, 1975) seems more susceptible to CBS.  Symptoms also develop 

more rapidly as the rind matures.  Thus, factors that influence rind maturation, such as soil 

moisture, can also influence the occurrence of symptoms (Kiely, 1969).  

 

Lesions are well defined and four kinds of symptoms are widely recognised viz. red spot 

(not formally described), hard spot, first described by Cobb (1897); freckle spot and 

virulent spot, both first described by Kiely (1948b).  Two other symptoms, speckled blotch 

and cracked spot are not as widely recognised and were reported from South Africa 

(McOnie, 1965b) and Brazil (De Goes et al., 2000), respectively. 

 

2.3.5.1.1 Red spot 

Reference to red spots has been made in the past, but it has not been formally described 

(Kotzé, 1963; McOnie, 1967; Korf, 1998; Bonants et al., 2003; Meyer et al., 2006; Truter 

et al., 2007).  Lately, the use of red spots as a CBS symptom category has increased, 

mainly due to the phytosanitary restrictions on trade of symptomatic fruit and increased 

attentiveness to the presence of red spots on fruit at inspection sites.  Although all 

symptom types can develop postharvestly, red spot is often the first postharvest symptom 

to develop and development in transport is more common as the other symptoms require 

higher temperature and a longer incubation period for development.  Lesions appear as 

minute, round, sunken, reddish depressions on the fruit surface (Fig. 2.2).  Lesions are 

mostly 1 mm in diameter, never larger than 2 mm and about 1 mm deep.  Pycnidia seldom 

develops in red spots.  The pathogen can be readily isolated from this symptom and the 

isolation success from red spots is almost twice as high as compared to hard spots 

(Kotzé, 1963; M. Truter, unpublished data).  A single red spot is also sufficient to positively 

detect the pathogen with molecular methods (Meyer et al., 2006).  Red spot symptoms 

may later develop into the first developmental stage of hard spots (McOnie, 1967).    

 

2.3.5.1.2 Hard spot 

Hard spot are sometimes referred to as shot hole, and is the most typical CBS fruit 

symptom (Fig. 2.3).  It is a circular brown lesion, originating from an initial slight 

depression. Lesions tend not to increase in diameter, but sink in the centre to form a 

crater-like depression.  The tissue in the centre turns grey-white and pycnidia may 

develop therein (Kiely, 1948b; Korf, 1998).  The rim of these lesions is typically black, but 
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brown and red margins have been reported (Korf, 1998).  On green fruit a yellow halo 

sometimes surrounds the rim of lesions and on mature fruit a green halo surround it. 

Pseudothecia never develop within hard spot lesions (Kotzé, 1981; Bonants et al., 2003).  

Generally hard spot lesions are few in number per fruit, but more than 50 lesions per fruit 

have been observed (Kiely, 1948b).  These lesions mostly appear with the onset of fruit 

maturation preharvestly, but can also be found on immature fruit, especially lemons, or 

develop postharvestly (Kotzé, 1981). 

 

2.3.5.1.3 Freckle spot 

Multiple (up to several hundred), separate, deep orange to brick red lesions may appear 

simultaneously on a portion of the fruit surface, usually the side that is more exposed to 

the sun (Kiely, 1948b) (Fig. 2.4).  Lesions develop preharvestly and are about 1 mm in 

diameter and slightly depressed at the centre. Lesions grow fast and reach 2-3 mm in 

diameter before turning brown and ceasing growth. The depth of the lesion might 

increase, depending on the thickness of the rind.  These symptoms are generally devoid 

of pycnidia (Bonants et al., 2003).  Fruit with freckle spot are usually more unsightly than 

those with only hard spot (Kiely, 1948b).  Following period of hot weather, the growth of 

the fungus in the lesions can suddenly increase and lesions rapidly enlarge.  Individual 

lesions may coalesce to form a tearstain lesion similar to melanose (Diaporthe citri F.A. 

Wolf) or develop further into virulent spot (Kiely, 1948b; Baayen et al., 2002).  This 

symptom mostly appears after the fruit have undergone colour change from green to 

orange (Kotzé, 1981). 

 

2.3.5.1.4 Virulent spot 

Virulent spot may develop from coalesce freckle spot lesions (Fig. 2.5) (Kiely, 1948b) or 

on fruit without any other CBS symptoms.  In the latter case, lesions originate as small 

sunken red to brown spots or as irregularly depressed centres approximately 6 mm in 

diameter showing no colour change (Calavan, 1960).  Infection centres develop rapidly 

and black pycnidia may develop inside these centres (Kiely, 1948b; Calavan, 1960).  

Lesions appear typical black in the centre due to multiple pycnidia and brown further out 

due to necrosis of rind tissue.  Lesions have a narrow brick-red active peripheral area 

several millimetres wide, forming the margin of the sunken lesion (Kiely, 1948b).  Lesions 

assume irregular shapes and develop late in the season on fully mature fruit.  Compared 

to the previous lesions, virulent spot extends more deeply into the tissue of the albedo, 

even to the extent of involving the entire thickness of the rind tissue.  These lesions could  
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Figure 2.2.  Red spot lesions caused by Guignardia citricarpa on mature Eureka lemon 

fruit. 

 

 
Figure 2.3. Hard spot lesions caused by Guignardia citricarpa on a mature Eureka lemon 

fruit.  

 

 
 
 



 27

 
Figure 2.4.  Freckled spot lesions caused by Guignardia citricarpa on a mature Eureka 

lemon fruit. 

 

 
Figure 2.5. Virulent spot lesions caused by Guignardia citricarpa on a mature Eureka 

lemon fruit.  
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be surrounded by brown necrotic tissue and cause post-harvest losses (Kiely, 1948b; 

Kotzé, 1981). 

 

2.3.5.1.5 Speckled blotch 

Speckled blotch occurs infrequently on fruit and develops early on immature green fruit.  It 

was first thought to be melanose, but later it was concluded that the causal organism was 

G. citricarpa (McOnie, 1965b).  Blotching consists of separate, roughly circular spots, 1-2 

mm in diameter, either depressed or slightly raised.  At first appearance the spots are 

brick red but turn dark brown in colour over a period of two weeks (Kiely, 1960).  Speckled 

blotch may develop into hard spot as the season progresses (Kotzé, 1981).  These 

lesions are usually devoid of pycnidia (Bonants et al., 2003). 

 

2.3.5.1.6 Cracked spot 

Cracked spot appears in fruit older than six months and is characterized by the presence 

of superficial lesions which are variable in size and appear cracked.  The symptoms are 

slightly salient, can occur individually or in groups and do not contain any pycnidia (De 

Goes et al., 2000). 

 

2.3.5.2 Citrus tan spot 

A new disease on C. maxima, caused by P. citriasiana, was recently described from Asia, 

causing similar fruit symptoms than G. citricarpa (Wulandari et al., 2009).  Citrus tan spot 

usually appears after the fruit has started to ripen and lesions sometimes contain pycnidia.  

Lesions are shallow with a small central grey to tan crater usually with a dark brown rim 

and are 3-10 mm in diameter (Wulandari et al., 2009).  Another symptom variation of 

citrus tan spot can sometimes develop after harvest, consisting of small (1-3 mm 

diameter), slightly depressed spots.  These spots may be grey or tan, or reddish, or 

brownish, or not discolour at all.  Often they have a dark red or brown rim.  Pycnidia are 

only incidentally present in these lesions (Wulandari et al., 2009).  Citrus tan spot may be 

mistaken for CBS lesions, especially red and black spots.  Since these lesions are so 

similar to CBS the correct identification of the causal organism on spotted citrus fruit with 

molecular techniques is essential in future studies and surveys.  

 

2.3.5.3 Leaf symptoms 

Symptoms (Fig. 2.6) occur more frequently on the leaves of lemon trees than on those of 

oranges (Kiely, 1949).  Leaf infection within a tree varies considerably, and the number of 

lesions per leaf may range from a few to numerous spots (Wager, 1952).  Lesions on 

immature leaves are extremely scarce (Kiely, 1949).  Symptoms first start to appear 
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several months after initial infection (Wager, 1952).  Small pin-point sunken lesions are 

visible on both sides of the leaf (Kiely, 1948b; Wager, 1952).  These lesions are perfectly 

round, have a grey or light brown centre, a black to reddish circumference and are mostly 

surrounded by a yellow halo.  Sometimes pycnidia can be seen in the centre of the lesion 

on the upper side of the leaf (Wager, 1952).  Further colonisation of the leaf only happens 

after leaf drop, where the pathogen eventually produces pseudothecia and pycnidia over 

the surface of the dead leaf amongst the leaf litter (Fig. 2.7) (Kotzé, 1996). 

 

2.3.5.4 Twig symptoms 

Lesions on twigs have not been described formally, but occur commonly in South Africa 

on lemons (J.M. Kotzé, 2004, personal communication; M. Truter unpublished data).  In 

contrast, pycnidia of the anamorph have been reported on mostly dead twigs and the 

pycnidiospores produced on these twigs can be a source of inoculum (Kiely, 1948b; 

McOnie, 1964c; Whiteside, 1967).   

 

Symptoms are small (0.5-2 mm in diameter), round, slightly sunken and occur on the 

surface of active growing twigs (Fig. 2.8).  The lesions typical have a brown to black 

margin and a grey to light brown centre.  Pycnidia can be produced in the centre of the 

lesion, but never pseudothecia.  G. citricarpa was positively identified from the lesions on 

the twigs in Fig. 2.8 with a PCR-based method (M. Truter, unpublished data). 

 

2.3.6 Control 

2.3.6.1 Chemical control 

Control of CBS greatly relies on preventative fungicide sprays applied during the period of 

fruit susceptibility (Garrán, 1996; Schutte et al., 1997).  Timely application of appropriate 

fungicides is essential to protect fruit, eradicate infections and prevent symptom 

development (Kellerman, 1976; Kellerman & Kotzé, 1977).  However, the degree to which 

fungicides can control CBS is highly variable (Calavan, 1960) and requires a 

comprehensive strategy (Kiely, 1969, 1970).  The effectiveness of fungicide applications is 

particularly reliant on the number and timing of applications (Kellerman, 1976).  Generally, 

control of CBS has mostly relies on continuous protection of young citrus fruit during the 

potential infection period when the host is most susceptible and inoculum are present 

(McOnie & Smith, 1964). 

 

The earliest method of controlling CBS was by applying a Bordeaux mixture as a 

preventative measure (Benson, 1895; Cobb, 1897; Kiely, 1948b, 1950), which was later  
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Figure 2.6.  Lesions on Eureka lemon leaves caused by Guignardia citricarpa. 

 

 
Figure 2.7.  Fructification of Guignardia citricarpa on Eureka lemon leaf litter. 

 

 
Figure 2.8.  Lesions of Guignardia citricarpa on an infected Eureka lemon twig.  
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found to result in copper toxicity (Kotzé, 1964).  Other formulations of copper fungicides 

also resulted in rind stippling (Schutte et al., 1997).  In 1964, dithiocarbamates were 

introduced as preventative control measure by first applying zineb (active ingredient (a.i.) 

zinc ethylene bisdithio-carbamate) and later mancozeb (a.i. manganese ethylene 

bisdithio-carbamate) (Kotzé, 1964).  These proved superior to copper based products 

(Kellerman, 1976; Kellerman & Kotzé, 1977), as they did not retard fruit colouration or 

result in dark rind injuries (McOnie & Smith, 1964).  Oil additives, which increased the 

penetration of fungicides into the plant tissues, were often added to these fungicides to 

enhance fungicide efficacy (Kellerman, 1976; Kellerman & Kotzé, 1977; McOnie & Smith, 

1964).    

 

The carbamate chemicals were replaced by benomyl [a.i. methyl-1-(butylcarbamoyl)-2-

benzimidazole carbamate] having a preventative and curative approach (Kiely, 1971; 

Kellerman & Kotzé, 1973, 1977).  However, by the early 1980’s the CBS pathogen 

developed resistance to benomyl due to frequent and almost exclusive use of the 

fungicide (Herbert & Grech, 1985; De Wet, 1987).  A few years later, strobilurins were 

indicated to be a good replacement for benomyl in orchards with known resistance of the 

CBS pathogen to benomyl (Schutte et al., 1996; Tollig et al., 1996; Schutte et al., 2003; 

Miles et al., 2004).  The strobilurins have protective, curative and eradicative activities and 

provides long-lasting residual disease control (Gold & Leinhos, 1995) and is 

recommended in rotation or combination with other fungicides such as mancozeb or 

copper to control CBS (Schutte et al., 2003; Miles et al., 2004).    

 

Postharvest treatment of citrus fruit in the packhouse focuses mainly on preventing 

postharvest decay by various spoilage fungi and not G. citricarpa specifically.  In the 

packing line, fruit are subjected to various treatments, including hot water (42-42°C), 

fungicides such as imazalil and thiabendazole, and waxing (Seberry et al., 1967; Eckert & 

Brown, 1986; Rappussi et al., 2009).  Although these fungicides do not inhibit formation of 

new lesions or eradicate G. citricarpa from lesions, it did reduce the viability of the 

pathogen in black spot lesions and reduce pycnidiospore viability to zero (Korf et al., 

2001). 

 

2.3.6.2 Non-chemical control 

Preharvestly, the main non-chemical control measure consists of sanitation practices, 

although one study showed that biocontrol agents have the potential to control CBS.  

Biofertiliser, generated from the anaerobic and aerobic fermentation of cattle manure and 

applied as a spray to trees, seem to hold potential for the pre-harvest control of CBS in 
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commercial orchards (Kupper et al., 2006).  Control achieved with the biofertilisers was 

less effective than the industry standard fungicides, but use of the biofertiliser as a 

protective biofungicide to replace copper oxychloride in organic production have potential 

(Kupper et al., 2006). 

 

As trees that are in a poor condition are more susceptible to CBS, maintaining tree vigour 

can reduce the incidence of CBS (Calavan, 1960; Kotzé, 1961; Loest, 1968; Kiely, 1971; 

Kellerman, 1975).  However, the most important non-chemical approach in CBS control is 

to use cultural techniques to reduce transmission.  Sources of pycnidiospore inoculum 

may be removed by removal of diseased mature, late-hanging fruit before the new crop 

sets (Calavan, 1960; Kiely, 1969, 1970; Kotzé, 1996).  Similarly, ascospore inoculum can 

be removed by the removal of leaf litter from the orchard floor or confinement of 

ascospore inoculum by mulching (Kotzé, 1996; Schutte & Kotzé, 1997).  Efforts to breed 

resistant varieties have not been successful (Calavan, 1960). 

 

Postharvestly, control measures are directed at preventing symptom development rather 

than eradicating symptomless infection.  A water-wax emulsion can be applied to 

harvested fruit to reduce the development of CBS during storage at 16-27°C (Seberry et 

al., 1967).  Light and temperature affect the development of symptoms on fruit, so fruit 

should be moved as quickly as possible into the packhouse and stored in darkness at low 

temperatures (Calavan, 1960; Smith, 1962; Brodrick, 1969; Kiely, 1970; Korf, 1998).  

Postharvest application of chitosan, Bacillus thuringiensis var. kurstaki and harpin, a 

bacterial hypersensitive response elicitor, reduced the number of new developed CBS 

lesions on Valencia orange fruit as well as reduced the number of pycnidia produced in 

the CBS lesions (Rappussi et al., 2009; Lucon et al., 2010).  
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