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1.0 INTRODUCTION 

The genus Calonectria (Ca.) was erected in 1867 by De Notaris, based on Ca. 

daldiniana collected on leaves of Magnolia grandiflora (Magnoliaceae), in Daldini, 

Italy (Rossman 1979a).  Rossman (1979a) later reduced Ca. daldiniana to synonymy 

under Ca. pyrochroa, and defined this nectrioid fungus as having an ascocarp wall 

structure that is brightly coloured, changing to blood-red in 3% KOH solution, warty 

to scaly and with a Cylindrocladium (Cy.) anamorph (Rossman 1993, Rossman et al. 

1999).  However, due to the restricted morphological characteristics of the teleomorph 

(Rossman 1979b, 1983), specimens can in many cases only be identified to species 

level if the anamorph is present (Schoch et al. 2000b, Crous 2002).  

The anamorph genus Cylindrocladium, which is based on Cy. scoparium, was first 

described by Morgan (1892) in the U.S.A., where it was found growing as saprobe on 

a pod of Gleditsia triacanthos. Although Morgan (1892) failed to mention the stipe 

extension terminating in a vesicle of characteristic shape, he defined the genus as 

having branched conidiophores producing cylindrical conidia. This fungus has a wide 

distribution in sub-tropical and tropical regions of the world, and species are 

pathogenic to numerous plants (Crous 2002).  

The aim of this review is to present an overview of published research on the genus 

Calonectria. More specifically, the application of three types of species concepts is 

considered as they pertain to the taxonomic history of this genus up to 2008. Although 

several species concepts (Mayden 1997) have been proposed, only the Morphological 

Species Concept (MSC), the Biological Species Concept (BSC) and the Phylogenetic 

Species Concept (PSC) are treated, as these have been most widely applied to 

Calonectria. Several reviews (Rossman 1996, Brasier 1997, Harrington & Rizzo 

1999, Taylor et al. 1999, 2000, Seifert et al. 2000; Kohn 2005) have treated the 

various species concepts applied to the taxonomy of fungi and this topic is not treated 

other than in the manner in which it applies to Calonectria.  

  

 

 

 
 
 



7 

 

2.0 TAXONOMIC HISTORY 

Calonectria resides in the Nectriaceae, one of three families in Hypocreales, an order 

that has been reviewed extensively (Rogerson 1970, Rossman 1983, Rossman et al. 

1996, 1999). The Nectriaceae is circumscribed as having uniloculate ascomata that are 

orange to purple and not immersed in well-developed stromata (Rossman et al. 1999). 

The family includes approximately 20 genera of socio-economic importance and of 

these, Calonectria are more clearly distinguished from the others by their 

Cylindrocladium anamorphs and relevance as plant pathogens.  

The first monograph of Cylindrocladium, by Boedjin & Reitsma (1950), introduced 

seven Cylindrocladium species with a Calonectria connection to one of these species.  

Later, in her treatment of Calonectria, Rossman (1983) recognized five species 

including the novel Ca. ophiospora. However, this species description did not include 

the anamorph state. The circumscribed type, Ca. pyrochoa, was also incorrectly 

reduced to synonymy with several other species based only on the teleomorph 

morphology.  Peerally (1991a) highlighted this in a monograph of Cylindrocladium, 

where he regarded the anamorph morphology as important in distinguishing species of 

Calonectria. He subsequently recognized 10 Calonectria species with their 

Cylindrocladium anamorphs, including an additional 16 Cylindrocladium species not 

associated with a teleomorph. However, he mistakenly reduced Cylindrocladiella, a 

genus that accommodates Cylindrocladium-like species with small conidia 

(Boesewinkel 1982), to synonymy with Cylindrocladium.  

The monograph of Cylindrocladium by Crous & Wingfield (1994) entrenched the 

importance of anamorph characteristics in the taxonomy of Calonectria spp.  In this 

monograph, 22 Cylindrocladium species and one variety were recognised, associated 

with 16 Calonectria species. Five species were assigned to the genus 

Cylindrocladiella based on morphological characters of the holomorph. The focus on 

anamorph characteristics is perpetuated in the most recent monograph (Crous 2002), 

which recognized 28 Calonectria species, all associated with Cylindrocladium 

anamorphs and an additional 18 Cylindrocladium species for which teleomorph states 

were not known. Of the latter group, seven taxa were of doubtful authenticity. 
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Presently, 32 Calonectria and 52 Cylindrocladium species are recognized (Table 1; 

Crous 2002, Crous et al. 2004b, 2006, Gadgil & Dick 2004). 

A general search on MycoBank (www.mycobank.org; Crous et al. 2004a, Roberts et 

al. 2005) and Index Fungorum (www.indexfungorum.org) resulted in a total of 256 

and 258 name records respectively for Calonectria. A similar search for 

Cylindrocladium species on both electronic databases indicated a total of 103 and 94 

names respectively.  

3.0 NOMENCLATURE OF CALONECTRIA 

The nomenclature of pleomorphic fungi has been a topic of substantial debate during 

the course of the past two decades (Gams 1991, Cannon & Kirk 2000, Hawksworth 

2004, 2005). The separate naming of anamorphs (mitotic morphs) and teleomorphs 

(meiotic morphs) has resulted in confusion, especially for non-taxonomists (Cannon 

& Kirk 2000). This is especially evident where teleomorph species epithets are 

different to those of their anamorphs and also where more than one anamorph 

(synanamorph) is found. The naming of fungal morphs based on the International 

Code of Botanical Nomenclature (ICBN; McNeill et al. 2005) and in particular 

following strict interpretation of Article 59 of the Code has now been unsatisfactory 

for many fungal groups due to our ability to connect morphs using molecular 

evidence, and there are increasing calls for further changes to be made. 

According to Article 59.4, the teleomorph name takes precedence over the anamorph 

name when both types belong to the same holomorph taxon. Further, the earliest 

available legitimate name typified (Article 59.1) should be regarded as the correct 

name after 1 January 2008 (Hawksworth 2004). Following these rules, the name 

Calonectria typified in 1867, takes precedence over Cylindrocladium typified in 1892 

(Morgan 1892). Although there are several Cylindrocladium species without 

Calonectria connections (Crous 2002, Crous et al. 2004b, 2006), we believe that new 

species should be described in Calonectria irrespective of whether a teleomorph is 

known or not.  This follows a clear view based on phylogenetic inference that 

Cylindrocladium spp. all are derived from the same common ancestor as the 

Calonectria spp. (Schoch et al. 1999, 2000a, 2000b, Crous 2002, Crous et al. 2004b, 
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2006). Thus, for taxonomic purposes, Cylindrocladium species with known 

teleomorph states are referred to as Calonectria in this review.  

4.0  IMPORTANCE OF CALONECTRIA 

The genus Calonectria was initially regarded as a saprobe as no disease symptoms 

could be induced by inoculating a suspected host (Graves 1915). The first proof of 

pathogenicity of these fungi was provided by Massey (1917), and subsequently by 

Anderson (1919), who proved pathogenicity of Ca. morganii. Subsequently, 

Calonectria species have been associated with a wide range of disease symptoms on a 

large number of hosts worldwide (Crous 2002; Table 2). In the past, several authors 

have indicated that Calonectria species cause disease on plants residing in 

approximately 30 plant families (Booth & Gibson 1973, French & Menge 1978, 

Peerally 1991a, Wiapara et al. 1996, Schoch et al. 1999). Upon closer inspection, the 

number of plant host families is actually closer to 100 (Table 2) that include 

approximately 335 plant species (Crous 2002). These hosts include important forestry, 

agricultural and horticultural crops. This suggests that the impact of these plant 

pathogens has been underestimated in the past. 

The majority of disease reports associated with Calonectria species in forestry include 

hosts in 5 plant families, of which the most important are associated with Fabaceae 

(Acacia spp.), Myrtaceae (Eucalyptus spp.) and Pinaceae (Pinus spp.).  Disease 

symptoms include cutting rot (Crous et al. 1991, Crous 2002), damping-off (Batista 

1951, Cox 1953, Terashita & Itô 1956, Sharma & Mohanan 1982, Sharma et al. 1984, 

Crous et al. 1991, Brown & Ferreira 2000, Crous 2002, Taniguchi et al. 2008) leaf 

diseases (Cox 1953, Hodges & May 1972, Barnard 1984, Sharma et al. 1984, El-

Gholl et al. 1986, Peerally et al. 1991a, Crous et al. 1993b, Crous & Wingfield 1994, 

Crous et al. 1998b, Schoch & Crous 1999, Schoch et al. 1999, Booth et al. 2000, Park 

et al. 2000, Crous & Kang 2001, Gadgil & Dick 2004), shoot blight (Sharma et al. 

1984, Crous et al. 1991, Crous et al. 1998b, Crous & Kang 2001), stem cankers (Cox 

1953, Sharma et al. 1984, 1985, Crous et al. 1991) and root rot (Cox 1953, Hodges & 

May 1972, Cordell & Skilling 1975, Mohanan & Sharma 1985, Crous et al. 1991). 

The majority of these diseases are associated with seedling and cutting production in 

forestry nurseries, but in a few cases Cylindrocladium species have also been reported 
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from commercial plantations. In these cases the pathogens have been reported to 

cause leaf diseases and shoot blight resulting in defoliation of trees leading to loss of 

growth vigour (Hodges & May 1972, Sharma et al. 1985, Booth et al. 2000, Park et 

al. 2000, Crous & Kang 2001, Crous 2002, Old et al. 2003, Rodas et al. 2005). 

In agriculture, Calonectria species have been reported to cause diseases on several 

economically important crops. Several plant families of agricultural importance are 

susceptible to Calonectria infections, of which the most significant fall in Fabaceae, 

and Solanaceae. Important diseases in these families include Cylindrocladium black 

rot of Arachis hypogea (peanut) and red crown rot of Glycine max (soybean) caused 

by Ca. ilicicola and Ca. pyrochroa in the USA (Bell & Sobers 1966, Beute & Rowe 

1973, Rowe et al. 1973, Sobers & Littrell 1974, Rowe & Beute 1975, Phipps et al. 

1976, Johnson 1985, Dianese et al. 1986, Berner et al. 1988, Berner et al. 1991, 

Culbreath et al. 1991, Porter et al. 1991, de Varon 1991, Hollowell et al. 1998, Kim et 

al. 1998) and Cylindrocladium tuber rot of Solanum tuberosum (potato) (Boedjin & 

Reitsma 1950, Bolkan et al. 1980, 1981) by Cy. gracile in Brazil.  Other diseases 

associated with Calonectria species on agricultural crops include root rot and leaf 

diseases of fruit bearing and spice plants  (Jauch 1943, Wormald 1944, Sobers & 

Seymour 1967, Nishijima & Aragaki 1973,  Milholland 1974, Krausz & Caldwell 

1987, Hutton & Sanewski 1989, Anandaraj & Sarma 1992, Risède 1994, Jayasinghe 

& Wijesundera 1996, Risède & Simoneau 2001, Vitale & Polizzi 2008), post-harvest 

diseases of fruits (Fawcett & Klotz 1937, Boedjin & Reitsma 1950, Sepiah 1990, 

Fitzell & Peak 1992, Vaidya & Roa 1992, Sivapalan et al. 1998), root and crown rot 

of Medicago sativa (alfalfa) (Ooka & Uchida 1982, Hwang & Flores 1987), and 

sheath net blotch of Oryza sativa (rice) (Crous 2002). 

On horticultural crops, Calonectria species have been reported mostly from the 

Northern Hemisphere, especially in gardens and ornamental commercial nurseries in 

Europe and Asia (Polizzi & Crous 1999, Polizzi 2000, Crous 2002, Henricot & 

Culham 2002, Pérez-Sierra et al. 2007, Polizzi et al. 2007a, 2007b, Hirooka et al. 

2008). Hosts in this sector include ornamental trees, shrubs and cut-flowers in several 

plant families, most commonly in Arecaceae, Asteraceae, Ericaceae and Rosaceae.  A 

wide range of disease symptoms are recorded including crown–, collar– and root rot, 

leaf spots, and cutting rot (Massey 1917, Anderson 1919, Aragaki et al. 1972, 1988, 
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Peerally 1991b, Uchida & Kadooka 1997, Polizzi & Crous 1999, Polizzi 2000, Crous 

2002, Henricot & Culham 2002, Henricot & Beales 2003, Poltronieri et al. 2004, 

Lane et al. 2006, Polizzi et al. 2006a, 2006b, 2007a, 2007b, Pérez-Sierra et al. 2007, 

Vitale & Polizzi 2007, Hirooka et al. 2008, Vitale et al. 2008). 

5.0  MORPHOLOGY 

Morphological or phenotypic characters have played a major role in the description of 

fungal species (Brasier 1997, Taylor et al. 2000) and form the basis of new fungal 

descriptions as required by the ICBN (McNeill et al. 2005). In recent years, the use of 

morphological characters alone to delimit new species has been set aside, to a large 

extent, with more focus being placed on biological and phylogenetic characters 

(Rossman 1996, Brasier 1997, Taylor et al. 2000). This trend is also evident in recent 

studies on Calonectria species (Crous et al. 2004b, 2006).   

The morphology of Calonectria and to a greater extent its anamorph, 

Cylindrocladium, has been important in the taxonomic history of these fungi.  Prior to 

the 1990’s, identification of species was based on morphological characteristics and to 

a lesser extent on sexual compatibility using standardised media (Boedjin & Reitsma 

1950, Peerally 1991a, Crous et al. 1992, Crous & Wingfield 1994, Crous 2002). This 

resulted in the establishment of several species complexes, as many Cylindrocladium 

species are morphologically very similar. These include the Ca. scoparia complex 

(Schoch et al. 1999), Cy. gracile complex (Crous et al. 2004b) and Ca. kyotensis 

complex (Crous et al. 2006). Characteristics (Fig. 1) of the anamorphs that are 

extensively employed in identifications include vesicle shape (Fig. 1C–F), stipe 

extension length (Fig. 1A–B) and macroconidial septation and dimensions (Fig. 1G–J; 

Boesewinkel 1982, Peerally 1991a, Crous & Wingfield 1994, Crous 2002). The 

morphological characteristics of the teleomorph that are important for identifications 

are ascospore (Fig. 1M–N) septation and dimensions. The perithecia of Calonectria 

species are morphologically very similar and these are typically not very useful in 

identifications (Crous & Wingfield 1994, Crous 2002).  

Biochemical techniques can also be used in phenotypic characterization. These 

include substrate utilization and cell wall polysaccharide analysis. The use of 

aminopeptidase specificity (Stevens et al. 1990) and utilization of specific nitrogen 
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and carbon (Hunter & Barnett 1978, Sharma et al. 1992) have been used successfully 

to separate several Cylindrocladium species.  The use of polysaccharides obtained 

from cell walls of Cylindrocladium positively identified linkages between asexual 

species and their respective Calonectria teleomorphs (Ahrazem et al. 1997). 

However, this method has been found to have a limited value as it does not 

distinguish between some species in complexes (Crous 2002). 

6.0  MATING COMPATIBILITY  

Mating strategies have been employed in the taxonomy of Calonectria and have 

played an important role in identifying new species of the genus (Schoch et al. 1999, 

Crous 2002). Based on these studies, there are approximately 18 homothallic and 34 

heterothallic species of Calonectria (Crous 2002, Crous et al. 2004b, Gadgil & Dick 

2004, Crous et al. 2006), with the heterothallic species showing a biallelic mating 

system (Schoch et al. 1999). Studies in the female fertility of Cylindrocladium by 

Schoch et al. (1999, 2000a, 2001a) have also shown that several species are self-

sterile hermaphrodites requiring fertilization from an opposite mating type. This is 

typical of heterothallic ascomycetes (Leslie & Klein 1996).  

Several difficulties associated with applying the BSC have been highlighted (Brasier 

1997, Taylor et al. 1999, Taylor et al. 2000, Kohn 2005). The most relevant 

underlying problem occurs where genetically isolated fungal strains retain the 

ancestral ability to recombine to produce viable progeny (Brasier 1997). This 

phenomenon has also been found with several phylogenetic species that are closely 

related in Calonectria. Crous (2002), for example, showed that Cy. hawksworthii, Ca. 

insularis and Ca. morganii were capable of recombining, but that the progeny had low 

levels of fertility. Other mating studies done by Overmeyer et al. (1996) and 

Neubauer & Zinkernagel (1995) have found that induction of fertile perithecia 

requires the presence of an additional isolate that, however, does not contribute to the 

genetic make-up of the progeny. This clearly highlights the need for further studies 

regarding the mechanism of perithecial formation and recombination in Calonectria.  
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7.0 PHYLOGENY 

Phylogenetic studies on Calonectria, and its Cylindrocladium anamorphs have 

substantially influenced the taxonomy of these genera. Application of molecular 

techniques and particularly DNA sequence comparisons to distinguish between 

species has resulted in the recognition of numerous cryptic species. Several molecular 

approaches have been employed that include total protein electrophoresis (Crous et al. 

1993a, El-Gholl et al. 1993a), isozyme electrophoresis (El-Gholl et al. 1992, 1997, 

Crous et al. 1998a), random amplification of polymorphic DNA (RAPD) (Overmeyer 

et al. 1996, Victor et al. 1997, Schoch et al. 2000a, Riséde & Simoneau 2004) 

restriction fragment length polymorphisms (RFLP) (Crous et al. 1993b, Crous et al. 

1995, Crous et al. 1997b, Jeng et al. 1997, Victor et al. 1997; Riséde & Simoneau 

2001) and DNA hybridization (Crous et al. 1993b, 1995, 1997a, Victor et al. 1997). 

Although the above-mentioned techniques have been useful, DNA sequence 

comparisons and associated phylogenetic inference have had the most dramatic 

impact on the taxonomy of Calonectria and are most widely applied today. 

In the first study using 5.8S ribosomal RNA gene and flanking internally transcribed 

spacers (ITS) sequences Jeng et al. (1997) were able to distinguish between C. 

scoparium and C. floridanum isolates. Subsequently, it was found that this gene 

region contains few informative characters (Crous et al. 1999, Schoch et al. 1999, 

Riséde & Simoneau 2001, Schoch et al. 2001b). Therefore, the β-tubulin (Schoch et 

al. 2001b) and histone H3 (Kang et al. 2001a) gene regions have been applied in order 

to allow for improved resolution in separating species.  

The first complete DNA sequence-based phylogenetic study using partial β-tubulin 

gene sequences (Schoch et al. 2001b) compared phenotypic, biological and 

phylogenetic concepts used in the taxonomy of Cylindrocladium. This also 

highlighted the fact that Calonectria represents a monophyletic lineage (Schoch et al. 

2000b, 2001b). Subsequently, combined DNA sequence data for the ITS, β-tubulin 

and histone H3 gene regions have been widely used in studies relating to taxonomic 

issues surrounding Cylindrocladium and Calonectria (Crous et al. 1999, Schoch et al. 

2000a, 2000b, Crous & Kang 2001, Kang et al. 2001a, 2001b, Henricot & Culham 

2002, Crous et al. 2004b, 2006).  Other partial gene sequences recently used include 
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translation elongation 1-alpha (TEF-1α) and calmodulin (Crous et al. 2004b). 

However, insufficient data are currently available for these gene regions on GenBank 

(www.ncbi.nlm.nih.gov) to make them particularly valuable for comparative analysis. 

In a search of GenBank, at total of 734 partial gene sequences was obtained for 

Calonectria and Cylindrocladium. These include 311 for β-tubulin, 177 for histone 

H3, 159 for ITS, 39 for calmodulin, 36 for TEF-1α, five for large subunit RNA gene 

(LSU), three each for the high mobility group (HMG) box and peptidase synthetase 

and one for the small subunit RNA (SSU) gene. For Cylindrocladium and 

Calonectria, there are only four studies (Kang et al. 2001a, 2001b; Crous et al. 2004b, 

2006) that provide files on TreeBase (www.treebase.org). 

 8.0 FUTURE RESEARCH 

 8.1 Population Biology 

Most studies on Calonectria have focused on the taxonomy, phylogeny and pathology 

of species. There have in contrast been relatively few studies treating the population 

biology of these fungi. This is unfortunate as population dynamics contributes 

considerable knowledge to a better understanding of population structure, distribution 

of genetic diversity, gene flow, centres of origin and mating strategies (McDonald 

1997, Linde et al. 2002, Grünwald et al. 2003). An understanding of the population 

dynamics of Calonectria would contribute in determining the natural spread of these 

fungi as well as assist in phytosanitary and quarantine regulations.  Another important 

aspect surrounding knowledge of Calonectria population dynamics is that this would 

contribute to plant breeding programmes and thus control of the many diseases that 

are caused by these fungi (McDonald 1997, Wright et al. 2006, 2007).  

Limited research has been conducted on the population dynamics of Calonectria. To 

date only two studies (Wright et al. 2006, 2007) have reported on the development of 

polymorphic markers to characterise simple sequence repeats (SSRs) in loci of Ca. 

ilicicola (Wright et al. 2006) and Ca. pauciramosa (Wright et al. 2007). However, no 

study has yet been published on the population biology of either of these important 

pathogens using these markers.  There is clearly a gap in this area of research 

concerning Calonectria spp. and future research in this area should be encouraged. 

 
 
 



15 

 

8.2  Whole genome sequences 

A relatively new and innovative technology employed in fungal genetics is the use of 

whole genome sequences of filamentous fungi. Whole genome sequencing has 

become relatively inexpensive and thus common in recent years. This revolutionary 

technology will promote our understanding of the mechanisms of gene function, 

conidiation, pathogenesis and sexual reproduction at the genotype level (Kupfer et al. 

1997, Prade 1998, Yoder & Turgeon 2001, Foster et al. 2006, Cuomo et al. 2007). It 

is estimated that most filamentous fungi have a genome size of 30 to 40 Mb, 

containing approximately 8000 to 9000 genes (Kupfer et al. 1997, Prade 1998, Foster 

et al. 2006). There are currently several completed fungal genome sequences 

(http://www.broad.mit.edu/annotation/fungi/fgi/, Foster et al. 2006, Baker et al. 2008) 

that include the model yeast Saccharomyces cerevisiae (Goffeau et al. 1996), plant 

pathogens and spoilage fungi such as Aspergillus flavus (Payne et al. 2006), Fusarium 

graminearum (http://www.broad.mit.edu, Cuomo et al. 2007), Magnaporthe grisea 

(Dean et al. 2005) and the model filamentous fungus Neurospora crassa (Galagan et 

al. 2003). Although there are currently over 300 ongoing filamentous fungal genome 

sequencing projects (http://www.genomesonline.org, Baker et al. 2008, Liolios et al. 

2008), none include species of Calonectria. 

The most closely related plant pathogen to Calonectria species currently being 

sequenced is Haematonectria haematococca (http://www.ncbi.nlm.gov). When the 

first Calonectria species is selected for whole genome sequencing, comparisons with 

H. haematococca could help to identify some important genes in pathogenesis and 

sexual reproduction. Some Calonectria species that could be considered for genome 

sequencing include Ca. pauciramosa, based on its pathogenicity and importance on 

several plant hosts worldwide (Crous 2002), and Ca. reteaudii, one of the most 

important forest pathogens of South East Asia (Booth et al. 2000, Old et al. 2003). 

 9.0 CONCLUSIONS 

Early studies on the taxonomy of Calonectria and Cylindrocladium focused on the 

use of MSC in combination with BSC. More recently, the wide availability of 

molecular techniques and particularly DNA sequence data have revolutionised the 

taxonomy of Calonectria and Cylindrocladium. Today, it is well accepted that the 
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morphology of the Cylindrocladium state contributes most information to naming 

species and that these fungi all reside in Calonectria. 

The first study to combine MSC, BSC and PSC concepts by Schoch et al. (1999) 

resulted in the identification of four species within a single species complex. 

Subsequently, several studies including the MSC, BSC and PSC have elucidated 

cryptic species in the genus (Kang et al. 2001a, 2001b; Henricot & Culham 2002; 

Crous et al. 2004b, 2006).  Application of the BSC in the taxonomy of Calonectria 

has been found to be unreliable in some instances (Crous 2002). However, the 

implementation of MSC and PSC in combination provides powerful tool for 

taxonomic studies of these genera and it is likely that this will continue in future 

studies. Although several species complexes have been identified in Calonectria, 

more research is needed on the population level in order to study the gene flow 

between populations. Additional to this, more gene regions need to be identified and 

widely used in PSC. With the identification of several new species since 2002, an 

updated monograph is required to facilitate ease of identification.  
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Table 1. List of recognized Calonectria species and their respective Cylindrocladium anamorph species. 

Teleomorph Reference Anamorph Reference 

Calonectria acicola Gadgil & Dick Gadgil & Dick 2004 Cylindrocladium acicola Gadgil & 

Dick 

Gadgil & Dick 2004 

Calonectria asiatica Crous & Hywel-

Jones  

Crous et al. 2004b Cylindrocladium asiaticum Crous & 

Hywel-Jones 

Crous et al. 2004b 

Calonectria avesiculata T.S. 

Schubert, Ell-Gholl, Alfieri & 

Schoult. 

Schubert et al. 1989 Cylindrocladium avesiculatum D.L. 

Gill, Alfieri & Sobers  

Gill et al. 1971 

Calonectria clavata Alfieri, El-Gholl, 

& E.L. Barnard 

El-Gholl et al. 1993b Cylindrocladium flexuosum Crous  Crous et al. 1995  

Calonectria colhounii Peerally Peerally 1973 Cylindrocladium colhounii Peerally Peerally 1973 

Calonectria colombiensis Crous  Crous et al. 2004b Cylindrocladium colombiense Crous  Crous et al. 2004b 

Calonectria gracilipes Crous & 

G.R.A. Mchau 

Crous et al. 1997a Cylindrocladium graciloideum Crous 

& G.R.A. Mchau  

Crous et al. 1997a 

Calonectria gracilis Crous, M.J. 

Wingf. & Alfenas 

Crous et al. 1997b  Cylindrocladium pseudogracile Crous 

M.J. Wingf. & Alfenas 

Crous et al. 1997b 

Calonectria hederae C. Booth & J.S. 

Murray 

Booth & Murray 1960 Cylindrocladium hederae Peerally  Peerally 1991a 

Calonectria hongkongensis Crous Crous et al. 2004b Cylindrocladium hongkongense Crous  Crous et al. 2004b 
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Table 1. (Continued) 

Teleomorph Reference Anamorph Reference 

Calonectria ilicicola Boedjin & 

Reitsma 

Boedjin & Reitsma 1950 Cylindrocladium parasiticum Crous, 

M.J. Wingf. & Alfenas  

Crous et al. 1993d 

Calonectria indusiata Crous Crous 2002 Cylindrocladium theae (Petch) Alfieri 

& Sobers  

Alfieri et al. 1972  

Calonectria insularis C.L. Schoch & 

Crous 

Schoch et al. 1999  Cylindrocladium insulare C.L. 

Schoch & Crous  

Schoch et al. 1999 

Calonectria kyotensis Terashita Terashita 1968 Cylindrocladium floridanum Sobers 

& C.P. Seymour  

Sobers & Seymour 1967  

Calonectria leguminum Crous Crous 2002 Cylindrocladium leguminum Crous  Crous 2002 

Calonectria macroconidialis Crous Crous et al. 1999  Cylindrocladium macroconidiale 

Crous  

Crous et al. 1999 

Calonectria madagascariensis Crous Crous 2002 Cylindrocladium madagascariense 

Crous  

Crous 2002 

Calonectria mexicana C.L. Schoch & 

Crous 

Schoch et al. 1999 Cylindrocladium mexicanum C.L. 

Schoch & Crous  

Schoch et al. 1999 

Calonectria morganii Crous, Alfenas 

& M.J. Wingf. 

Crous et al. 1993a Cylindrocladium scoparium Morgan  Morgan 1892  

Calonectria multiseptata Crous & 

M.J. Wingf. 

Crous et al. 1998b Cylindrocladium multiseptatum Crous 

& M.J. Wingf.  

Crous et al. 1998b 
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Table 1. (Continued) 

Teleomorph Reference Anamorph Reference 

Calonectria naviculata Crous & M.J. 

Wingf. 

Crous et al. 1994a Cylindrocladium naviculatum Crous 

& M.J. Wingf.  

Crous et al. 1994a 

Calonectria ovata D. Victor & Crous Victor et al. 1997 Cylindrocladium ovatum El-Gholl , 

Alfenas, Crous & T.S. Schubert  

El-Gholl et al. 1993a  

Calonectria pauciramosa C.L. 

Schoch & Crous 

Schoch et al. 1999 Cylindrocladium pauciramosum C.L. 

Schoch & Crous  

Schoch et al. 1999 

Calonectria pseudospathiphylli J.C. 

Kang, Crous & C.L. Schoch 

Kang et al. 2001b Cylindrocladium pseudospathiphylli 

J.C. Kang, Crous & C.L. Schoch  

Kang et al. 2001b 

Calonectria pteridis Crous, M.J. 

Wingf. & Alfenas 

Crous et al. 1993c Cylindrocladium pteridis F.A. Wolf  Wolf 1926  

Calonectria pyrochroa Saccardo Rossman 1979a Cylindrocladium ilicicola Boedjin & 

Reitsma  

Boedjin & Reitsma 1950  

Calonectria reteaudii C. Booth Booth 1966  Cylindrocladium reteaudii 

Boesewinkel  

Boesewinkel 1982 

Calonectria rumohrae El-Gholl & 

Alfenas 

El-Gholl et al. 1997  Cylindrocladium rumohrae El-Gholl 

& Alfenas  

El-Gholl et al. 1997 

Calonectria scoparia Ribeiro & 

Matsuoka ex Peerally 

Peerally 1991 Cylindrocladium candelabrum Viegas  Crous 2002  
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Table 1. (Continued) 

Teleomorph Reference Anamorph Reference 

Calonectria spathiphylli El-Gholl, 

J.Y. Uchida, Alfenas, T.S. Schubert, 

Alfieri & A.R. Chase 

El-Gholl et al. 1992 Cylindrocladium spathiphylli 

Schoulties, El-Gholl & Alfieri  

Schoulties et al. 1982  

 

Calonectria spathulata El-Gholl, 

Kimbr. & E.L. Barnard 

Crous & Wingfield 1994 Cylindrocladium spathulatum El-

Gholl, Kimbr. & E.L. Barnard  

Crous & Wingfield 1994   

Calonectria variabilis Crous, B.J.H. 

Janse, D. Victor, G.F. Marais & 

Alfenas 

Crous et al. 1993b  Cylindrocladium variabile Crous, 

B.J.H. Janse, D. Victor, G.F. Marais 

& Alfenas  

Crous et al. 1993b 

  Cylindrocladium angustatum Crous & 

El-Gholl 

Crous et al. 2000 

  Cylindrocladium australiense Crous 

&  K.D. Hyde 

Crous et al. 2006 

  Cylindrocladium canadense J.C. 

Kang, Crous & C.L. Schoch. 

Kang et al. 2001b 

  Cylindrocladium chinense Crous Crous et al. 2004b 

  Cylindrocladium citri Boedjin & 

Reitsma 

Boedjin & Reitsma 1950 

  Cylindrocladium curvatum Boedjin & 

Reitsma 

Boedjin & Reitsma 1950 
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Table 1. (Continued) 

Teleomorph Reference Anamorph Reference 

  Cylindrocladium curvisporum Crous 

& D. Victor 

Victor et al. 1997 

  Cylindrocladium ecuadoriae Crous & 

M.J. Wingf. 

Crous et al. 2006 

  Cylindrocladium gordoniae Leahy, 

T.S. Schubert & El-Gholl 

Leahy et al. 2000 

  Cylindrocladium gracile Boesewinkel Boesewinkel 1982 

  Cylindrocladium hawksworthii 

Peerally 

Peerally 1991b 

  Cylindrocladium hurae (Linder & 

Whetzel) Crous 

Crous 2002 

  Cylindrocladium indonesiae Crous Crous et al. 2004b 

  Cylindrocladium leucothoes El-Gholl, 

Leahy & T.S. Schubert 

El-Gholl et al. 1989 

  Cylindrocladium malesianum Crous Crous et al. 2004b 

  Cylindrocladium multiphialidicum 

Crous, P. Simoneau & J-M. Riséde 

Crous et al. 2004b 
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Table 1. (Continued) 

Teleomorph Reference Anamorph Reference 

  Cylindrocladium pacificum  J.C. 

Kang, Crous & C.L. Schoch 

Kang et al. 2001b 

  Cylindrocladium penicilloides Tubaki Tubaki 1958 

  Cylindrocladium pseudonaviculatum 

Crous 

Crous et al. 2002 

  Cylindrocladium sumatrense Crous Crous et al. 2004b 
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Table 2. Plant families that are hosts to Calonectria species and number of plant host species in each family. 

Host Plant 

family 

Host 

species 

Host Plant 

family 

Host  

species 

Host Plant 

family 

Host species Host Plant 

family 

Host 

species 

Actinidiaceae 2 Cornaceae 1 Malipighiaceae 2 Polypodiaceae 1 

Altingiaceae 1 Crassulaceae 1 Malvaceae 6 Proteaceae 7 

Anacardiaceae 3 Cupressaceae 4 Meliaceae 2 Pteridaceae 1 

Annonaceae 4 Curcurbitaceae 3 Moraceae 2 Rhamnaceae 1 

Aparagaceae 1 Cycadaceae 1 Musaceae 2 Rhizophoraceae 1 

Apiaceae 1 Davalliaceae 1 Myristicaceae 1 Rosaceae 10 

Apocynaceae 2 Dennstaedtiaceae 1 Myrsinaceae 1 Rubiaceae 2 

Aquifoliaceae 4 Dilleniaceae 1 Myrtaceae 31 Ruscaceae 1 

Araceae 5 Dipterocarpaceae 1 Nelumbonaceae 1 Rutaceae 3 

Araliaceae 2 Dryopteridaceae 2 Nepenthaceae 1 Salicaceae 3 

Arecaceae 20 Ebenaceae 1 Nothofagaceae 1 Sapindaceae 4 

Armacariaceae 2 Ericaceae 14 Nymphaeaceae 1 Sapotaceae 3 

Aspleniaceae 1 Euphorbiaceae 6 Oleaceae 1 Sarraceniaceae  1 
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Table 2. (Continued). 

Host Plant 

family 

Host 

species 

Host Plant 

family 

Host  

species 

Host Plant 

family 

Host species Host Plant 

family 

Host 

species 

Asteraceae 5 Fabaceae 57 Onagraceae 2 Saxifragaceae 1 

Berberidaceae 2 Fagaceae 4 Orchidaeae 1 Solanaceae 4 

Betulaceae 1 Ginkgoaceae 1 Oryzeae 1 Sterculiaceae 2 

Bixaceae 1 Juglandaceae 2 Phoeniceae 1 Strelilziaceae 2 

Bromeliaceae 3 Lauraceae 6 Phytolaccaceae 1 Theaceae 1 

Buxaceae 1 Laxmanniaceae 1 Pinaceae 17 Ulmaceae 1 

Caricaceae 2 Lecythidaceae 1 Piperaceae 1 Verbenaceae 1 

Caryophyllaceae 1 Leeaceae 1 Platanaceae 1 Vitaceae 2 

Celastraceae 1 Linaceae 1 Plumbaginaceae 1 Vochysiaceae 1 

Chenopodiaceae 1 Lomariopsidaceae 1 Poaceae 5 Xanthorrhoeaceae 1 

Combretaceae 3 Lythraceae 1 Polygalaceae 1 Zingiberaceae 1 

Convolvulaceae 1 Magnoliaceae 2 Polygonaceae 3   
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Fig. 1. Morphological characteristic used for identification of Calonectria (= 

Cylindrocladium) species. A, B. Macroconidiophores. A. Macroconidiophore of Ca. 

pauciramosa. B. Macroconidiophore of Ca. hongkongensis. C–F. Vesicles. C. Obpyrifrom 

vesicle of Ca. pauciramosa. D. Sphaeropenduculate vesicle of Ca. hongkongensis. E, F. 

Clavate vesicle of Cy. gracile. G–I. Macroconidia. G. Macroconidia of Ca. pauciramosa. H. 

Macroconidia of Ca. hongkongensis. I. Macroconidia of Ca. reteaudii. J. Microconidia of Ca. 

reteaudii. K, L. Fertile branches.  K. Fertile branches with doliiform to reniform phialides of 

Ca. pauciramosa. L.  Fertile branches of Ca. reteaudii with cylindrical to allantoid phialides. 

M. Asci of Ca. hongkongensis with ascospore. N. Ascospores of Ca. hongkongensis. Scale 

bars A, B, M = 20 µm, C–L, N = 10 µm 

 

 

 

 

 

 

 

 

 
 
 



41 

 

 

 

 

 

 
 
 



42 

 

CHAPTER 2 

 

Calonectria (Cylindrocladium) species associated with dying Pinus cuttings 
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ABSTRACT  

Calonectria (Ca.) species and their Cylindrocladium (Cy.) anamorphs are well-known 

pathogens of forest nursery plants in subtropical and tropical areas of the world. An 

investigation of the mortality of rooted Pinus cuttings in a commercial forest nursery in 

Colombia led to the isolation of two Cylindrocladium anamorphs of Calonectria species.  

The aim of this study was to identify these species by using DNA sequence data and 

morphological comparisons.  Two species were identified, namely one undescribed species, 

and Cy. gracile, which is allocated to Calonectria as Ca. brassicae.  The new species, 

Calonectria brachiatica sp. nov., resides in the Ca. brassicae species complex. Pathogenicity 

tests with Ca. brachiatica and Ca. brassicae showed that both are able to cause disease on 

Pinus maximinoi and P. tecunumanii. An emended key is provided to distinguish between 

Calonectria species with clavate vesicles and 1-septate macroconidia. 

 

 

Taxonomic novelties: Calonectria brassicae (Panwar & Bohra) L. Lombard, M.J. Wingf. & 

Crous comb. nov., Calonectria brachiatica L. Lombard, M.J. Wingf. & Crous. sp. nov. 
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INTRODUCTION 

Species of Calonectria (anamorph Cylindrocladium) are plant pathogens associated with a 

large number of agronomic and forestry crops in temperate, sub-tropical and tropical 

climates, worldwide (Crous & Wingfield 1994, Crous 2002). Infection by these fungi gives 

rise to symptoms including cutting rot (Crous et al. 1991), damping-off (Sharma et al. 1984, 

Ferreira 1995), leaf spot (Sharma et al. 1984, Ferreira et al. 1995, Crous et al. 1998), shoot 

blight (Crous et al. 1991, Crous et al. 1998), stem cankers (Sharma et al. 1984, Crous et al. 

1991) and root disease (Mohanan & Sharma 1985, Crous et al. 1991) on various forest trees 

species.    

The first report of Ca. morganii (as Cy. scoparium) infecting Pinus species was by Graves 

(1915), but he failed to re-induce the symptoms and assumed that it was a saprobe. There 

have subsequently been several reports of Cylindrocladium spp. infecting Pinus and other 

conifers, leading to root rot, stem cankers and needle blight (Jackson 1938, Cox 1953, Thies 

& Patton 1970, Sober & Alfieri 1972, Cordell & Skilling 1975, Darvas et al. 1978, Crous et 

al. 1991, Crous 2002). Most of these reports implicated Ca. morganii and Ca. pteridis (as Cy. 

macrosporum or Cy. pteridis) as the primary pathogens (Thies & Patton 1970, Ahmad & 

Ahmad 1982). However, as knowledge of these fungi has grown, together with refinement of 

their taxonomy applying DNA sequence comparisons (Crous et al. 2004, 2006), several 

additional Cylindrocladium species have been identified as causal agents of disease on 

different conifer species. These include Ca. acicola, Ca. colhounii, Ca. kyotensis (= C. 

floridanum), Ca. pteridis, Cy. canadense, Cy. curvisporum, Cy. gracile and Cy. pacificum 

(Hodges & May 1970, Crous 2002, Gadgil & Dick 2004, Taniguchi et al. 2008).   

In a recent survey, wilting, collar and root rot symptoms were observed in Colombian 

nurseries generating Pinus spp. from cuttings.  Isolations from these diseased plants 

consistently yielded Cylindrocladium anamorphs of Calonectria species, and hence the aim 

of this study was to identify them, and to determine if they were the causal agents of the 

disease in Colombian nurseries.  

 

 

 

 
 
 



45 

 

MATERIAL AND METHODS 

Isolates 

Pinus maximinoi and P. tecunumanii rooted cutting plants showing symptoms of collar and 

root rot (Fig. 1) were collected from a nursery close to Buga in Colombia.  Isolations were 

made directly from lesions on the lower stems and roots on fusarium selective medium (FSM; 

Nelson et al. 1983) and malt extract agar (MEA, 2 % w/v; Biolab, Midrand, South Africa). 

After 5 d of incubation at 25 °C, fungal colonies of Calonectria spp. were transferred on to 

MEA and incubated further for 7 d. For each isolate, single conidial cultures were prepared 

on MEA, and representative strains are maintained in the culture collection (CMW) of the 

Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 

South Africa and the Centraalbureau voor Schimmelcultures (CBS), Utrecht, The 

Netherlands. 

Taxonomy 

For morphological identification of Calonectria isolates, single conidial cultures were 

prepared on MEA and synthetic nutrient-poor agar (SNA; Nirenburg 1981). Inoculated plates 

were incubated at room temperature and examined after 7 d. Gross morphological 

characteristics were assessed by mounting fungal structures in lactic acid. Thirty 

measurements at ×1 000 magnification were made for each isolate. The 95 % confidence 

levels were determined for the pooled measurements of the respective species studied and 

extremes for structure sizes are given in parentheses. Optimal growth temperatures were 

determined between 6–36 ºC at 6 ºC intervals in the dark on MEA for each isolate. Colony 

reverse colours were determined after 7 d on MEA at 24 ºC in the dark, using the colour 

charts of Rayner (1970) for comparison.  

DNA phylogeny  

Calonectria isolates were grown on MEA for 7 d. Mycelium was then scraped from the 

surfaces of the cultures, freeze-dried, and ground to a powder in liquid nitrogen, using a 

mortar and pestle. DNA was extracted from the powdered mycelium as described by 

Lombard et al. (2008). A fragment of the β-tubulin gene region was amplified and sequenced 

using primers T1 (O’Donnell & Cigelnik 1997) and CYLTUB1R (Crous et al. 2004) and a 

fragment for the histone H3 (HIS3) gene region was sequenced using primers CYLH3F and 

CYLH3R (Crous et al. 2004).  
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The PCR reaction mixture used to amplify the different loci consisted of 2.5 units FastStart 

Taq polymerase (Roche Applied Science, USA), 10× PCR buffer, 1–1.5 mM MgCl2, 0.25 

mM of each dNTP, 0.5 µm of each primer and approximately 30 ng of fungal genomic DNA, 

made up to a total reaction volume of 25 µL with sterile distilled water.  

Amplified fragments were purified using High Pure PCR Product Purification Kit (Roche, 

USA) and sequenced in both directions. For this purpose, the BigDye terminator sequencing 

kit v. 3.1 (Applied Biosystems, USA) and an ABI PRISMTM 3100 DNA sequencer (Applied 

Biosystems) were used. All PCRs and sequencing reactions were performed on an Eppendorf 

Mastercycler Personal PCR (Eppendorf AG, Germany) with cycling conditions as described 

in Crous et al. (2006) for each locus.  

Sequences generated were added to other sequences obtained from GenBank 

(http://www.ncbi.nlm.nih.gov) and were assembled and aligned using Sequence Navigator v. 

1.0.1 (Applied Biosystems) and MAFFT v. 5.11 (Katoh et al. 2005), respectively. The 

aligned sequences were then manually corrected where needed.  

PAUP (Phylogenetic Analysis Using Parsimony, v. 4.0b10; Swofford 2002) was used to 

analyse the DNA sequence datasets. A partition homogeneity test (Farris et al. 1994) and a 70 

% reciprocal bootstrap method (Mason-Gamer & Kellog 1996) were applied to evaluate the 

feasibility of combining the data sets. Phylogenetic relationships were estimated by heuristic 

searches based on 1 000 random addition sequences and tree bisection-reconnection, with the 

branch swapping option set on ‘best trees’ only.  

All characters were weighted equally and alignment gaps were treated as missing data. 

Measures calculated for parsimony included tree length (TL), consistency index (CI), 

retention index (RI) and rescaled consistence index (RC). Bootstrap analysis (Hillis & Bull 

1993) was based on 1 000 replications.  All sequences for the isolates studied were analysed 

using the Basic Local Alignment Search Tool for Nucleotide sequences (BLASTN, Altschul 

et al. 1990). The phylogenetic analysis included 19 partial gene sequences per gene, 

representing eight Calonectria species (Table 1) closely related to the isolates studied. 

Calonectria colombiensis was used as the outgroup taxon. All sequences were deposited in 

GenBank and the alignments in TreeBASE (http://treebase.org).  
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A Markov Chain Monte Carlo (MCMC) algorithm was used to generate phylogenetic trees 

with Bayesian probabilities using MrBayes v. 3.1.1 (Ronquist & Huelsenbeck 2003). Models 

of nucleotide substitution for each gene were determined using Mrmodeltest (Nylander 2004) 

and included for each gene partition. Four MCMC chains were run simultaneously from 

random trees for one million generations and sampled every 100 generations. The first 800 

trees were discarded as the burn-in phase of each analysis and posterior probabilities 

determined from the remaining trees.  

Pathogenicity tests 

In order to test the pathogenicity of the Calonectria spp. collected in this study, profusely 

sporulating isolates CMW 25293, representing Ca. brachiatica, CMW 25296 and CMW 

25297, both representing Ca. brassicae, were used for inoculations onto rooted cuttings of P. 

maximinoi. Isolate CMW 25299, representing Ca. brassicae and isolates CMW 25302 and 

CMW 25307 representing Ca. brachiatica were used for inoculations onto rooted cuttings of 

P. tecunumanii. Trees used for inoculation were between 0.5–1 m in height and 10–50 mm 

diam at the root collar. Trees were maintained in a greenhouse under controlled conditions 

prior to inoculation, so that they could become acclimatised and to ensure that they were 

healthy. Sixty trees for each Pinus spp. were used and an additional 60 trees were used as 

controls. This resulted in a total of 180 trees in the pathogenicity tests. 

Inoculations were preformed in the greenhouse by making a 5 mm diam wound on the main 

stems of plants with a cork borer to expose the cambium. The cambial discs were replaced 

with an MEA disc overgrown with the test fungi taken from 7 d old cultures.  The inoculum 

discs were placed mycelium side facing the cambium and the inoculation points were sealed 

with Parafilm to reduce contamination and desiccation. Control trees were treated in a similar 

fashion but inoculated with a sterile MEA plug.   

Six weeks after inoculation, lesion lengths on the stems of the plants were measured. The 

results were subsequently analysed using SAS Analytical Programmes v. 2002. Re-isolations 

were made from the edges of lesions on the test trees to ensure the presence of the inoculated 

fungi.  

RESULTS 

DNA phylogeny 
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For the β-tubulin gene region, approx. 580 bases were generated for each of the isolates used 

in the study (Table 1).  The adjusted alignment included 19 taxa with the outgroup, and 523 

characters including gaps after uneven ends were removed from the beginning of each 

sequence. Of these characters, 459 were constant and uninformative. For the analysis, only 

the 64 parsimony informative characters were included. Parsimony analysis of the aligned 

sequences yielded five most parsimonious trees (TL = 231 steps; CI = 0.870; RI = 0.799; RC 

= 0.695; results not shown).  

Sequences for the histone gene region consisted of approx. 460 bases for the isolates used in 

the study and the adjusted alignment of 19 taxa including the outgroup, consisted of 466 

characters including gaps. Of these characters, 391 were excluded as constant and parsimony 

uninformative and 79 parsimony informative characters included. Analysis of the aligned 

data yielded one most parsimonious tree (TL = 290 steps; CI = 0.845; RI = 0.807; RC = 

0.682; results not shown). 

The partition homogeneity test showed that the β-tubulin and histone data set could be 

combined (P = 0.245). The 70 % reciprocal bootstrap method indicated no conflict in tree 

topology among the two partitions, resulting in a combined sequence data set consisting of 

993 characters including gaps for the 19 taxa (including outgroup). Of these, 850 characters 

were constant and parsimony uninformative and excluded from the analysis. There were 143 

characters in the analysis that were parsimony informative. Parsimony analysis of the 

combined alignments yielded one most parsimonious tree (TL = 526 steps; CI = 0.848; RI = 

0.791; RC = 0.670), which is presented in Fig. 2 (TreeBase S2568).  

All the isolates obtained from the Pinus spp. used in this study grouped in the Ca. brassicae 

species complex with a bootstrap (BP) value of 96 and a low Bayesian posterior probability 

(PP) of 0.70. This clade was further subdivided into two clades. The first clade (BP = 64, PP 

below 0.70) representing Ca. brassicae, included the type of Cy. gracile and Cy. clavatum. It 

also included three isolates (CMW 25297, CMW 25296 and CMW 25299) from P. 

maximinoi and P. tecunumanii. The second clade (BP = 98, PP = 0.82) accommodated 

Calonectria isolates (CMW 25293, CMW 25298, CMW 25302 and CMW 25307), 

representing what we recognize as a distinct species. The consensus tree obtained with 

Bayesian analysis showed topographical similarities with the most parsimonious tree as 

indicated in Fig. 2.  
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Pathogenicity tests 

All plants inoculated with Calonectria spp. in this study developed lesions. Lesions included 

discolouration of the vascular tissue with abundant resin formation, 6 wk after inoculation.  

Lesions on the control trees were either non-existent or small, representing wound reactions. 

There were significant (p < 0.0001) differences in lesion lengths associated with individual 

isolates used on P. maximinoi (Fig. 3). Comparisons of the lesion lengths clearly showed that 

Ca. brassicae (CMW 25297) produced the longest average lesions (av. = 30.04 mm) 

compared to the undescribed Calonectria sp. (CMW 25293) (av. = 14.41mm). The other Ca. 

brassicae isolate (CMW 25296) produced an average lesion length of 15.30 mm. Lesions on 

the control trees were an average of 8.84 mm and significantly (p < 0.0001) smaller than 

those on any of the trees inoculated with the test fungi (Fig. 5).   

Results of inoculations on P. tecunumanii were similar to those on P. maximinoi. Thus, Ca. 

brassicae (CMW 25299) (av. = 20.64 mm) produced the longest lesions compared with the 

undescribed Calonectria sp. (CMW 25302; av. = 18.63 mm and CMW 25307; av. = 15.20 

mm). The lesions on the P. tecunumanii control trees were also significantly (p < 0.0001) 

smaller (av. = 8.82 mm) than those on any of the trees inoculated with the test fungi. Re-

isolations from the test trees consistently yielded the inoculated fungi and no Calonectria spp. 

were isolated from the control trees. 

Taxonomy 

Isolates CMW 25296, CMW 25297 and CMW 25299 clearly represent Ca. brassicae based 

on morphological observations (Crous 2002) and comparisons of DNA sequence data.  

Isolates CMW 25293, CMW 25298, CMW 25302 and CMW 25307 represent an undescribed 

species closely related to Ca. brassicae but morphologically distinct. Species of 

Cylindrocladium (1892) represent anamorph states of Calonectria (1867) (Rossman et al. 

1999), and therefore this fungus is described as a new species of Calonectria, which 

represents the older generic name for these holomorphs: 

Calonectria brachiatica L. Lombard, M.J. Wingf. & Crous, sp. nov.  MycoBank MB512998. 

Fig. 4 

Etymology: Name refers to the lateral branches on the conidiophore stipes .  

Stipa extensiones septatum, hyalinum, 134–318 µm, in vesiculam clavatum, 5–7 µm diam terminans. Conidia 

cylindrica, hyalina, 1–2-septata, utrinque obtusa, (37–)40–48(–50) × 4–6 µm. 
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Teleomorph unknown. Conidiophores with a stipe bearing penicillate suites of fertile 

branches,  stipe extensions, and terminal vesicles; stipe septate, hyaline, smooth, 32–67 × 6–8 

µm; stipe extensions septate, straight to flexuous, 134–318 µm long, 4–5 µm wide at the 

apical septum, terminating in a clavate vesicle, 5–7 µm diam; lateral stipe extensions (90˚ to 

the axis) also present. Conidiogenous apparatus 40–81 µm long, and 35–84 µm wide; 

primary branches aseptate or 1-septate, 15–30 × 4–6 µm; secondary branches aseptate, 10–23 

× 3–5 µm; tertiary branches and additional branches (–5), aseptate, 10–15 × 3–4 µm, each 

terminal branch producing 2–6 phialides; phialides doliiform to reniform, hyaline, aseptate, 

10–15 × 3–4 µm; apex with minute periclinal thickening and inconspicuous collarette. 

Macroconidia cylindrical, rounded at both ends, straight, (37–)40–48(–50) × 4–6 µm (av. = 

44 × 5 µm), 1(–2)-septate, lacking a visible abscission scar, held in parallel cylindrical 

clusters by colourless slime. Mega- and microconidia not seen.   

Specimens examined : Colombia, Valle del Cauca, Buga, from Pinus maximinoi, July 2007, 

M.J. Wingfield, Herb. PREM 60197, holotype of Ca. brachiatica, culture ex-type CMW 

25298 = CBS 123700; Valle del Cauca, Buga, from P. tecunumanii, July 2007, M.J. 

Wingfield, culture CMW 25303 = CBS 123699; Valle del Cauca, Buga, from P. tecunumanii, 

July 2007, M.J. Wingfield, (Herb. PREM 60198) culture CMW 25341 = CBS 123703. 

Cultural characteristics: Colonies fast growing with optimal growth temperature at 24 ºC 

(growth at 12–30 ºC) on MEA, reverse amber (13k) to sepia (13i) brown after 7 d; abundant 

white aerial mycelium with moderate to extensive sporulation; chlamydospores extensive 

throughout the medium. 

Substrate: Pinus maximinoi, P. tecunumanii. 

Distribution: Colombia. 

Notes: The anamorph state of Ca. brachiatica can be distinguished from C. gracile, C. 

pseudogracile and C. graciloideum by its shorter macroconidia. Another characteristic 

distinguishing Ca. brachiatica is the formation of lateral branches not reported for C. gracile 

or other closely related species.  

Calonectria brassicae (Panwar & Bohra) L. Lombard, M.J. Wingf. & Crous, comb. nov.  

MycoBank MB513423. Fig. 5 
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Basionym. Cylindrocladium brassicae Panwar & Bohra, Indian Phytopathology 27: 425. 

1974. 

= Cylindrocarpon gracile Bugnic., Encycl. Mycologique 11: 162. 1939. 

≡ Cylindrocladium gracile (Bugnic.) Boesew., Trans. Brit. Mycol. Soc. 78: 554. 1982.  

= Cylindrocladium clavatum Hodges & L.C. May, Phytopathology 62: 900. 1972. 

Notes: Both the names Ca. clavata and Ca. gracilis and are already occupied, hence the 

oldest available epithet is that of Cy. brassicae (Crous 2002). 

DISCUSSION 

Results of this study show that Calonectria species are important pathogens in pine cutting 

nurseries in Colombia.  In this case, two species were discovered, the one newly described 

here as Ca. brachiatica and the other representing Ca. brassicae. Both of the species were 

pathogenic on P. maximinoi and P. tecunumanii.   

The description of Ca. brachiatica from P. maximinoi and P. tecunumanii adds a new species 

to the Ca brassicae species complex, which already includes six other Calonectria species 

(Crous 2002, Crous et al. 2006). This species can be distinguished from the other species in 

the complex by the formation of lateral branches on the macroconidiophores and the presence 

of a small number of 2-septate macroconidia. Macroconidial dimensions (av. = 44 × 5 µm) 

are also smaller then those of Ca. brassicae (av. 53 × 4.5 µm).  

A recent study of Calonectria spp. with clavate vesicles by Crous et al. (2006) attempted to 

resolve the taxonomic status of these species, and added two new species to the group. 

Crosses among isolates of Ca. brachiatica and isolates of Ca. brassicae, did not result in 

sexual structures in the present study, and teleomorphs are rarely observed in this species 

complex.   

Hodges & May (1972) reported Ca. brassicae (as Cy. clavatum) from several Pinus species 

in nurseries and plantations in Brazil. Subsequent studies based on comparisons of DNA 

sequence data revealed Cy. clavatum to be a synonym of Cy. gracile (Crous et al. 1995, 1999, 

Schoch et al. 2001). Calonectria brassicae (as Cy. gracile) is a well-known pathogen of 

numerous plant hosts in subtropical and tropical areas of the world. However, in Colombia, 
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this plant pathogen has been isolated only from soil (Crous 2002, Crous et al. 2006). This 

study thus represents the first report of Ca. brassicae infecting Pinus spp. in Colombia.    

Pathogenicity tests with isolates of Ca. brachiatica and Ca. brassicae clearly showed that 

they are able to cause symptoms similar to those observed in naturally infected plants. Both 

P. maximinoi and P. tecunumanii were highly susceptible to infection by Ca. brassicae. This 

supports earlier work of Hodges & May (1972) in Brazil, where they reported a similar 

situation. In their study, seven Pinus spp. were wound-inoculated with Ca. brassicae and this 

resulted in mortality of all test plants within 2 wk. Although they did not include P. 

maximinoi and P. tecunumanii in the study, they concluded that the pathogen is highly 

virulent and regarded it as unique in causing disease symptoms in established plantations of 

Pinus spp. No disease symptoms associated with C. brachiatica or Ca. brassicae were seen 

in established plantations in the present study and we primarily regard these fungi as nursery 

pathogens, of which the former species is more virulent than the latter.  

The use of SNA (Nirenburg 1981) rather than carnation leaf agar (CLA; Fisher et al. 1982) 

for morphological descriptions of Calonectria species represents a new approach employed 

in this study. Previously, species descriptions for Calonectria have typically been conducted 

on carnation leaf pieces on tap water agar (Crous et al. 1992). However, carnation leaves are 

not always readily available for such studies and SNA, a low nutrient medium, also used for 

the related genera Fusarium and Cylindrocarpon species identification (Halleen et al. 2006, 

Leslie & Summerell 2006), provides a useful medium for which the chemical components are 

readily available. Another advantage of using SNA is its transparent nature, allowing direct 

viewing through a compound microscope as well as on mounted agar blocks for higher 

magnification (Leslie & Summerell 2006). In this study, it was found that the Calonectria 

isolates sporulate profusely on the surface of SNA and comparisons of measurements for 

structures on SNA and those on CLA showed no significant difference. However, CLA 

remains important to induce the formation of teleomorph structures in homothallic isolates or 

heterothallic isolates for which both mating types are present.  

Key to Calonectria species with clavate vesicles and predominantly 1-septate 

macroconidia (To be inserted in Crous 2002, p. 56, couplet no. 2) 

2. Stipe extention thick-walled; vesicle acicular to clavate .............................. Ca. avesiculata 

2. Stipe extention not thick-walled; vesicle clavate  ........................................................... 3 
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3. Teleomorph unknown  .................................................................................................... 4 

3. Teleomorph readily formed  ........................................................................................... 7 

4. Macroconidia always 1–(–2)-septate  ............................................................................. 5 

4. Macroconidia 1–(–3)-septate  ......................................................................................... 6 

5. Macroconidia 1-septate, (38–)40–55(–65) × (3.5–)4–5(–6) µm, av. = 53 × 4.5 µm;  

lateral stipe extensions absent  ........................................................................ Ca. brassicae 

5. Macroconidia 1–(–2)-septate, (37–)40–48(–50) × 4–6 µm, av. = 44 × 5 µm; lateral stipe 

extensions present  ......................................................................................  Ca. brachiatica 

6. Macroconidia (48–)57–68(–75) × (6–)6.5(–7) µm, av. = 63 × 6.5 µm   Cy. australiense 

6. Macroconidia (45–)48–55(–65) × (4–)4.5(–5) µm, av. = 51 × 4.5 µm  ..  Cy. ecuadoriae 

7. Macroconidial state absent; megaconidia and microconidia present  ....  Ca. multiseptata  

7. Macroconidial state present  ........................................................................................... 8 

8. Teleomorph homothallic ................................................................................................. 9 

8. Teleomorph heterothallic .............................................................................................. 10 

9. Perithecia orange; macroconidia av. size = 45 × 4.5 µm  ..........................  Ca. gracilipes 

9. Perithecia red; macroconidia av. size = 56 × 4.5 µm  ....................................  Ca. gracilis 

10. Perithecia orange; macroconidia av. size = 32 × 3 µm  ...............................  Ca. clavata 

10. Perithecia red-brown; macroconidia av. size = 30 × 3 µm  .........................  Ca. pteridis 
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Table 1. Strains of Calonectria (Cylindrocladium) species included in the phylogenetic analyses (TreeBase S2568) 

Species Isolate number
1
 β–tubulin

2
 Histone H3

2
 Host Origin Collector 

Ca. avesiculata  CBS 313.92T AF333392 DQ190620 Ilex vomitoria USA S.A. Alfieri 

Ca. brachiatica sp. nov. CMW 25293 FJ716710 FJ716714 P. maximinoi Colombia M.J. Wingfield 

 
CMW 25298 (= 

CBS 123700)T 
FJ696388 FJ696396 P. maximinoi Colombia M.J. Wingfield 

 CMW 25302 FJ716708 FJ716712 P. tecunumanii Colombia M.J. Wingfield 

 CMW 25307 FJ716709 FJ716713 P. tecunumanii Colombia M.J. Wingfield 

Ca. brassicae com. nov. CBS 111869T AF232857 DQ190720 Argyreia sp. South East Asia  

 CBS 111478 DQ190611 DQ190719 Soil Brazil A.C. Alfenas  

 CMW 25296 FJ716707 FJ716711 P. maximinoi Colombia M.J. Wingfield 

 
CMW 25297; 

CBS123702 
FJ696387 FJ696395 P. maximinoi Colombia M.J. Wingfield 

 
CMW 25299; 

CBS123701 
FJ696390 FJ696398 P. tecunumanii Colombia M.J. Wingfield 

Ca. clavata   CBS 114557T AF333396 DQ190623 
Callistemon 

viminalis 
USA N.E. El-Gholl 

 CBS 114666 DQ190549 DQ190624 Pinus caribaea Brazil C.S. Hodges 
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Table 1. (Continued) 

Species Isolate number
1
 β–tubulin

2
 Histone H3

2
 Host Origin Collector 

Cy. clavatum (= Cy. gracile) CBS111776T AF232850 DQ190700 Pinus caribaea Brazil C.S. Hodges 

Ca. colombiensis  CBS 12221 AY725620 AY725663 Soil Colombia M.J. Wingfield 

Cy. ecuadoriae CBS 111406T DQ190600 DQ190705 Soil Ecuador M.J. Wingfield 

Ca. gracilipes  CBS 111141T DQ190566 DQ190644 Eucalyptus sp. Colombia M.J. Wingfield 

 CBS 115674 AF333406 DQ190645 Soil Colombia M.J. Wingfield 

Ca. gracilis  CBS 111284 DQ190567 DQ190647 Manilkara sp. Brazil P.W. Crous 

 CBS 111807T AF232858 DQ190646  Brazil  

1CBS: Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; CMW: culture collection of the Forestry and Agricultural 

Biotechnology Institute (FABI), University of Pretoria Pretoria, South Africa; 2GenBank accession numbers. TEx-type culture. 
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Fig. 1. Collar and root rot on Pinus maximinoi and P. tecunumanii. A. Girdled stem of P. 

maximinoi. B. Exposed P. maximinoi root collar showing discolouration and resin exudation. 

C, D. Exposed P. tecunumanii root collars showing girdling and discolouration of the 

cambium.   
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Fig. 2. The most parsimonious tree obtained from a heuristic search with 1000 random 

addition of the combined β-tubulin and Histone H3 sequence alignments. Scale bar shows 10 

changes and bootstrap support values from 1 000 replicates are shown above the branches. 

Bayesian posterior probabilities are indicated below the branches. Red lines indicates 

bootstrap support value of 100 and posterior probability value of 1.00. Bold lines indicate 

branches present in the Bayesian consensus tree. The tree was rooted with Calonectria 

colombiensis (CBS 112221). 
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Fig. 3. Histogram showing mean lesion lengths induced by each isolate on P. maximinoi and 

P. tecunumanii. Calonectria brassicae is represented by CMW 25296, CMW 25297 and 

CMW 25299. Ca. brachiatica is represented by CMW 25293, CMW 25302 and CMW 

25307. 
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Fig. 4. Calonectria brachiatica. A. Macroconidiophore with lateral branching stipe 

extentions. B, C. Clavate vesicles. D.  Fertile branches. E. Macroconidia. Scale bars  A = 20 

µm, B–E = 10 µm. 
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Fig. 5. Calonectria brassicae. A. Macroconidiophore on SNA. B. Macroconidia. C. Fertile 

branches. D, E. Clavate vesicles. Scale bars A = 20 µm, B–E = 10 µm.  
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