CHAPTER THREE

Nestmate recognition and the role of cuticular hydrocarbons in the African termite raiding ant *Pachycondyla analis*

Abstract

Cuticular hydrocarbons (CHCs) are used as a means of chemical communication among nestmates in many ant species and they may play a role in the discrimination of nestmates and non-nestmates. Using the mandible opening response (MOR) bioassay, the response of the African termite raiding ant *Pachycondyla analis* to CHC extracts of nestmates and non-nestmates was explored. The ants were able to distinguish between chemical cues from controls, nestmates and non-nestmates. Based on a CHC recognition threshold, aggression was demonstrated between non-nestmates. Gas chromatography (GC) and GC-mass spectrometric analyses showed that the CHC components of the different ant colonies had chain lengths ranging from C₈ to C₃₁, comprising mainly n-alkanes, alkenes and methyl branched alkanes, with the n-alkanes occurring in the same proportions among all colonies. The ants were successfully grouped according to their colonies of origin using discriminant analysis. Using the MOR, nestmate recognition was demonstrated in *P. analis* and, it appeared that some of the cues involved in nestmate recognition could be encoded in the alkenes and methyl-branched alkanes.
Introduction

Among social insects, nest recognition enables integration within a colony and prevents non-colony members both conspecifics and heterospecifics from exploiting the colony’s resources (Crozier and Pamilo, 1996). The presence of non-nestmates (intruders) usually elicits active defensive behaviours (Hölldobler and Wilson, 1990; Vander Meer and Morel, 1998). Nestmate recognition in social insects can be adaptive because workers obtain benefits from aiding nestmates and discriminating against non-nestmates, provided that the nestmates are more closely related to each other than to members of other conspecific colonies (Hölldobler, 1995). The cues involved can be of genetic or environmental origin and can differ between populations (Pirk et al., 2001) and season even in species which form super-colonies like Formica exsecta (Katzerke et al., 2006). The primary cues of communication in most insects are chemical in nature (Wyatt, 2003), which are perceived by olfaction or contact chemoreception (Breed, 1998).

Ants are among the dominant social insects in the world and they employ complex forms of chemical communication. Over 100 exocrine glands have been described in social insects with more than half of these found in ants (Billen, 2004). An array of signals and information on an individual’s species, sex, age, caste, status and relatedness as well as alarm and trail pheromones are encoded in the secretions from these glands (Howard and Blomquist, 2005).

Fielde (1901) proposed that nestmate discrimination signals were encoded in cuticular lipids, particularly those hydrocarbons that coat all insects. Since then, the role of cuticular hydrocarbons (CHCs) has been a subject of much debate and various studies have attempted to determine their functions in chemical communication of insects. Examples of these roles include: as cues for recognition at various levels such as the individual (e.g. D’Ettore and Heinze, 2005), nestmate (e.g. Wagner et al., 2000; Akino et al., 2004, Martin et al., 2008a and Martin et al., 2008b), and species (e.g. Neems and Butlin, 1995; Dapporto, 2007), kin (Arnold et al., 1996); and as cues for reproduction and division of labour (e.g. Dietemann et al., 2003; Martin and Drijfhout, 2009). Most recently CHCs have been found to be responsible for enforcing altruism in ants (Smith et al., 2009). In adult insects CHCs are synthesised internally in the oenocytes.
(Blomquist and Dilwith, 1985), and hence are under strong genetic influence reflecting an insect’s genetic makeup (Lockey, 1991). After synthesis they are transferred to the cuticle by lipophorin (Schal et al., 2001). CHCs are made up of a homologous series of long straight chain saturated alkanes which could be modified by addition of methyl groups or the introduction of double bonds (Jackson and Morgan, 1993).

The ant *Pachycondyla analis* is a specialised termite predator, which is widely distributed in sub-Saharan Africa (Lévieux, 1966). This ant species, commonly referred to as ‘Matabele ants’, organises group raids on termite species that mainly belong to the sub-family Macrotermiteinae (Longhurst et al., 1978). There is no information on CHCs of *P. analis* and the role they play in nestmate recognition. This chapter presents results from the study of CHCs of different colonies of *P. analis* and the role they may play in nestmate recognition.

Materials and methods

Ants

Colonies of *P. analis* were excavated from Mpala Research Centre (0°17’N, 37°52’E) Central Kenya, 250 Km north of Nairobi (Figure 1.2), as described in Chapter 1 and transported to the Animal Rearing and Containment Unit (ARCU) located on the icipe Duduville campus Nairobi, Kenya.

In the laboratory, ant colonies were provided with nesting boxes (20 × 20 × 20 cm) made of aluminium with a lid which could be opened to observe the nest. The base of the nesting box was partially filled with ant’s soil (which served as nesting site). The box was attached to a 1.0 × 1.5 m foraging arena made of Perspex also partially filled with soil which was previously washed with water and sterilised by drying in an oven overnight (Figure 2.2). Ants were fed on live termites (mainly from the subfamily Macrotermiteinae) twice daily that were collected around the Duduville campus of icipe in Nairobi, Kenya.

Extraction of CHCs for mandible opening response (MOR) bioassay

Cuticular hydrocarbons from five (2 major and 3 minor) ants per colony were extracted for use as sources of chemical stimuli in the mandible opening response (MOR)
bioassay. Ants previously in contact with their own colony odour were selected for extraction of CHCs. The ants were first killed by placing them on ice for 15 min and CHC extracted by washing them in 500 µl of pentane for 10 min. The solvent was evaporated under a gentle stream of nitrogen, and the residue dissolved in 50 µl of pentane and stored at -20°C until required for analysis. Twenty four extracts were prepared from each of the three colonies making a total of 72 extracts. A solvent control (pentane) was also subjected to the same extraction procedure. An average quantity corresponding to the extract of one ant (10µl) was poured unto the tip of a Pasteur pipette using a Hamilton syringe. The pipette tip was held downwards until the solvent evaporated from the tip, leaving the residue of the extract around the lower and outer part of the pipette.

Mandible Opening Response (MOR) Bioassay

Ants were removed from their colonies and transferred into 20 ml glass vials and were then immobilised by placing them on ice. The ants were then harnessed using methods previously described (Guerrieri and d’Ettorre, 2008). The ants were kept undisturbed in a room for 2 hours to recover and to habituate to the harness.

Aggressive responses were quantified by presenting four different types of stimuli, viz., a) solvent extract only (CTRL); b) extract from colony 1 (C1); c) extract from colony 2 (C2); d) extract from colony 3 (C3) to the test ants from colonies 1, 2 and 3. For a test ant, extracts from individuals of its own colony served as nestmate stimuli, while extracts from individuals of other colonies served as non-nestmate stimuli. All ants were tested with all the extracts and the control.

In each trial, one stimulus was presented to a previously harnessed individual ant. A test individual was removed from its resting place and allowed to habituate for 2 min prior to presenting it with the test stimulus. After habituation its antennae were gently touched for 5 sec with the tip of the stimulating pipette (Figure 3.1 a). When it opened its mandibles continuously i.e. displacing them from the resting position, it was recorded as aggression (score = 1) (Figure 3.1b). If the individual did not open its mandibles and instead antennate continuously the response was recorded as non-aggressive (score = 0) (Figure 3.1 c) following the protocol of Guerrieri and d’Ettorre (2008). After presenting a stimulus, the test ant was returned to its resting place. Stimuli
were presented at random to the individual ants after an interval of 20 min to allow for the recovery of antennal receptors. From each of the three colonies studied, 24 ants chosen at random were tested, with each of the four stimuli, thus a total of 72 ants were tested.

Figure 3.1 Immobilised ants showing (a) stimulation of ant antenna (b) mandible opening (aggression) and (c) mandibles closed with continuous antenation (non-aggression).

Extraction of Cuticular Hydrocarbons (CHC) for Chemical Analyses

Cuticular hydrocarbons were extracted in a similar way to those used for MOR, but this time each ant was extracted in 1 ml of solvent (pentane). Ants were also grouped based on their colonies of origin and worker size (major and minor). Another colony (colony 4) was also added for comparison purposes. The solvent was evaporated under a gentle stream of nitrogen, and the residue re-suspended in 100 µl of pentane and stored at -20 °C until required for analysis. Six extracts were prepared from each of the four colonies making a total of 24 extracts. A solvent control (pentane) was also subjected to the same extraction procedure.

Chemical analysis

Gas chromatographic (GC) analysis was carried out on a HP 5890 series II gas chromatograph equipped with a flame ionisation detector (FID) and a HP-5 column (30 m × 0.25mm ID × 0.25µm film thickness). Nitrogen was used as a carrier gas with a column pressure of 46 psi and injection temperature of 250°C. One µl of sample was
injected in the splitless mode, with the oven temperature programmed at 60°C for 5 min and at 10°C/min to 280°C, and held at this temperature for 13 min. GC-MS analysis was carried on an Agilent Technologies 7890A gas chromatograph equipped with a capillary column HP-5 MS (30 m × 0.25mm ID × 0.25µm film thickness) and coupled to 5795A mass spectrometer. One µl of sample was injected in the splitless mode, and helium was used as the carrier gas at 1.0 ml min⁻¹. The oven temperature was 35°C held for 5 min, increased to 280°C at 10°C min⁻¹, and then held at this temperature for 15 min. The analysis was carried out at 70eV in the electron impact ionization mode. All the n-alkanes, 2-methylheptadecane, 1-heptadecene, (Z)-9-tricosene and squalene were identified by GC-MS co-injection and comparison of mass spectral data with those of authentic standards. The other methyl-branched alkanes and alkenes were tentatively identified using EI diagnostic ions (El-Sayed, 2009).

Chemicals. n-Undecane, n-Dodecane, n-Tridecane, n-Tetradecane, n-Pentadecane, n-Hexadecane, and n-Heptadecane with the purity of > 99% were obtained from Aldrich, Gillingham, Dorset, UK. n-Octadecane, n-Nonadecane, n-Eicosane, n-Heneicosane, n-Docosane, n-Tricosane, n-Tetracosane, n-Pentacosane, n-Hexacosane, n-Heptacosane, n-Nonacosane, and n-Hentriacontane were provided by Dr. Peter Teal, USDA/ARS-CMAVE, Florida, USA. 1-Heptadecene, (Z)-9-tricosene, Squalene and 2-methylheptadecane were provided by Dr. Antony Hooper, Rothamsted Research, Harpenden, UK

Statistical analyses

Logistic regression was performed on the dichotomous data (1 vs. 0) of the aggressive response of ants. Differences in aggression response of ants to the control, nestmate and non-nestmate extracts were tested. The levels of aggression between colonies were tested using Kruskal Wallis ANOVA. The relative areas of the peaks of the individual compounds in the CHC profile for each ant were standardised to 100%. The standardised peak areas were then transformed following the method proposed by Aitchinson (1986):

\[Z_{ij} = \ln\left(\frac{Y_{ij}}{g(Y_j)}\right) \]
where Z_{ij} is the standardised peak area i for individual ant j, Y_{ij} is the observed peak area i for individual ant j, and $g(Y_j)$ is the geometric mean of all peak areas for ant j included in the analyses. A stepwise discriminant function analysis (stepwise DA) was performed on the transformed variables followed by canonical discriminant analysis on the selected peaks to determine whether the colonies, major and minor workers could be separated on the basis of their CHC profiles. Pairwise generalised square distances between colonies and classification error rates were also calculated. All statistical analyses were carried out using SAS 9.1. Statistical software at an α level of 0.05.

Results

Mandible opening response bioassay (MOR)

The number of ants that opened their mandibles when presented with the control (solvent) was significantly lower when compared with an extract ($Wald’s \chi^2 = 58.34$, $df = 1$, $P < 0.0001$). There was significantly less mandible opening when ants were presented with a nestmate extract compared with an extract from a non-nestmate ($Wald’s \chi^2 = 101.24$, $df = 6$, $P < 0.0001$). In general, the levels of aggression (MOR) increased when an ant was presented with a non-nestmate stimulus compared to the nestmate extract and a control ($Wald’s \chi^2 = 132.19$, $df = 2$, $P < 0.0001$, Figure 3.2). Ants from colony 1 were slightly more aggressive than those from colonies 2 and 3 (Figure 3.2a), although aggression between colonies were not significantly different ($Kruskal Wallis ANOVA$, $\chi^2 = 5.08$, $df = 2$, $P = 0.0815$).

CHC profiles of *P. analis*

GC-MS analysis revealed that the CHCs of *P. analis* were a complex mixture of alkanes, alkenes, and methyl branched alkanes ranging from C$_8$-C$_{31}$ (Figure 3.3 and Table 3.1). The major components varied between colonies, with (Z)-9-tricosene being present in varying proportions in all the colonies. The proportions of alkanes in the extracts remained constant while there was variation in the proportions of the alkenes and the methyl-branched alkanes between the colonies (Figure 3.4).
Figure 3.2 Mandible opening response (MOR) ±SE for, (A) ants from colony 1, (B) ants from colony 2 and (C) ants from colony 3 to the presented extracts. □ = Control solvent (pentane), ■ = CHC extract from colony 1, ▪ = CHC extract from colony 2 and ▼ = CHC extract from colony 3. Ants responded significantly differently to test stimulus and control ($Wald's \chi^2 = 58.34, P < 0.0001$). Response of ants to the extract of nestmate and those of non-nestmate also differed significantly ($Wald's \chi^2 = 101.24, df = 6, P < 0.0001$). Same letters on bars represent means that are not significantly different.
Figure 3.3 Total ion chromatograms for the cuticular hydrocarbons of ants from the colonies studied. Colony 1 = CHC extracts from colony 1 ants, Colony 2 = CHC extracts from colony 2 ants, Colony 3 = CHC extracts from colony 3 ants. (see Table 3.1 for list of compounds).

CHC differentiation among colonies

Ants from the different colonies could be distinguished using the transformed peak areas of the 35 identified compounds (Figure 3.3, and Table 3.1) that differed among the colonies. Using the stepwise DA, 17 compounds clustered the ants according to their colonies of origin ($Wilk's \lambda = 0.0007, df = 34, 10, P < 0.0001$). Discriminating compounds selected by the stepwise DA were: n-undecane, 3-methylundecane, 3,6-
dimethylundecane, 3,8-dimethyl decane, pentadecane, heptadecane, 3-methylheptadecane, 2-methylheptadecane, octadecane, nonadecane, heneicosane, tricosane, 1-nonadecene, 9-nonadecene, 9-methyl nonadecane, squalene and hentriacontane. Using these 17 compounds, ants were grouped into their colony of origin ($Wilk's \lambda = 0.0000, df. = 34, 10, P < 0.0001$) with function 1 explaining 89.5 % of the variation separating colony 3 from both colonies 1 and 2, and function 2 explaining 7.3 % further separating colony 3 from 2 and 1 and colony 4 from 1, 2 and 3 (Figure 3.5). All the ants were grouped into their colonies correctly based on their CHC profiles. Generalised square distances between colonies showed that colony 1 was much closer to colony 2 than colony 3, and colony 2 much closer to colony 1 than colony 3. Colony 4 was also closer to 1 and 2 than it is to colony 3.

![Figure 3.4](image)

Figure 3.4 Proportions ± SE of the different groups of hydrocarbons ($\mathbb{Z} = n$-Alkanes, \mathbb{A} = Alkenes and \mathbb{M} = Methyl branched alkanes) in the cuticular hydrocarbon profiles of *P. analis* ants from colonies 1, 2, 3 and 4, error bars represent mean proportions ± SE
Table 3.1 Compounds identified from the cuticular hydrocarbon profiles of *Pachycondyla analis*, along with retention indices and diagnostic ions #.

<table>
<thead>
<tr>
<th>Peak No</th>
<th>Compound</th>
<th>Retention index</th>
<th>Diagnostic ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n-Octane</td>
<td>800</td>
<td>114</td>
</tr>
<tr>
<td>2</td>
<td>n-Undecane</td>
<td>1100</td>
<td>156</td>
</tr>
<tr>
<td>3</td>
<td>5-methylundecane</td>
<td>1154</td>
<td>43, 57, 71, 85, 99, 112</td>
</tr>
<tr>
<td>4</td>
<td>3-methylundecane</td>
<td>1169</td>
<td>43, 57, 71, 85, 99, 112, 141, 170</td>
</tr>
<tr>
<td>5</td>
<td>3,8-dimethyldecane</td>
<td>1063</td>
<td>57, 71, 85, 99, 113, 141, 155, 170</td>
</tr>
<tr>
<td>6</td>
<td>n-Tridecane</td>
<td>1300</td>
<td>184</td>
</tr>
<tr>
<td>7</td>
<td>n-Pentadecane</td>
<td>1500</td>
<td>212</td>
</tr>
<tr>
<td>8</td>
<td>3-methylpentadecane</td>
<td>1572</td>
<td>43, 57, 71, 85, 99, 113, 127, 141, 155, 168, 197, 226</td>
</tr>
<tr>
<td>9</td>
<td>2-methylheptadecane</td>
<td>1765</td>
<td>43, 57, 71, 85, 99, 113, 127, 141, 155, 169, 183, 195, 211, 239, 254</td>
</tr>
<tr>
<td>10</td>
<td>1-Heptadecene</td>
<td>1679</td>
<td>83, 97, 111, 125, 196, 210, 239</td>
</tr>
<tr>
<td>11</td>
<td>8-Heptadecene</td>
<td>1679</td>
<td>41, 55, 69, 83, 97, 111, 125, 140, 238</td>
</tr>
<tr>
<td>12</td>
<td>5-Octadecene</td>
<td>1789</td>
<td>43, 55, 69, 83, 97, 111, 125, 139, 166, 180, 195, 224, 252</td>
</tr>
<tr>
<td>13</td>
<td>n-Octadecane</td>
<td>1800</td>
<td>254</td>
</tr>
<tr>
<td>14</td>
<td>9-Nonadecene</td>
<td>1875</td>
<td>43, 55, 69, 83, 97, 111, 125, 139, 153, 167, 238, 266</td>
</tr>
<tr>
<td>15</td>
<td>n-Nonadecane</td>
<td>1900</td>
<td>268</td>
</tr>
<tr>
<td>16</td>
<td>n-Eicosane</td>
<td>2000</td>
<td>282</td>
</tr>
<tr>
<td>17</td>
<td>n-Heneicosane</td>
<td>2100</td>
<td>296</td>
</tr>
<tr>
<td>18</td>
<td>1-Docosene</td>
<td>2195</td>
<td>43, 57, 69, 83, 97, 111, 125, 280, 308</td>
</tr>
<tr>
<td>19</td>
<td>n-Docosane</td>
<td>2200</td>
<td>310</td>
</tr>
<tr>
<td>20</td>
<td>(Z)-9-Tricosene</td>
<td>2270</td>
<td>43, 55, 69, 83, 97, 111, 125, 139, 153, 223, 237, 294, 322</td>
</tr>
<tr>
<td>21</td>
<td>n-Tricosane</td>
<td>2300</td>
<td>324</td>
</tr>
<tr>
<td>22</td>
<td>Unidentified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1-Tetracosene</td>
<td>2396</td>
<td>43, 57, 69, 85, 97, 113, 309, 338</td>
</tr>
<tr>
<td>24</td>
<td>n-Tetracosane</td>
<td>2400</td>
<td>338</td>
</tr>
<tr>
<td>25</td>
<td>Cyclotetracosane</td>
<td>2445</td>
<td>43, 57, 69, 83, 97, 111, 125, 139, 153, 207, 392</td>
</tr>
<tr>
<td>26</td>
<td>9-Pentacosene</td>
<td>2465</td>
<td>43, 57, 69, 85, 97, 113, 141, 169, 197, 326, 350</td>
</tr>
<tr>
<td>27</td>
<td>n-Pentacosene</td>
<td>2500</td>
<td>352</td>
</tr>
<tr>
<td>28</td>
<td>(Z)-12-Pentacosene</td>
<td>2496</td>
<td>43, 57, 69, 83, 97, 125, 236, 257, 290, 322, 350</td>
</tr>
<tr>
<td>29</td>
<td>1-Hexacosene</td>
<td>2593</td>
<td>43, 57, 69, 83, 97, 111, 125, 139, 336, 364</td>
</tr>
<tr>
<td>30</td>
<td>n-Hexacosane</td>
<td>2600</td>
<td>366</td>
</tr>
<tr>
<td>31</td>
<td>n-Heptacosane</td>
<td>2700</td>
<td>380</td>
</tr>
<tr>
<td>32</td>
<td>n-Octacosane</td>
<td>2800</td>
<td>394</td>
</tr>
<tr>
<td>33</td>
<td>Squalene</td>
<td>2663</td>
<td>41, 55, 69, 81, 95, 109, 121, 136, 148, 341, 367, 410</td>
</tr>
<tr>
<td>34</td>
<td>n-Nonacosene</td>
<td>2900</td>
<td>408</td>
</tr>
<tr>
<td>35</td>
<td>n-Hentriacontane</td>
<td>3100</td>
<td>436</td>
</tr>
</tbody>
</table>

Only compounds that were represented by at least 0.5 % peak area in the Total Ion Chromatogram are represented on the table.
CHC differentiation among major and minor workers

Major and minor workers from the four different colonies could be distinguished using the transformed peak areas of the identified compounds (Figure 3.6) that differ among the colonies. Using the stepwise DA, 12 variables clustered the ants according to their sizes and colonies of origin (Wilk’s $\lambda = 0.000$, $df = 31, 7$, $P < 0.0001$). Discriminating compounds selected by the stepwise DA were: octane, undecane, 3,8-dimethyl decane, pentadecane, 3-methylpentadecane, nonadecane, eicosane, (Z)-9-tricosene, cyclotetracosane, heptacosane, nonacosane and 17-pentatriacontene.

![Discriminant Function Analysis](image)

Figure 3.5 Discriminant function analysis of ants from the four colonies of *P. analis* based on relative proportions of 17 cuticular hydrocarbons determined in stepwise fashion. □ = Colony 1, ▲ = Colony 2, ● = Colony 3 and △ = Colony 4. All individuals were clearly grouped into their respective colonies based on their CHC profiles.
Using these 12 compounds, major and minor worker ants were successfully grouped into their sizes and colony of origin (Wilk’s $\lambda = 0.0000$, $df = 31$, $P < 0.0001$) with function 1 explaining 82.3% of the variation separating colony 3 from both colonies 1, 2 and 4, and function 2 explaining 17.7% further separating colony 4 from 2, 1 and 3. (Figure 3.6). All the ants were grouped into their colonies correctly based on their CHC profiles.

Figure 3.6 Discriminant function analysis of major and minor ants from the four colonies of *P. analis* based on relative proportions of 12 cuticular hydrocarbons determined in stepwise fashion ■ = major worker colony 1, ▲ = minor worker colony 1, ▲ = major worker colony 2, □ = minor worker colony 2, × = major worker colony 3, ● = minor worker colony 3, △ = major worker colony 4 and ■ = minor worker colony 4. All individuals were clearly grouped into their respective colonies based on their CHC profiles, except for an overlap between minors from colony one and majors from colony 4.

Discussion

The use of a ‘yes or no’ aggression bioassay was demonstrated, using mandible opening as a measure of aggression/acceptance between different colonies of *P. analis*. These
results show that *P. analis* discriminate between nestmates and non-nestmates since they were significantly more aggressive to extracts from non-nestmates (Figure 3.2). The colonies were indeed discrete in such a way that non-nestmates received different aggression levels. Results here are in agreement with those previously reported for queen adoption in the invasive Argentine ant (*Linepithema humile* (Mayr.)) that responded strongly in similar assays (Vásquez *et al*., 2008). Thus, confirming that the MOR is a sensitive assay that can be used effectively to set recognition or aggression thresholds in ants. Recognition thresholds are usually based on a template odour that is characteristic of a given colony, with ants deciding to accept or reject an individual when it smells greater than a minimum similarity threshold or below a dissimilarity threshold (Reeve, 1989).

Aggression towards nestmates of similar CHC profile could be either due to errors arising while reacting to recognition cues as demonstrated in the invasive Argentine ant (*L. humile*) by Vásquez et al. (2008) or due to lower threshold to avoid false-positive identification. In the present study, the MOR bioassay was successfully used to demonstrate and measure inter-colony aggression at the colony level in *P. analis*.

Using GC-MS, thirty five different compounds were identified in the CHCs of different colonies of *P. analis*. These were mainly alkanes, alkenes, and methyl-branched alkanes, as previously reported for other ant species (Dietemann *et al*., 2003; Lucas *et al*., 2005; Martin *et al*., 2008b), with (Z)-9-tricosene occurring in variable proportions between colonies. In *P. analis* n-alkanes occurred roughly in the same proportion in all colonies, with the alkenes and methyl-branched alkanes present in different proportions between the colonies (Figure. 3.4) unlike in *Formica* ants where n-alkanes varied between colonies (Akino *et al*., 2004; Martin *et al*., 2008b). In the genus *Pachycondyla*, species like *P. villosa* (Lucas *et al*., 2004) and *P. apicalis* (Soroker *et al*., 1998) have been shown to produce varying amounts of n-alkanes and alkenes. These differential amounts may be influenced by environmental conditions including temperature and relative humidity, as reported in a previous study on the desert harvester ant (*Pogonomyrmex barbatus*) (Wagner *et al*., 2001).

Nestmate recognition cues in *P. analis* could be encoded in the alkenes and methyl-branched alkanes in the CHCs. (Z)-9-Alkenes have been reported as nestmate
recognition and as aggression cues in Formica ants (Akino et al., 2004; Martin et al., 2008a and b). They also serve as recognition cues in the desert ant Cataglyphis niger (Lahav et al., 2001). Nestmate recognition cues for P. analis identified in this study might serve two purposes, colony defence which is the traditional role of nestmate recognition and group raiding behaviour which may require recognition of nestmates when foraging as well as, for task allocation in and outside the nest and to prevent attacking the wrong individuals (nestmates instead of termites). The roles played by the alkenes and methyl-branched alkanes in nestmate recognition and aggression in P. analis need to be further investigated by manipulating the CHC profiles of ants using synthetic compounds and using them in bioassays to see whether ants respond differently to the manipulated nestmate or non-nestmate CHCs.

The results from the discriminant function analysis clearly showed that clear cut differences existed in the CHC profiles between colonies of P. analis. The chosen compounds (n-undecane, 3-methylundecane, 3,6-dimethylundecane, 3,8-dimethyl decane, pentadecane, heptadecane, 3-methylheptadecane, 2-methylheptadecane, octadecane, nonadecane, heneicosane, tricosane, 1-nonadecene, 9-nonadecene, 9-methyl nonadecane, squalene and hentriacontane) can effectively be used to group the ants into their respective colonies correctly. The colony specific nature of CHCs in P. analis confirmed findings in other ant species (e.g. Lahav et al., 2001; Akino et al., 2004; Lucas et al., 2004; Denis et al., 2006; Martin et al., 2008a; b). These clear groupings, based on CHC profiles, can explain the degree of aggression between different colonies. Colony 1 was further away from colonies 2 and 3, hence the high aggression, likewise colony 2 and 3 were closer together than colony one. These clear differences could explain the differential acceptance of workers from different colonies competing for the same resources. Intruders or encroachers are usually killed upon encounter. By contrast the invasive Argentine ant (L. humile) displays minimal nestmate discrimination and individuals which are non-nestmates are often integrated into an alien colony (Vásquez et al., 2008).

Colony odour recognition cues in ants are phenotypic and are derived either from the environment (diet, nesting sources) or produced endogenously (genetically determined or both) (Vander Meer and Morel, 1998) and the relative importance can vary between populations (Pirk et al., 2001). Whatever the source is, it is predicted that each colony
will display a uniform odour that constitutes a *gestalt*. However, in some studies, it has been shown that this is not always the case because different castes within a colony may possess different CHC profiles which could code different information within the colony (Dietemann *et al.*, 2003; Martin and Drijfhout, 2009). In the present study, CHCs in *P. analis* are colony specific. A further investigation of the different groups of workers in a colony based on their body sizes (major and minor) revealed differences in their CHC profiles (Figure 3.6). This is a clear indication that CHCs are not only colony specific but also worker group specific. This finding further strengthens the assertion that CHCs are also involved in task allocation within and outside the nest during raids.

In summary, the MOR bioassay was successfully used to measure responses of *P. analis* workers that show differences based on colony of origin. Aggression was found to be associated with colony odour, mainly in the CHCs. As in other ant species, CHCs in *P. analis* comprise three main groups; *n*-alkanes, alkenes, and methyl-branched alkanes. The *n*-alkanes were consistent between colonies with the alkenes and methyl alkanes serving as possible nestmate recognition cues. Also CHCs are worker size specific, with majors having an odour profile which is different from those of minor workers.

Acknowledgement

Thanks to S. P. Kuate and S. Subramanian for their comments on an earlier version of the manuscript, Daisy Salifu for statistical advice, Raphael Eraguy for assistance with ants’ excavation in the field. Funding for this study was provided in part by the Dutch SII project 2004/09 Activity No. 10799 to *icipe*, DAAD and UP provided a PhD fellowship to AAY and a Claude Leon fellowship to CWWP. The South African National Research Foundation provided support for the work in Pretoria.
References

