

Chapter 4

Microsatellite markers for the red band needle blight pathogen, *Dothistroma septosporum*

ABSTRACT

Twelve microsatellite markers were developed for population analyses of the fungal pathogen, *Dothistroma septosporum*. Intersimple sequence repeat polymerase chain reaction (ISSR-PCR) and an enrichment protocol (fast isolation by amplified fragment length polymorphism of sequences containing repeats [FIASCO]) were both used to identify 28 unique microsatellite regions in the genome. From 22 primer pairs designed, 12 were polymorphic. These markers, screened on two populations representing 42 isolates, produced 40 alleles across all loci with an allelic diversity of 0.09 - 0.76 per locus. Cross-species amplification showed variable success with *Dothistroma rhabdoclinis* and *Mycosphaerella dearnessii* and some sequence variation within isolates of *Dothistroma pini*. These markers will be used to further study the population structure and diversity of *Dothistroma septosporum*.

Published as: Barnes I, Cortinas MN, Wingfield MJ, Wingfield BD (2008) Microsatellite markers for the red band needle blight pathogen, *Dothistroma septosporum*. *Molecular Ecology Resources* 8: 1026-1029.

INTRODUCTION

Dothistroma septosporum is one of the most important needle blight pathogens of *Pinus* spp. Infection is typified by distinct red bands on needles giving rise to the common name, red band needle blight. *Dothistroma septosporum* is thought to be native to the high cloud regions of Central America (Evans 1984). Its presence in remote areas in indigenous blue pine forests in the Himalayas prompted Ivory (1994) to suggest that it might also be native to these areas. The global spread of the pathogen is, however, attributed to the expanding pine trade in the early 1960's, particularly in the Southern Hemisphere, where *Pinus radiata* has been most severely affected (Gibson 1972).

The population biology of *D. septosporum* is poorly understood. In New Zealand, random amplified polymorphic DNA (RAPD) analyses have suggested that the pathogen population is clonal (Hirst *et al.* 1999). Studies of mating type distribution supported this view showing only one mating type present in New Zealand and Australia, but both occurring in other parts of Africa, Europe and the Americas (Groenewald *et al.* 2007). Understanding the population diversity and potentially, patterns of spread of *D. septosporum*, could help to reduce its impact on pine plantations and forests. Thus, the aim of this study was to develop polymorphic microsatellite markers that can be used effectively to differentiate between populations of this pathogen and assess levels of polymorphism and diversity within and between these populations. Cross-species amplification of these markers was also tested on the morphologically similar and closely related species *Dothistroma pini* (Barnes *et al.* 2004), *Dothistroma rhabdoclinis* and *Mycosphaerella dearnessii*.

MATERIALS AND METHODS

Two techniques were used to screen for microsatellites: intersimple sequence repeat polymerase chain reaction (ISSR-PCR), which involves random amplification of

microsatellite regions using primers with repeat sequences (Barnes *et al.* 2001), and fast isolation by amplified fragment length polymorphism of sequences containing repeats (FIASCO), an enrichment protocol using biotinylated oligonucleotides and streptavidin-coated beads (Zane *et al.* 2002), with modifications (M-FIASCO) in Cortinas *et al.* (2006) (see supplementary material Figure 2).

Total DNA for all isolates was extracted using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). For the ISSR-PCR's, 20 reactions generated with different combinations of the primers 5'DHB(CGA)₅, 5'DBD(CAC)₅, 5'HV(GT)₅G, 5'DDB(CCA)₅, 5'HVH(GTG)₅, 5'NDB(CA)₇C and 5'NDV(CT)₈ (see NC-IUB 1986, for sequence nomenclature), were carried out using DNA from a South African (CMW 8658) isolate of *D. septosporum*. Twelve reactions that showed clear banding patterns ranging in size from 200-2000 bp were purified using Sephadex G-50 (Sigma-Aldrich) in Centri-sep columns (Princeton Separations Inc.) and cloned using the pGEM®-T Easy Vector System (Promega). Approximately 200 clones were sequenced using the universal plasmid primer T7 (and SP6 for clones greater than 1000 bp). Sequencing reactions were prepared using Big Dye v3.1 (Applied Biosystems) and run on an ABI PRISMTM 3100 capillary autosequencer (Applied Biosystems). Genome "walking" was performed as described by Burgess *et al.* (2001) on sequences where the regions flanking the microsatellites were too short to design primers.

For M-FIASCO, approximately 1 μ g of pooled DNA from isolates collected in Canada (CMW14823), Australia (CMW6846) and South Africa (CMW11372) was used in the combined digestion/ligation reaction. Enrichment of the amplified DNA was carried out using biotinylated probes (CAC)₇, (AAG)₇, (TCC)₇, (CA)₁₀ and (CT)₁₀. PCR amplicons of the enriched DNA were cloned using the TOPO TA Cloning[®] Kit for Sequencing (Invitrogen) and sequenced using the supplied M13 primers.

In total, 22 sets of primers were designed. Polymorphism for these primers was determined by sequencing the PCR amplicons obtained for the isolates of *D. septosporum* from Australia, Chile, South Africa and Poland (Table 1, Figure 1). PCR reactions were performed in 25 µL reaction volumes, consisting of 5-10 ng DNA template, 300 nM of the forward and reverse primer, 0.2 mM of each dNTP, 1U Expand High Fidelity Taq (Roche Molecular Biochemicals) and 1.2x Expand HF buffer containing 1.5 mM MgCl₂. The PCR conditions consisted of a 2 min denaturation step at 96 °C followed by 10 cycles of 30 s at 94 °C, 30 s at the specified annealing temperature for each primer and 45 s at 72 °C. A further 25 cycles

were carried out with a 5 s extension after each cycle and the annealing time altered to 40 s. A final elongation step was carried out for 10 min at 72 °C. One primer pair consistently yielded multiple bands and was discarded.

RESULTS

Nine sequences containing microsatellite regions were found using ISSR-PCR and 77 (from 469 clones) using M-FIASCO. After genome "walking" and removal of duplicate clones, three and 19 microsatellite regions were recovered, respectively, for each method. Of the 22 sets of primers that were designed, one primer pair consistently yielded multiple bands and was discarded. Of the remaining 21 primers, 12 were polymorphic and nine were monomorphic (Table 1).

Screening of the 12 polymorphic markers on populations from South Africa (N=24) and Poland (N=18) produced 40 alleles across all loci ranging from 2-6 alleles per locus (Table 2). Allelic diversity (Nei 1973) was between 0.09 and 0.76 per locus with an average heterozygosity of 0.46 (Table 2). The isolates from Poland showed higher gene diversity (H = 0.36) than those from South Africa (H = 0.2) and were also monomorphic for primer pair Doth_E as opposed to Doth_ I, O and DS1 for South Africa (Table 2). Pairwise linkage disequilibrium across loci was tested using MULTILOCUS 1.2 (Agapow & Burt 2001). Significant deviation (P<0.05) from equilibrium was observed in 46 (70 %) of the 66 pairwise comparisons. This departure from linkage disequilibrium is not, however, uncommon in haploid ascomycetes because of their predominantly asexual mode of reproduction.

In cross-species amplifications, 14 of the 21 markers amplified the corresponding microsatellite regions in *D. pini*, 10 in *D. rhabdoclinis* and 18 in *M. dearnessii* (Table 1). Considerable sequence variation and length polymorphism was observed between isolates of *D. septosporum* and *D. pini* in the polymorphic primer sets Doth_F and Doth_O as well as in the monomorphic primer sets Doth_A, Doth_D and Doth_P (Table 1). These markers could, therefore, be used in phylogenetic studies or species diagnosis. In the Genescan analyses locus Doth_A was monomorphic for allele 124 in *D. septosporum* and monomorphic for allele 114 in *D. pini* (data not shown). This primer would thus be useful as an internal diagnostic marker in genescan analyses, to screen for the presence of either of these two closely related species. The polymorphic markers developed in this study will provide a valuable tool for the future investigation of the global population diversity and structure of *Dothistroma septosporum*.

REFERENCES

- Agapow PM, Burt A (2001) Indices of multilocus linkage disequilibrium. *Molecular Ecology Notes* **1:** 101–102.
- Barnes I, Crous PW, Wingfield MJ, Wingfield BD (2004) Multigene phylogenies reveal that red band needle blight of *Pinus* is caused by two distinct species of *Dothistroma*, *D*. *septosporum* and *D. pini*. *Studies in Mycololgy* **50**: 551–565.
- Barnes I, Gaur A, Burgess T, Roux J, Wingfield BD, Wingfield MJ (2001) Microsatellite markers reflect intra-specific relationships between isolates of the vascular wilt pathogen, *Ceratocystis fimbriata*. *Molecular Plant Pathology* 2: 319–325.
- Burgess T, Wingfield MJ, Wingfield BD (2001) Simple sequence repeat markers distinguish among morphotypes of *Sphaeropsis sapinea*. *Applied and Environmental Microbiology* **67**: 354–362.
- Cortinas M-N, Barnes I, Wingfield BD, Wingfield MJ (2006) Polymorphic microsatellite markers for the *Eucalyptus* fungal pathogen *Colletogloeopsis zuluensis*. *Molecular Ecology Notes* **6**: 780–783.
- Evans HC (1984) The genus Mycosphaerella and its anamorphs Cercoseptoria, Dothistroma and Lecanosticta on pines, CMI Mycological Paper no. 153. Surrey U.K.: Commonwealth Agricultural Bureaux.
- Gibson IAS (1972) Dothistroma blight of *Pinus radiata*. *Annual Review of Phytopathology* **10:** 51–72.
- Groenewald M, Barnes I, Bradshaw RE, Brown A, Dale A, Groenewald JZ, Lewis KJ, Wingfield BD, Wingfield MJ, Crous PW (2007) Characterization and worldwide distribution of the mating type genes in the Dothistroma needle blight pathogens. *Phytopathology* 97: 825–834.
- Hirst P, Richardson TE, Carson SD, Bradshaw RE (1999) *Dothistroma pini* genetic diversity is low in New Zealand. *New Zealand Journal of Forest Science* **29:** 459–472.
- Ivory MH (1994) Records of foliage pathogens of *Pinus* species in tropical countries. *Plant Pathology* **43:** 511–518.
- Nei M (1973) Analysis of gene diversity in subdivided populations. *Proceedings of the National Academy of Sciences of the USA* **70:** 3321–3323.
- Nomenclature Committee of the International Union of Biochemistry (NC-IUB) (1986) Nomenclature for Incompletely Specified Bases in Nucleic Acid Sequences:

Recommendations 1984. *Proceedings of the National Academy of Sciences of the United States of America* **83:** 4–8.

Zane L, Baegelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. *Molecular Ecology* **11:** 1–16.

Table 1. Polymorphisms, sequence variation and cross-species amplification of the primers¹ designed from the ISSR-PCR[†] and FIASCO methods for *Dothistroma septosporum*.

		D. septosporum				D. pini		D. rhabdoclinis	M. dearnessii
Primers	Repeat motif	CMW ² 10247 Chile	CMW 6846 Australia	CMW 13010 Poland	CMW 11356 South Africa	CMW 6400 U.S.A.	CMW 23769 Ukraine	CMW 12519 Germany	CMW 9985 France
Doth A	(CCA)	9 ³	9	9	9	4*	4*	9	9
Doth_C	(GA)	5	5	5	5	BS	>500 bp, no microsats	5	5
Doth_D	(CAGC)	4	4	4	4	3 *	3*	-	4
Doth_E	(CATGAA)	13	13	6	9	13	-	13	13
Doth_F	(GA)	20	20	20	21	4	4*	20	20
Doth_G	(GA)	12	13	11	11	-	13	11	13
Doth_I	(GA)	10	9	11	10	10	12	11	9
Doth_J	(TG)	13	17	15	13	17	-	15	17
Doth K	(GT)	-	20	9	21	6	6	-	-
Doth L	(GT)	81	72	50	78	BS	BS	BS	BS
Doth_M	(CAGCACA)	5	5	6	6	7	10	6	7
Doth_O	(TGG)	10	10	10	8	5*	6*	-	10
Doth P	(CGA)	5	5	5	5	0*	0*	-	5
Doth_S	(GT)	8	7	7	7	-	-	-	-
Doth_DS1†	(AC)	10	10	13	9	5	-	>600 bp, no microsats	10
Doth_DS2†	(CA)	13	13	15	14	BS	BS	-	13

¹ Primers that produced monomorphic alleles throughout all isolates are not shown.

² All isolates used in this study are maintained in the culture collection (CMW) of the Forestry and Agricultural Biotechnology Institute (FABI),

University of Pretoria, South Africa.

- ³ The number of times the microsatellite motif is repeated as determined via sequencing.
- = multiple bands or no amplification during PCR reactions
- BS (bad sequence) = positive PCR amplification although sequences were poor and thus unreadable
- * = variation in sequence compared to those of D. septosporum (see GenBank no. EF591826/28/30/32/34 vs. EF591827/29/31/33/35)

Table 2. Primer details, core sequences, allelic properties and gene diversity (H, Nei 1973) of 12 polymorphic, PCR-based microsatellite markers developed for *Dothistroma septosporum*. Gene diversity was calculated separately for a population from Poland (N=18) and South Africa (N=24).

			Size of					No. of	
Locus			cloned allele	GenBank	Ta	Individuals	Allele size	observed	
name	Primer sequence (5?–3?)	Repeat motif	(bp)	Accession no.	(ºC)	genotyped	range (bp)	alleles	Н
Doth_E	EF-(VIC): GAC ATG AAC GAG AAC TGC ATG C	(CATGAA) ₁₃	254	EF591838	58	42	210 - 228	2	0.172
	ER: GCC AAA CTG CTC ACA AGT CTG								
Doth_F	FF-(PET): GAT ATG GAA TGA TGG AGG TGG C	(GA) ₉ TT (GA) ₃ AA (GA) ₆ : (GA) ₂₀	174	EF591830	58	42	175 - 177	2	0.500
_	FR: CGG AAC ATT TGT CAG CGA GGG								
Doth_G	GF-(PET): GAG TGG AAA GTA AGG GCT GAG G	(GA) ₄ GG (GA) ₈ : (GA) ₁₃	184	EF591839	58	42	183 - 186	2	0.245
	GR(2): GAA TTG CTG TAC TGG AAG ACC*								
Doth_I	IF-(VIC): GCA CTG CAA TTC GAC TGG GAC	(GA) ₁₀	305	EF591841	58	42	303 - 307	3	0.582
	IR: CGC AGC AAG GCT TAG TGA ATC A								
Doth_J	JF-(NED): GAC TCC TCG GTC TGA TTC GTG	(TG) ₁₇	193	EF591842	58	42	186 - 190	3	0.602
	JR: CAG CGA CGC CAT CAC GTA CTC								
Doth_K	KF-(6-FAM): GGT CTC AAG CTG ACG TGA TCG	(GT) ₅ CT (GT) ₁₄	357	EF591843	60	42	334 - 362	5	0.640
	KF(2): GCG AAG GAT GTC ACA GTC GAG*		271						
	KR: CGA GTC TGA GTT GGT CAC GAG								
Doth_L	LF-(NED): GTA AGG TCG CAG TCG GTG AAG	(GT)72 with GC/AT/CT point mutations	393	EF591844	60	42	338 - 402	5	0.553
	LR: CCT AGA CTG TAA GCA CGC GTC								
Doth_M	MF-(PET): GAC TAA CAA CGC CTT CAA CAG T	(CAGCACA) ₆	230	EF591845	58	42	214 - 228	2	0.337
	MR: GAA AGG TGG TAC ATA CGT CGG								
Doth_O	OF-(VIC): CGA GAA GCG ACG TGC ATC CTC	TGG TCG (TGG) ₃ CGG (TGG) ₅ : (TGG)	1 204	EF591832	58	42	194 - 200	2	0.091
	OR: GCC ACG AGA GCG TCT TGT ACT								
Doth_S	SF: GTC GAT GTC ACG TTG AGA TGG	(GT) ₇	331	EF591849	58	42	242 - 272	5	0.518
	SF(2): CGT ACA TGG TCA TCA GCG CTG*		168						
	SR-(6-FAM): GGT TAA TCC GAC CGT GAT GC								
Doth_DS1	DS1-F-(NED): GGA CAT TTG ACA GCT GTC CG	(CA) ₉	144	EF591850	57	42	141 - 151	3	0.564
	DS1-R: GCA TGA GCG CGA GCT CAG AC								
Doth_DS2	DS2-F: GCC GCA ACC TCG GAT CAA GC	(CA) ₁₃	380	EF591851	58	42	365 - 401	6	0.757
	DS2-F(2): GCT ACT GCC GGT GTA TAG CC*		189						
	DS2-R (VIC): CCC AAT GAC GTC TCA CCG TT								
No of isola	ites							-	42
Mean H									0.46

* Primers designed during genome walking

Figure 1. Microsatellite polymorphims and sequence variations observed within and between isolates of *D. septosporum* and *D. pini* using the microsatellite markers designed in this study. "*" Indicates that there is still sequence flanking the region of the locus which is represented. "-" Indicates gaps that are present in the aligned sequence.Primer sequences for the locus are indicated in bold.

D. septosporum	= (A)
D. pini	= (B)
CMW10247 Chile	=(1)
CMW6846 Australia	= (2)
CMW13010 Poland	=(3)
CMW11356 RSA	= (4)
CMW13122 Germany	= (5)
CMW6400 Michigan, USA	= (6)
CMW23769 Ukraine	= (7)
CMW14820 Minnesota, USA	= (8)

PRIMER A

Microsatellite polymorphism between D. septosporum and D. pini

PRIMER D

Sequence variation between D. septosporum and D. pini

- (B) **CGCAGCAGTTGTCATCGATTG**GAGACGGTGTCGATCGTCTTCAAAGATTCATACAGATCTCGAAACTCGAAATTGAAAGGCTCTCTTCTATAGCTGA
- (A) GTCCGTAGACTCCGGTAAATGGCTTCATTGATTCACTGTGTACGAAGGTCAGGAGCATGACATCCATTACATCTTGGGTAAGGAGGTAAGTCGGGGC

- (A) GTTTGCGTTTCGAGCTTTCTGCGAGTCTGTAGAAGTATGCGCGTCCAAGTCAATAGACCACTTACCAGTCTCCGGATTCCTTTTTCTGCTTTTCTG
 (B) TGTTTCCGATTCGAGCTTTCTGCAAGTTTGTGGAAGTATGCGCGTCCAAGTCAATAGACTACTTACCAGTCTCCGAATTGTTTTTCGGCTTTTTCCT

(A) TTGGTTCGACATTGTCCTCAAGGGTCTCTCATGACTAT**GACAATCTCATGCTGTGCCAC**

(B) TTCGTTCGACATTGTCCTCAAGGACCTCTCATGGCGAT**GACAATCTCATGCTGTGCCAC**

PRIMER E

- (2) *TGAAGGCGAC\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA
- (4) *TGAAGGCGAC\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\-----\
- (3) *TGAAGGCGAC\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\CATGAA\-----\-----\-----\-----\------

- (4) -----\CCCTTTCTCTACTTCCCTTCTCAGCCGTGCCGTTCCGCTCACGACCATCAAACCGTCCTATTCTGAT*
- (3) -----CTCTACTTCCCTTCTCAGCCGTGCCGTTCCGCTCACGACCATCAAACCGTCCTATTCTGAT*
- (5) -----\CCCTTTCTCTACTTCCCTTCTCAGCCGTGCCGTTCCGCTCACGACCATCAAACCGTCCTATTCTGAT*

PRIMER F

- (B) GATATGGAATGATGGAGGTGGCGGAGT----GAGAGA----GGTGAGAGAGAGAAAGAATCTAAGAGAGGG------
- (B) -----CAGTAGTC----CAGTAGTC-CTGACCCTCGCTGACAAATGTTCCG

PRIMER G

(2) AGTAAGGAGTGCGATCCTTTTGGTCTTCCAGTACAGCAATTCTGTACATTTACATTGGAGGTTTTTCATTTCCGCGTGACGAGGAGTGAAAAGCGC

(1) AGTAAGGAGTGCGATCCTTTTGGTCTTCCAGTACAGCAATTCTGTACATTTACATTGGAGGTTTTTCATTTCCGCGTGACGAGGAGTGAAAAGCGC

(4) AGTAAGGAGTGCGATCCTTTTGGTCTTCCAGTACAGCAATTCGGTCCATTTACATTGGAGGCTTTTCATTCCCGCGTGACGAGGAGTGAAAGCAGT

(3) AGTAAGGAGTGCGATCCTTTTGGTCTTCCAGTACAGCAATTCGGTACATTTACATTGGAGGCTTTTCATTCCCGCGTGACGAGGAGTGAAAGCAGT

- (2) GTTTCGATCTCTCGTCTATCTTCGCCAGGGGATATGGG----TAATGTCTCGCGCTTGATTTGACGGCTAAGTTGCGAGACTAG
- (1) GTTTCGATCTCCGCCTATCTTCGCCAGGGGATATGGG----TAATGTCTCGCGCTTGATTTGACGGCTAAGTTGCGAGACTAG
- (4) GTCTCGATCTCTCGTCTATCTTCGCCCGGGGATATGGG----TAATGTCTCGCGCTTGATTTGACGGCTAAGTTGCGAGACTAG
- (3) GTCTCGATCTCTCGTCTATCTTCGCCCGGGGATATGGGTTGGGTAATGTCTCGCGCTTGATTTGACGGCTAAGTTGCGAGACTAG

PRIMER I

- (4) *CGGTGGGCTACATACTGGGGTTGAGATT\GA\GA\GA\GA\GA\GA\GA\GA\GA\GA\GA\--\--\GTCGTGGTTAGATATCTACAGCACCCACAA*
- (2) *CGGTGGGCTACATACTGGGGTTGAGATT\GA\GA\GA\GA\GA\GA\GA\GA\GA\GA\--\--\GTCGTGGTTAGATATCTACAGCACCCACAA*

PRIMER J

PRIMER K

- (B) CGAGAAGCGACGTGCATCCTCTTGCGGATATGGCGAAGACTGAGGATTATGGATACAATTTGTATGAGGCTGGTGGACAAGACTCTCC-----\-
- (A) CGAGAAGCGACGTGCATCCTCTGACGAATATGTCCAAAACGGAGGATTATGGATACAATTCGTATGAAGCTGGCGGACAGGACTCGCCACAGCA\T

PRIMER O

- (7) *CGTTGG\CAGCACA\CA

PRIMER M

PRIMER L

UNIVERSITEIT VAN PRETORIA

(A) GGTCATCATTGACTCGTCGGGTCCGCTTTCACACCCCGGGATCTTGGCCCAGCATGACATCACACACTTTCCTCGATCGCTCTACCTCAAAACCGCAT (B) GGTCATCATTGACTCGTCGGGTCCGCCTTTCACACCCCGGGATCTTGGCACAGCATGACATCACACACTTTCCTCGATCGCTCTTCCTCAAAACCGCAT

(A) CTTTCACAACAACACCGCTTCCCCTGTGCACCACATTTCACAGCAACGACGACGACGACGCCGCCGCAACACGATTTCGCGCTTTACGAATCTGCTA (B) CTTTCACAACAACTCCACCACCTCCCCCATGCGCCACATAACACAGCAACAACGACAACGCCGCCGCAACCCGAATTTGCGCTTTACGAACCTGCCA

(A) TATATCAGCAAGCATTGACCCTGCTGCAGCATCCGAGCGGACCTGCCAACAGTGGCCAGTACAAGCCAACACCTGATCCTGACATTACTATTCACCA (B) TATACCAGCAAGCATTGACCTTGCTGCAACACCCGAGCGGCCCTAACAACAGTGGCCAGCACAAGCCGACACCCGATCCTGACATTACTATTCACCA

(3) *GGTGAACGATGTCATACGAGGAATTCAGCTATCATTGCTAGGTCAGAG\GT\GT\GT\GT\GT\GT\GT\GT\--\GAGCATCACGGTCGGATTAACC

(2) *CTGCTGTTGGGTATCATCTA\CA\CA\CA\CA\CA\CA\CA\CA\CA\CA\CA\--\--\AATCTCGGGCATCTCGGTATTATCACGCCGCATA* (8) *CGGCTGTTGGGTATCATCTA\CA\CA\CA\CA\AA\--\--\--\--\--\AATCTCGGGCATCTTGGTACTATCACGCTGCATA*

(A) TCAAGTACAAGACGCTCTCGTGGC (B) TCAAGTACAAGACGCTCTCGTGGC

Sequence variation between D. septosporum and D. pini

(A) ACCGTCGCCACTCCGCAGTTACGCCAGCGCGAGGCAAGACTCTGCCATCAGCGAC (B) ATCGTCGCCGCTCCGCAGTTACGCCAGCGCGAGGCAAGACTCTGCCATCAGCGAC

PRIMER P

PRIMER S

PRIMER DS1

PRIMER DS2

Figure 2. The M-FIASCO protocol utilized to enrich for microsatellite regions in *Dothistroma septosporum*. The protocol was prepared by María Noél Cortinas and incorporates a combination of pre-existing protocols given in the references section.

Additional publications using this method include:

Cortinas MN, **Barnes I**, Wingfield BD, Wingfield MJ (2006) Polymorphic microsatellite markers for the *Eucalyptus* fungal pathogen *Colletogloeopsis zuluensis*. *Molecular Ecology Notes* **6**: 780-783.

Grobbelaar JW, **Barnes I**, Cortinas MN, Bloomer P, Wingfield MJ, Wingfield BD (2008) Development and characterization of polymorphic markers for the sap-stain fungus *Ophiostoma quercus*. *Molecular Ecology Resources* **9**: 399-401.

	Steps	Why do you do this? What are the results?	Timetable min, hs, days	
1.	DNA Preparations			1 or 2
	1.1 Test digest with restriction enzyme	- To ensure your digestion was successfull (smear)	3h	uays
	1.2 Digestion-ligation of adaptors	- To be able to amplify DNA fragments	3h	
	1.3 PCRs of D igested D NA with A daptors (DDA)	 To increase amount of fragments for enrichment To check adaptors were ligated successfully To repair nicks To verify if size selection is needed 	3h 1h (gel) 3h 1h (gel)	
2.	Hybridizing DDA with µsat probes			1 or 2 days
	2.1 Incubation of DNA together with biotinylated probes	- To assemble the hyb-complexes (DDA/DNA-probe)	1h	
3.	Capture of microsatellites (enrichment)		7	
	3.1 Incubation with streptavidin- coated magnetic beads and competitor (tRNA)	 Formation of µsats capture complexes. Non complementary DNA fragments remain in solution tRNA reduces non-specific binding 	magnet 30min	
	3.2 Washes - 3x non-stringent - 3x stringent	- Only ssDNA-probe complexes containing µsats remain captured with the beads during each wash (separation is accomplished with the aid of the magnetic rack)	gnet 2h	
	3.3 Elution	 To separate the complexes formed by ssDNA, probes and beads 	15min	
	3.4 PCR post-capture - Might need to be repeated	 Back to double stranded DNA To increase amount of DNA containing repeat sequences To verify quality of enrichment. You are looking for a homogeneous representation of fragments as smears (between 200-700 bp) 	3h 1h (gel)	
	3.5 Freeze enrichments: optional	 If not prepared for cloning or you want to make more enrichments before cloning. 		
4.	Cloning: e.g. TOPO4 Kit			2 days
5.	Screening			2
	5.1 Colony PCR		3h, 1h (gel)	days
	5.2 Sequencing PCR		3h, 1h (purif)	
	5.3 Seq. electrophoresis		O.N	6 to 8 days

Procedure of Microsatellite capture in 5 Steps

	M-FIASCO @ FA	BI				
	Fundamentally based on Hamilto	n <i>et al.</i> 1999 a	 and Zane <i>ei</i> 	<i>al.</i> 2002		
		Volume (µl)		Temp. (ºC)	Time (Cycles or hours)	
1.	DNA preparations					
	Adaptor preparation			In thermocycl	er:	
	Fiasco1 A (10µM) ^a	100,0µl		96	2min	
	Fiasco2 B (10µM) ^b	100,0µl		94 Darash	1min	
	lotai	200,0µI		Bench	until RT (room temp)	
1.1	Genomic DNA digestion					
	Test digestion					
	DNA (approx. 20-100ng)	10,0µl				
	Enzyme buffer (NEB 2)	2,0µl		37	O.N. (overnight)	
	BSA 100X	0,2µl				
	ddH ₂ 0	7,0µl				
	Enzyme (Mse1)	1,0µl				
	Total	20,0µl				
	Run 1% agarose gel					
1.2	DNA (approx. 1μg) 10x Enzyme buffer (NEB 2) BSA 100X ddH ₂ 0 Enzyme (Mse1) Ligase (2 000 000 U/μl) ATP (1mM final) Adaptor (10 μM) Total	scale digestic 80,0μl 10,0μl 1,0μl 6,0μl 2,0μl 1,0μl 10,0μl 100,0μl	Enzymes a	re from New E er is compatible	ingland Biolabs. e with both ligase and Ms	e <i>1</i>
	Incubation			37	O.N.	
	Inactivation			65	20min	
	Make PCR dilutions in ddH ₂ O	1:5 or 1:10				
1 3	PCB nost digestion-ligation			Cycling con	litions	
	DNA	5.0ul		94	2min	
	Buffer 10X with 15mM MgCl ₂	2,5µl		94	30s	17, 20
	MaCl	2,0µl		53	1min	25 or 30
	Primer: Fiasco Mse/-N (4 bases)	3.0ul		72	1min	cvcles
	dNTPs (10µM)	4,0µl		72	7min	
	ddH ₂ O	8,1µl		4	hold	1
	Taq (FABI-taq or FastStart Roche)	0,4µl				
	Total	25,0µl	1			
	Run 1% agarose gel					
2.	Hybridizing genomic DNA					
	-					1.7.1
			1		1	151

2.1	Probing reactions (adjusted to 100µ)			Hybridizing of		
				(Can be done	in a thermocycler)	
	in O.F. ml. anni addi			00	10 min	
	in 0,5 ml eppi add:			96	10min 1b	
	DNA (from PCB step in 1.3)	10 Oul		02	or	
	Biotinylated probes (10µM)	6.0μl		96	10min	
	Hybridization solution ^c	82.0ul		40	1h	
	ddH ₂ O	2,0 µl			or	
	Total	100 Oul		96	10min	
	, ota	100,0µ1		BT	1h	
	Optional: clean through Sephadex ^d	before capturir	ng			
3.	Capture of microsatellites (enri	chment) 				
3.1	Incubation with the beads					
	Use 1mg of beads per each hybridi	zation mix(DY	NAL, 1mg =	= 100 ul)		
	(e.g. hyb mix1 = dinucleotides, mix2	2 = trinucleotide	s from 2.1)			
	Wash together all the beads you wi	ll use: repeat w I	ash 3 to 5 ti I	imes		
	Add TENI100 ^e to boods	100.001	far aaab 1m			
	Add TENTOU To beads	100,0μί	3 to 5 times	ng of beads	•	
	After the last wash resuspend in		5 10 5 11116	5		
	clean TEN100	40,0 or 50.0µl	for each 1n	ng of beads		
		-,,-,-				
	Add to the resuspended beads:					
	tRNA (Sigma, R- 5636)	5-10µl	(10µg)			
	Mix well!!					
	and add.					
	byb mixes (from step 1.2)	100.001				
	TEN 100	300.0ul				
	Incubate @	RT with	agitation (1	150-200rpm)	30-60 min	
			or	22	Oh	
			01		311	
3.2	Enriching washes (mix gently)					4-6h
	use magnetic rack					
	1 non Stringent TEN1000	400µl			5min	
	2 non Stringent TEN1000	400µl			5min Emin	
	A Stringent Solution ⁹	400µl			Smin	
	5 Stringent Solution	400µl			5min	
	6 Stringent Solution	400µl		42	5min	
		/***				
3.3	Elution					
	Add 150 μ l TLE or ddH ₂ O			95	10min	
	After magnetizing, remove beads a	nd collect supe I	rnatant in a	clean tube		
	Precipitation					
	Add 1 volume isopropanol	150,0μl				
	NaOAc 3M	7,5μl				
	leave O.N. @ -20°C				O.N or 20 min	
	Centrifuge, remove supernatant				15-30 min	
	Wash with EtOH 70%					
	Centrifuge, vacuume dry	20.0.1			5-10 min	1.50
		30,0μΙ				152
1	Store at -20°C	1	I	1		

_			VAN PRETORIA OF PRETORIA			
3.4	PCR post-capture	YUNIBESITHI	YA PRETORIA	Overline energy		
	DNA (from steps 3.3)	2.0ul		Cycling cond		
	Buffer 10X	2,5µl		94	2min	
	MgCl ₂	2,0µl		94	30s	
	Primer Fiasco N (4 bases)	3,0µl		53	1min	30 cycles
		4,0μi 11 1μl		72	1 min 7 min	
	Tag (FABI-tag or FastStart)	0,4µl		4	hold	
	Total	25,0µl	1			
	Run 1% agarose gel					
\vdash	Clean PCR products with sephac	lex G-50 I				
	Taq 3' tailing					
	DNA (clean PCR product)	8,0µl				
	Buffer 10X with 15mM MaCl	4,0µi 2.5µl		72	30min	
	Normal Tag polymerase	0,2µl (1U)			Comm	
	ddH ₂ O	΄10,3μΙ΄				
	Total	25µl	1			
	Clean PCR products with sephace	 lex G-50 				
4.	Cloning					
	Ligations	PGEM		ТОРО		
	DNA	2,5µl	DNA	2,5µl		
	Ligase Buffer	5,0µl	Salt	1,0µl		
	ddH ₂ 0	0,5µl 0.5µl	ddH ₂ O	1.5ul		
	Ligase	1,5µl		.,-,-		
	Total	10,0µl	1	6,0µl		
				incubate for 3	0min I	
	Follow the instructions of manufact	urers for the tra	ansforming a	and growing of	r cells I	
5.	Screening					
5.1	Colony preparation		1			
	Pick 20 colonies and grow in tubes with antibiotics (LB or terrific Broth)	in 2ml media		37	grow O.N	
	alternative:				<u></u>	
	Grow in 96 well microtitre plates will	h 150 - 200 μl	LB I	37	grow O.N	
	after colony PCR)					
	Dilute O.N cultures with ddH ₂ O					
	Cell suspension	5,0µl	It depends	on concentrati	ons of cells	
	ddH ₂ O	45,0μl	obtained in	the O.N growt	h	
	Total	50,0µl	1			
	Alternative: you can try growing th	I e bacteria for o	I nly 3 h and	I make the color	ו אי PCR	
	using the cell suspensions directly	without dilution	IS			
	Denaturation in thermocycler		<u> </u>	96	7- 10min	
	(to open cells and liberate the DNA)				152
				On ice until P	CR	133

			AN PRETORIA			
5.2		YUNIBESITHI	YA PRETORIA			-
	DNA Buffer 10X	1,0µl		Cycling cond	ditions	-
	dNTPs (10µM)	2,5µi 2,5µl		96	5min	
	$M_{\alpha}CL_{\alpha}(25mM)$	2,0µl		90	30c	
		1.0 wl		94 50	505	00 avalas
		1,0 μi		53	1min	30 cycles
	Primer M13 TopoR (10µM)	1,0µl		72	1min Zmin	
	I aq (FABI-taq or FastStart)	0,12μι 14.88μl		12	/min	
		14,00µi		4	noid	
	lotal	25,0µl				
	Cleaning PCR products before se	equencing				
	Sephadex G-50 or Exo-Sap ⁱ					
5.2	Sogueneing					
5.3		3 0.11			l	-
	Big Dye v3 1	2 Oul		Cycling cond		
	Buffer 5X	2,0µl		96	10s	
	Vector primer (10µM)	1 Oul		50	55	25 cycles
	ddH ₂ O	2,0µl		60	4min	20 0 90100
		_, op.:/		00	4000	-
	lotal	10,0μΙ		4	hold	
	References					
	Hamilton <i>et al.</i> 1999 protocol					
	Hamilton MB, Pincus EL, Di Fiore	A, Fleischer C	C (1999) Uni	versal linker a	and ligation	
	procedures for construction of gene	omic DNA libra	aries enriche	ed for microsa	tellites.	
	<i>BioTechniques</i> 27, 500-507.					
	Zane <i>et al.</i> 2002 protocol					
	Zane L, Baegelloni L, Patarnello T	(2002) Strateg	ies for micro	osatellite isola	tion: a review.	
	Molecular Ecology 11, 1-16.					
	Annondiv					
	Аррепах					
	^a Fiasco1 A: TACTCAGGACTCAT					
	^b Fiasco2 B: GACGATGAGTCCTG					
	Trascoz B. GACGATGAGTCOTG					
	Solutions as in Zane et al. 2002					
	^c Hybridization solution	(SSC 4.2X, SE	DS 0.7%)			
	°TEN 100	(10mM Tris-H	Cl, 1mM ED	TA, 100mM N	aCl, pH 7.5)	
	^f TEN 1000	(10mM Tris-H	CI. 1mM ED	TA. 1M NaCl.	pH 7.5)	
	^g Stringent solution	(SSC 0 2X 0	1% SDS)	 		
	Sephadex G-50 recipe to clean F	CR and seque	encing proc	lucts		
	boil in microwave for 30 seconds					
	Use @ R1. Mix well before use					
	Store @ 4°C					
	Procedure:					
	Fill CentriSep plastic columns with					
	Sephadex G-50	650,0μl				
	Centrifuge* with a collector tube				2 min*	
	and discard ddH ₂ O					
	Add PCR or Seq products to the	10,0µl - 60,0µl				
	centre of the packed column					
	Centrifuge* and collect purif. DNA				2 min*	
	in a new clean tube		* 0.7, 0.8 g	= 2800 rpm in	eppendorf 5415D	
	Additional for Sequencing		Ū			
	Dry in a vacuum centrifuge				aprox.15 min	

	Topo (M13) primers						
	"5' GTA AAA CGA CGG CCA G	16bp					
	'5' CAG GAA ACA GCT ATG AC	17bp					
	ⁱ Exo-SAP						
	Prepare a solution of 1:1 Exonucle	ase I					
	and Shrimp Alkaline Phosphatase						
	mixing the enzymes in ddH ₂ O. Store	e @ -20°C I					
	Use 0.5-1 U of each enzyme for e	very 20 ul of P	CR reactio	n product			
	incubate			37	15min		
				80	15min		
	PCR product ready to use						
	Cleaning of sequencing reactions	S					
	Sephadex G-50 or						
	96 well Ethanol precipitation (Ethan	ol/EDTA/Sodiu	m Acetate p	recipitation pro	otocol from ABI		
	(Applied Biosystems, Protocol book	let 4337035 Re	ev. A, CA, U	SA)			