

Analysis of geodetic and model simulated data to describe nonstationary moisture fluctuations over southern Africa

by

Joel Ondego Botai

Submitted in partial fulfilment of the requirements for the degree DOCTOR OF PHILOSOPHY

in the Faculty of Natural & Agricultural Sciences University of Pretoria Pretoria South Africa

May, 2011

© University of Pretoria

Analysis of geodetic and model simulated data to describe nonstationary moisture fluctuations over southern Africa

Author:	Botai Ondego Joel		
Supervisors:	Prof. Ludwig Combrinck ^{1, 2} and		
_	Prof. Sivakumar Venkataraman ^{1, 3}		
Department:	t: ¹ Department of Geography, Geoinformatics and		
	Meteorology, University of Pretoria, Pretoria 0002, South Africa		
	² Hartebeesthoek Radio Astronomy Observatory (HartRAO),		
	P.O. Box 443, Krugersdorp 1740, South Africa		
	³ National Laser Centre (NLC), Council for Scientific and Industrial		
	Research (CSIR), P. O. Box 395, Pretoria 0001, South Africa; Dept. of Physics,		
	University of Kwa-Zulu Natal, Durban, South Africa.		
Degree:	Doctor of Philosophy		

Abstract

Recent advances in space geodetic techniques such as Very Long Baseline Interferometry, Global Navigation Satellite Services, Satellite Laser Ranging and advanced numerical weatherprediction model simulations, provide huge tropospheric data sets with improved spatialtemporal resolution. These data sets exhibit unique fluctuations that have a spatial-temporal structure which are thought to mimic the complex behaviour of the atmosphere. As a result, the analysis of nonstationary structure in the tropospheric parameters derived from geodetic and numerical model simulations could be used to probe the extent of universality in the dynamics of the atmosphere, with applications in space geodesy. In order to identify the physical causes of variability of tropospheric parameters, parametric and nonparametric data analyses strategies which are investigated and reported in this thesis, are used to inform on the geophysical signals embedded in the data structure. In the first task of this research work, it is shown that the fluctuations of atmospheric water vapour over southern Africa are non-linear and nonstationary. Secondly, the tropospheric data sets are transformed to stationarity and the stochastic behaviour of water vapour fluctuations are assessed by use of an automatic algorithm that estimates the model parameters. By using a data adaptive modelling algorithm, an autoregressive-movingaverage model was found to sufficiently characterise the derived stationary water vapour fluctuations. Furthermore, the non-linear and nonstationary properties of tropospheric delay due to water vapour were investigated by use of robust and tractable non-linear approaches such as detrended fluctuation analysis, independent component analysis, wavelet transform and empirical mode decomposition. The use of non-linear approaches to data analysis is objective and tractable because they allow data to speak for themselves during analysis and also because of the non-linear components embedded in the atmosphere system. In the thesis, we establish that the non-linear and nonstationary properties in the tropospheric data sets (i.e., tropospheric delay due to water vapour and delay gradients) could be triggered from strongly non-linear stochastic processes that have a local signature (e.g. local immediate topography, weather and associated systems) and/or exogenous. In addition, we explore and report on the presence of scaling properties (and therefore memory) in tropospheric parameters. This self-similar behaviour exhibit spatial-temporal dependence and could be associated with geophysical processes that drive atmosphere dynamics. Satellite Laser Ranging data are very sensitive to atmospheric conditions, which causes a delay of the laser pulse, hence an apparent range increase. A test for non-linearity is applied within specialised software for these data; it is found that the range residuals (i.e., the observed minus computed residuals) are improved when possible non-linearity of the locally measured meteorological parameters as applied to a range delay model are considered.

Preface

Geodetic time series analysis is a necessary procedure of extracting statistical properties and other characteristics of the data and is therefore an important process in modern space geodesy. In general, the analysis involves pre-processing of raw observations from various geodetic techniques, enhancing signals in the raw data, actual analysis (e.g., detection of nonlinearities and nonstationarities, statistical characterisation of the series) and prediction. While different methods are often applied to analyse the geodetic time series, estimating the deterministic (e.g., periodic variations and trend) and stochastic (mostly aperiodic variations) components as well as extracting specific oscillatory modes (which could be linked to geophysical signals) have not received much attention. In this current research work, the stochastic and multiscale properties in tropospheric parameters (hereafter Water Vapour (WV), tropospheric delay and delay gradients) derived from geodetic and numerical weather prediction models are assessed and modelled. The results indicate that WV/tropospheric delay due to WV exhibit selfsimilar behaviour and that their fluctuations are non-linear and nonstationary.

The layout of this thesis is intended to provide a logical flow of this research endeavour. After the general introduction in Chapter 1, the literature review (Chapter 2) provides an overview of space geodetic techniques, principle operation of Global Navigation Satellite System (GNSS) and Very Long Baseline Interferometry (VLBI) techniques, their applications (e.g., Earth's crustal deformation, plate tectonics, and maintenance of Terrestrial Reference Frames (TRF) as well as atmospheric remote sensing). Current measurements and analysis strategies of tropospheric parameters with application in geodetic analyses are also reviewed in this chapter. In Chapter 3, the sources of data that are studied in this thesis are explained. The spatial-temporal resolution of the geodetic (VLBI and GNSS), Numerical Weather Prediction (NWP) model simulations (e.g. NCEP/NCAR), radiosonde (e.g. the Southern Hemisphere ADditional OZonesondes (SHADOZ) network) and the HALOgen Occultation Experiment (HALOE) satellite data sets are described. The methods used to pre-process these data records are also described briefly.

Chapter 4 examines the stationarity in geodetic WV and adaptively fits a time series ARMA model that describes the stochastic pattern, to the geodetic WV transformed from nonstationary to stationary. Chapter 5 deals with the analysis of WV fluctuations. The SHADOZ radiosonde network is also used to infer the multiscale

structure of WV in low- and mid-tropical Africa. Furthermore, a model for the vertical profile of WV in the southern hemisphere based on the HALOE satellite and the SHADOZ network data is developed. In Chapter 6, firstly the scaling behaviour (testing the underlying memory processes) of tropospheric WV is assessed using wavelets. Secondly, a noise-assisted data analysis methodology is applied to the geodetic tropospheric zenith delay and surface temperature to determine the dominant modes of oscillation in data. Further, WV and surface temperature have been shown to be temporally correlated because the instantaneous phase differences among the associated modes of the Intrinsic Mode Functions (IMFs) derived from the Ensemble Empirical Mode Decomposition (EEMD) of WV and surface temperature have a high degree of synchronisation. Additionally, the benefit of introducing non-linearity and nonstationarity in atmospheric correction to the Satellite Laser Ranging (SLR) range is investigated by introducing a nonlinear function to model the azimuth dependent atmospheric range correction. In Chapter 7, a summary of the findings are presented and recommendations and future research proposed.

List of publications

The following contributions have been published and/or submitted in/to various peer review journals as part of this work or related to it.

1. <u>Botai O. J.</u>, W. L. Combrinck, V. Sivakumar and C. J. de W. Rautenbach, (Submitted). Probing nonlinearity in geodetic data by hypothesis testing, Journal of Geodesy.

2. <u>Botai O. J.</u>, W. L. Combrinck and V. Sivakumar, (2011). Inferences of α -stable distribution in long-range dependent geodetic data, South African Journal of Geology (Accepted).

3. <u>Botai O. J.</u>, W. L. Combrinck and V. Sivakumar, H. Schuh and J. Boehm, (2010). Extracting independent local oscillatory geophysical signals by geodetic tropospheric delay, *In*: IVS 2010 General meeting proceedings, D. Behrend and K. D. Baver (eds). ISBN. NASA/CP-2010-215864.

4. <u>Botai O. J.</u>, V. Sivakumar , C. J. de W. Rautenbach, and W. L. Combrinck, (2010). Multiscale organisation of water vapour in the low- and mid- tropical Africa, Advances in Geosciences, 16: 241-251.

5. <u>Botai O. J.</u>, W. L. Combrinck and V. Sivakumar, (2009). Assessing the degree of synchronisation between geophysical records using the method of instantaneous phase differences, *In* 11th SAGA biennial technical meeting and exhibition. D. Vogt and S. Fourie (eds). ISBN. 978-0-620-44602-0: 588-593.

Sivakumar V., <u>O. J. Botai</u>, D. Moema, A. Sharma, C. Bollig and C.J. de W. Rautenbach, (2009). CSIR-NLC mobile LIDAR for atmosphere remote sensing, IEEE, Intern. geosc. Remote sens. symposium, Cape Town. ISBN. 978-1-4244-3394-0.

7. <u>Botai O. J.</u>, W. L. Combrinck and C.J. de W. Rautenbach, (2008). Nonstationary tropospheric processes in geodetic precipitable water vapour time series, Michael G. Sideris (ed). Observing our Changing Earth, International Association of Geodesy Symposia, Springer Berlin Heidelberg, 133: 625-630, doi:. 10.1007/978-3-540-85426-5.

Declaration

I, the undersigned declare that the thesis, which I hereby submit for the degree Doctor of Philosophy, Faculty of Natural and Agricultural Sciences at the University of Pretoria, is my own work except where acknowledged. This work has not previously been submitted by me for a degree at this or any other tertiary institution.

Botai Ondego Joel

Acknowledgement

Analysis of geodetic and model-simulated data to describe nonstationary moisture fluctuations over southern Africa is the result of my affiliation with the Space Geodesy programme of the Hartebeesthoek Radio Astronomy Observatory, and the Department of Geography, Geoinformatics and Meteorology, University of Pretoria. I would like to thank those people directly involved with this thesis. My two principal advisors, Prof. Ludwig Combrinck and Prof. Sivakumar Venkataraman, provided superb guidance, which continuously required a thorough mastery and communication of my work. I would also like to thank Prof. C. J. de W. Hannes Rautenbach with whom we started this work. Hannes admitted me to the Meteorology postgraduate degree programme, provided me with an opportunity to pursue an intriguing, fascinating and interdisciplinary research topic and endlessly supported my PhD research cycle.

The assistance of Prof. Dr. Eng. Harald Schuh and Dr. Eng. Johannes Boehm from the Institute of Geodesy and Geophysics, Technical University of Vienna, Austria with regard to granting me a research visit to their institution, mentorship and freely made available high quality geodetic data utilised in this thesis is highly appreciated. I also want to thank the Inkaba yeAfrica project; a German-South African collaborative Earth Science initiative for providing financial support that enabled me to present my work at various international conferences and workshops. Institutions and individual principal researchers whose data sets were used in this thesis are also acknowledged.

I would especially like to thank my family, my father and other siblings for the moral support and holding onto me during the years of absence from the family. Their willingness to make available resources that supported my academic growth throughout my life is the reason why I am completing this degree. Mr. Paul Benedict Mmtoni deserves much credit for editing this work. But, above all, I also want to thank my wife, Mrs M. C. Botai, and all my children, who have been a constant in my life during this long process and whom I owe much for day-to-day love during this work. This piece of work is there because of you.

All these people highlighted here have given me a tremendous sense of self, taught me how to socialise, how to strive and achieve and also how to enjoy myself during happy and sad moments. This work therefore mirrors those I have mentioned here as well as many I have forgotten to list. To all these people, I express my gratitude.

Contents

An	alysis fluctu	of geodetic and model simulated data to describe nonstationary monations over southern Africa.	oisture
Ab	stract.		ii
Pre	face		iii
De	clarati	on	vi
Ac	knowl	edgement	vii
Co	ntents		viii
Lis	t of Ta	ables	X
Lis	t of Fi	gures	xi
Ac	ronvm	S	xiv
1.	Intro	duction	
	1.1.	Background	
	1.2.	Significance of the study	2
	1.3.	Aim and objectives.	
	1.4.	Research questions	
	1.5.	Hypothesis	
	1.6.	Scope of the study	
2.	Trop	ospheric modelling for space geodetic applications.	
	2.1.	Introduction	
	2.2	Structure of the atmosphere	8
	2.3	Refractivity tropospheric delay and precipitable WV	11
	2.4.	Overview of geodetic VLBL GNSS and SLR.	
	2	2.4.1 GPS delay observable	16
		2.4.2 The geodetic VLBI delay observable	18
		2.4.3 The geodetic SLR delay observable	21
	2.5	Derived tropospheric parameters in geodetic analyses	23
	2.6	Recent developments in modelling TD and WV	27
	2.7	Analysis strategies for TD/WV in space geodesy	31
3	Data	and methodology	37
5.	31	Introduction	37
	3.2	Research methodology	38
	3.2.	Data 39	
	5.5.	Geodetic data	39
		Numerical prediction model simulations satellite and Ozonesonde data	42
	34	Data pre-processing	12
	5.1.	3.4.1 Box-Cox transformation	13
		3.4.2 Estimation of periodic cycles and adaptive filtering	13 44
	35	Data analysis strategies	46
	5.5.	3.5.1 Detrended fluctuation analysis	10 47
		3.5.2 Wavelet transform	17 49
		3.5.3. Hilbert-Huang transform	56
Δ	Mode	alling the stochastic properties of WV time series	
••	4 1	Introduction	
	4.2	Basic concepts of time series analysis	<i>57</i> 61
	4.3	Random variables	67
	4 5	Stochastic processes	02 63
		Stochastic Processes	

	4.6.	Geodetic parameters time series	65
		4.6.1. Time series analysis of tropospheric WV	66
		4.6.2. Investigating stationarity in tropospheric geodetic WV	69
	4.7.	Concluding remarks	78
5.	Mult	i-scale WV fluctuation characteristics over southern Africa	80
	5.1.	Introduction	80
	5.2.	Vertical profile of WV from SHADOZ data	84
	5.3.	Multiscale organisation of WV in mid- and low-tropical Africa	86
	5.4.	Concluding remarks	95
6.	Non-	linear and nonstationary processes in geodetic TD/WV	98
	6.1.	Introduction	98
	6.2.	Nonstationary processes in tropospheric WV using wavelet analysis	99
	6.3.	On the noise-Assisted geodetic data analysis	104
		6.3.1. Correlation of tropospheric WV and temperature using	phase
		differences	111
	6.4.	Assessing the effect of non-linearity/stationarity in atmospheric	range
		correction	116
		6.4.1. SLR atmospheric range correction	116
	6.5.	Concluding remarks	121
7.	Conc	cluding remarks	123
Bil	oliogra	aphy	126

List of Tables

Table 2.1. Geodetic parameter groups related to system Earth as reported in Rothacher,
(2002)
Table 2.2. Geodetic view of the atmosphere
Table 2.3. Nominal atmospheric refractivity constants and their standard errors12
Table 3.1. Data products and sources used in VLBI analysis42
Table 4.1 Sample AC and PAC model behaviour
Table 4.2. Test statistics of the Box-Cox transformed WV normality tests74
Table 5.1 SHADOZ network stations used in the current study
Table 6.1. Statistical description of the observed-computed residual before and after
incorporating the azimuth dependent atmospheric correction term (non-linear) in
SLR processing

List of Figures

Figure 2.1 The current global VLBI network
Figure 2.2. Schematic of a long baseline interferometer
Figure 2.3. Mendes and Pavlis (2004) model of the absolute change in the SLR range
measurement due to atmospheric delays
Figure 2.4. The linear horizontal gradients at HartRAO estimated from ECMWF data.
Figure 2.5. Simulation of equivalent zenith wet delay (top panel) and clock (bottom)
variability using the random walk process
Figure 3.1. Flow diagramme of the research framework
Figure 3.2. Fiducial geodetic site: Hartebeesthoek Radio Astronomy Observatory41
Figure 4.1 Adaptive filtering applied to the zonal linear horizontal wet gradient
component observed over HartRAO. The linear zonal gradient has not been
detrended68
Figure 4.2 Sample autocorrelation and partial autocorrelation function for WV72
Figure 4.3. True and estimated power spectral density (log scale)76
Figure 4.4. Estimated model accuracy as a function of the model type and order77
Figure 4.5. Periodogram and the spectra of the true and estimated time series78
Figure 5.1. Height profile of mean water vapour obtained from SHADOZ datasets85
Figure 5.2. The SHADOZ stations with the corresponding grid boxes formed by the
closest four grid points of reanalysis data from the National Centres for
Environmental Prediction and Atmospheric Research
Figure 5.3. Daily integrated spatially averaged Water Vapour, WV_g [mm] for (a)
Nairobi (b) Ascension (c) Irene and (d) Reunion90
Figure 5.4. Differences of Water Vapour in mm, calculated from four SHADOZ stations
(a: Nairobi, b: Ascension, c: Irene and d: Reunion) and the gridded NCEP/NCAR
reanalysis90
Figure 5.5. Quartile-quartile (QQ) plot of a Gaussian distribution, and the probability
distribution of WV_g at the four SHADOZ stations under consideration91
Figure 5.6. Haar wavelet spectra at different scales and at different station locations
(Ascension, Reunion, Irene and Nairobi) - from left to right, respectively92
Figure 5.7. Approximate power law scaling of the WV derived wavelet energy

Figure 5.8. Co-variance of the Principle Component Analysis (PCA) components
obtained from the four stations under consideration94
Figure 6.1. PWV time series. Left: Non-detrended PWV time series. Right: PWV
derived from the singular spectrum analysis101
Figure 6.2. Haar wavelet spectra of the reconstructed gPWV at different even-scales. 101
Figure 6.3. The power spectral density of gPWV at different scales102
Figure 6.4. Scaling behaviour of the reconstructed gPWV time Series103
Figure 6.5. Wavelet estimator for SS and LRD at the 10 th scale104
Figure 6.6. Time series (time is plotted in the x-axis) of a) Water vapour, mm; b)
Meridional hydrostatic; c) Zonal hydrostatic; d) Meridional wet and e) Zonal wet;
linear horizontal gradients , mm/degree105
Figure 6.7 WV derived IMFs ($\delta_{1\rightarrow 6}$). The bottom panel illustrates the adaptive trends.
Figure 6.8. Low frequency IMFs and linear and adaptive trends at different time scales.
Figure 6.9. The Instantaneous frequency of the 6^{th} IMF. From top left to right: a) Zonal
hydrostatic gradient and instantaneous frequency, b) Zonal wet gradient and
instantaneous frequency and c) WV and instantaneous frequency107
Figure 6.10. Probability distribution of WV derived IMFs108
Figure 6.11. Probability distribution of the zonal linear horizontal hydrostatic gradients.
Figure 6.12. Probability distribution of the zonal linear horizontal wet gradients109
Figure 6.13. Time series of water vapour (top) and mean atmosphere temperature
(bottom)112
Figure 6.14. Intrinsic mode function components of water vapour over HartRAO113
Figure 6.15. Intrinsic mode function component of mean atmosphere temperature over
HartRAO113
Figure 6.16. Instantaneous frequency of selected WV Intrinsic Mode Functions114
Figure 6.17. Instantaneous frequency of selected Intrinsic Mode Functions of the mean
temperature
Figure 6.18. Phase shift of WV and mean atmosphere temperature IMFs modes116

Acronyms

AAM	: Atmospheric Angular Momentum	
ACs	: Analysis Centres	
AIRS	: Atmosphere Infrared Sounder	
ARMA	: Autoregressive Moving Average	
BIBER	: Bound Influence by Standardised Residuals	
CAM	: Community Atmosphere Model	
CCAM	: Cubic Conformal Atmospheric Model	
CO_2	: Carbon dioxide	
DFA	: Detrended Fluctuation Analysis	
DORIS	: Doppler Orbitography and Radiopositioning Integrated by Satellite	
DWT	: Discrete Wavelet Transform	
ECMWF	: European Centre for Medium-range Weather Forecasts	
EEMD	: Ensemble Empirical Mode Decomposition	
EMD	: Empirical Mode Decomposition	
ENSO	: El Nino Southern Oscillation	
EOP	: Earth Orientation Parameters	
FFT	: Fast Fourier Transform	
FT	: Fourier Transform	
GGOS	: Global Geodetic Observing System	
GMF	: Global Mapping Functions	
GNSS	: Global Navigation Satellite Systems	
GPS	: Global Positioning Satellites	
gPWV	: Global PWV	
HALOE	: Halogen Occultation Experiment	
HartRAO	: Hartebeesthoek Radio Astronomy Observatory	
HCB	: Highveld and Central Bushveld	
HHT	: Hilbert-Huang Transform	
HT	: Hilbert Transform	
ICA	: Independent Component Analysis	
IGG	: Institute of Geodesy and Geophysics	

IF	: Instantaneous Frequency
IR	: Infrared
IGG	: Institute of Advanced Geophysics and Geodesy
IWV	: Integrated Water Vapour
IAG	: International Association of Geodesy
ICRF	: International Celestial Reference Frame
IGS	: International GNSS Service
IMFs	: Intrinsic Mode Functions
IMF	: Isobaric Mapping Function
ITCZ	: Inter-Tropical Convergence Zone
ITRF	: International Terrestrial Reference Frame
IVS	: International VLBI Service
LRD	: Long-Range Dependent
MI	: Mutual Information
MODWT	: Maximum Overlap Discrete Wavelet Transform
NADA	: Noise Assisted Data Analysis
NCAR	: National Centre for Atmospheric Research
NCEP	: National Centre for Environmental Prediction
NMF	: Niell Mapping Function
NO ₂	: Nitrogen dioxide
NWP	: Numerical Weather Prediction
PCA	: Principal Component Analysis
PSC	: Polar Stratospheric Clouds
PRN	: Pseudorandom noise
PWV	: Precipitable Water Vapour
QQ	: Quartile-Quartile
QSO	: Quasi-Stellar Objects
RINEX	: Receiver Independent Exchange
RH	: Relative Humidity
RO	: Radio Occultation
SAWS	: South African Weather Service
SGT	: Space Geodetic Techniques
SHADOZ	: Southern Hemisphere ADditional OZoneondes

SLR	: Satellite Laser Ranging
SOI	: Southern Oscillation Index
SO_2	: Sulphur dioxide
SSA	: Singular Spectrum Analysis
SS	: Self-Similar
SSTs	: Sea Surface Temperatures
TD	: Tropospheric Delay
TEC	: Total Electron Content
US	: United States
UV	: Ultra Violet
VEOF	: Vector Empirical Orthogonal Function
VMF	: Vienna Mapping Function
VLBI	: Very Long Baseline Interferometry
WT	: Wavelet Transform
WV	: Water Vapour
WVR	: Water Vapour Radiometry
ZTD	: Zenith Tropospheric Delay
ZWD	: Zenith Wet Delay