Role of African horsesickness virus protein NS3 in cytotoxicity and virus induced cytopathology

by

Tracy Leonora Meiring

Submitted in partial fulfilment of the requirements for the degree Philosophiae Doctor

in the Faculty of Natural & Agricultural Science
University of Pretoria

Pretoria
February 2009
DECLARATION

I, Tracy Leonora Meiring declare that the thesis/dissertation, which I hereby submit for the degree Philosophiae Doctor at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

Signature:
Date:
ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and thanks to the following people:

Dr Vida van Staden for her valuable guidance, motivation, and support throughout this study

Prof Henk Huismans for his leadership, support and critical advice

Flip Wege for his excellent technical assistance with cell culture

Alan Hall and Chris van der Merwe at the Laboratory for Microscopy and Microanalysis at the University of Pretoria (UP)

Renate Zipfel, Gladys Shabangu and Mia Beyleveld at the Sequencing facility (UP)

Dr Marco Romito and Dr A.C. Potgieter at the Onderstepoort Veterinary Institute

The Department of Biochemistry (UP) for the use of their facilities

My fellow colleagues in the Orbivirus Research group and Department of Genetics (UP) for their interest and support

The National Research Foundation for financial assistance

My family and friends for their encouragement and understanding
SUMMARY

Role of African horsesickness virus protein NS3 in cytotoxicity and virus induced cytopathology

by

Tracy Leonora Meiring

Supervisor: Dr Vida van Staden
Department of Genetics
University of Pretoria

Co-supervisor: Prof Henk Huismans
Department of Genetics
University of Pretoria

For the degree PhD

The viral determinants of African horsesickness virus (AHSV) cytopathology are not well understood. Several AHSV proteins may play a role, including non-structural protein NS3, a cytotoxic membrane protein that localises to sites of virus release and plasma membrane disorganisation in infected cells. AHSV NS3 is highly variable and clusters into three phylogenetic groups, termed α, β and γ. In chapter 2 we examined the role of NS3 in determining the phenotypic characteristics observed during AHSV infection of cells. Three AHSV strains, AHSV-2 (γ NS3), AHSV-3 (β NS3) and AHSV-4 (α NS3), were shown to have quantitatively different phenotypes in Vero cells. To investigate the contribution of NS3 to these differences, reassortants were generated between these strains in which the S10 genome segment encoding NS3 was exchanged, alone or in combination with other segments. Exchange of NS3 resulted in changes in virus release and membrane permeability, indicating an important role for NS3 in these viral properties. The cytopathic effect and decreased viability of infected cells was not associated with NS3 alone and it is likely that a number of viral and host factors contribute to these complex phenotypes.

In chapter 3 the cytolytic effect of the NS3 proteins of the orbiviruses AHSV, bluetongue virus (BTV) and equine encephalosis virus (EEV) were compared. Inducible expression in Escherichia coli (E. coli) showed differences in cytotoxicity, with EEV NS3 having a greater lytic effect than
AHSV and BTV NS3. Cytotoxicity was linked to increased membrane permeability of the cells as confirmed by an increased uptake of membrane impermeant compounds. When expressed in insect cells however all three NS3 proteins caused a marked but equivalent decrease in cell viability. Although the orbivirus NS3 proteins have similar predicted secondary structures, differences could lie in structural stability and association with membranes of specific cell types, which impacts on cytotoxicity. To determine the regions within AHSV NS3 that mediate cytotoxicity, a series of truncated mutants of NS3 were constructed and expressed in *E. coli*. The combined presence of both hydrophobic domains of AHSV NS3 was found to be critical for membrane permeabilisation and cytotoxicity.

In chapter 4 the AHSV-2, AHSV-3 and AHSV-4 NS3 proteins (from the γ, β and α NS3 clades) were compared to examine the impact of sequence variation in NS3 on structure and function. The proteins were expressed in the baculovirus expression system as both wild-type proteins and C-terminal eGFP (enhanced green fluorescent protein) fusions. Exogenous addition of the baculovirus expressed proteins to Vero cells resulted in different permeabilisation levels that could be linked to that induced by the AHSV strains. Cell viability and membrane association assays in insect cells showed that all three proteins were equivalently cytotoxic and membrane associated. The subcellular localisation of the eGFP-NS3 fusion proteins was examined by confocal fluorescent imaging of live cells. NS3 localised to the plasma membrane, and as distinct punctuate foci in the perinuclear region. This suggests localisation to the internal membrane systems of cells and has important implications for the function of this membrane permeabilising protein.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>amino acid</td>
</tr>
<tr>
<td>AHS</td>
<td>African horsesickness</td>
</tr>
<tr>
<td>AHHSV</td>
<td>African horsesickness virus</td>
</tr>
<tr>
<td>amp</td>
<td>ampicillin</td>
</tr>
<tr>
<td>BHK</td>
<td>baby hamster kidney cells</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>BTV</td>
<td>bluetongue virus</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>Ci</td>
<td>Curie</td>
</tr>
<tr>
<td>CLP</td>
<td>core-like particle</td>
</tr>
<tr>
<td>cm²</td>
<td>centimetre squared</td>
</tr>
<tr>
<td>CPE</td>
<td>cytopathic effect</td>
</tr>
<tr>
<td>CPM</td>
<td>counts per minute</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DEPC</td>
<td>diethylpyrocarbonate</td>
</tr>
<tr>
<td>DLP</td>
<td>double-layered particle</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxyribonucleotide triphosphate</td>
</tr>
<tr>
<td>ds</td>
<td>double-stranded</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EC</td>
<td>endothelial cells</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetra-acetic acid</td>
</tr>
<tr>
<td>EEV</td>
<td>equine encephalosis virus</td>
</tr>
<tr>
<td>eGFP</td>
<td>enhanced green fluorescent protein</td>
</tr>
<tr>
<td>EHDV</td>
<td>epizootic haemorrhagic disease virus</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>et al.</td>
<td>et alibi</td>
</tr>
<tr>
<td>EtBr</td>
<td>ethidium bromide</td>
</tr>
<tr>
<td>FCS</td>
<td>foetal calf serum</td>
</tr>
<tr>
<td>Fig.</td>
<td>figure</td>
</tr>
<tr>
<td>g</td>
<td>gravitational force</td>
</tr>
<tr>
<td>G</td>
<td>gauge</td>
</tr>
<tr>
<td>gal</td>
<td>galactosidase</td>
</tr>
<tr>
<td>gent</td>
<td>gentamycin</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione S-transferase</td>
</tr>
<tr>
<td>h</td>
<td>hour/s</td>
</tr>
<tr>
<td>HD</td>
<td>hydrophobic domain</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>Hyg B</td>
<td>hygromycin B</td>
</tr>
<tr>
<td>i.e.</td>
<td>that is</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin class G</td>
</tr>
<tr>
<td>IgY</td>
<td>immunoglobulin class Y</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-β-D thiogalactopyranoside</td>
</tr>
<tr>
<td>k</td>
<td>kilo</td>
</tr>
<tr>
<td>kan</td>
<td>kanamycin</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase pairs</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani medium</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>MEM</td>
<td>minimal essential medium Eagle</td>
</tr>
<tr>
<td>min</td>
<td>minute/s</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>MMOH</td>
<td>methyl mercuric hydroxide</td>
</tr>
<tr>
<td>MOI</td>
<td>multiplicity of infection</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>NaCl</td>
<td>sodium chloride</td>
</tr>
<tr>
<td>ND</td>
<td>not done</td>
</tr>
<tr>
<td>ng</td>
<td>nanograms</td>
</tr>
<tr>
<td>NLS</td>
<td>nuclear localisation signal</td>
</tr>
<tr>
<td>nm</td>
<td>nanometers</td>
</tr>
<tr>
<td>NS</td>
<td>non-structural</td>
</tr>
<tr>
<td>OD<sub>600</sub></td>
<td>optical density at 600 nm</td>
</tr>
<tr>
<td>OIE</td>
<td>Office International des Epizooties</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>OVI</td>
<td>Onderstepoort Veterinary Institute</td>
</tr>
<tr>
<td>P</td>
<td>Particulate</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PEG</td>
<td>polyethylene glycol</td>
</tr>
<tr>
<td>pfu</td>
<td>plaque-forming units</td>
</tr>
<tr>
<td>p.i.</td>
<td>post infection</td>
</tr>
<tr>
<td>PMSF</td>
<td>phenylmethylsulphonyl fluoride</td>
</tr>
<tr>
<td>PSB</td>
<td>protein solvent buffer</td>
</tr>
<tr>
<td>rif</td>
<td>rifampicin</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>S</td>
<td>supernatant</td>
</tr>
<tr>
<td>S1-S10</td>
<td>segments 1 to 10 (refers to orbiviruses)</td>
</tr>
<tr>
<td><sup>35</sup>S</td>
<td>radiolabelled sulphur</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>sec</td>
<td>second/s</td>
</tr>
<tr>
<td>Sf9</td>
<td>Spodoptera frugiperda insect cells</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering RNA</td>
</tr>
<tr>
<td>ss</td>
<td>single-stranded</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-tetramethylethylene diamine</td>
</tr>
<tr>
<td>tet</td>
<td>tetracycline</td>
</tr>
<tr>
<td>TM</td>
<td>transmembrane</td>
</tr>
<tr>
<td>TMHMM</td>
<td>TransMembrane Hidden Markov Model</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris hydroxymethyl aminomethane</td>
</tr>
<tr>
<td>UHQ</td>
<td>ultra high quality water</td>
</tr>
<tr>
<td>µg</td>
<td>micrograms</td>
</tr>
<tr>
<td>µl</td>
<td>microlitres</td>
</tr>
<tr>
<td>µm</td>
<td>micrometers</td>
</tr>
<tr>
<td>U</td>
<td>units</td>
</tr>
<tr>
<td>UP</td>
<td>University of Pretoria</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
<tr>
<td>VIB</td>
<td>viral inclusion body</td>
</tr>
<tr>
<td>VLP</td>
<td>virus-like particle</td>
</tr>
<tr>
<td>VMP</td>
<td>viral membrane protein</td>
</tr>
<tr>
<td>VP</td>
<td>virus protein</td>
</tr>
<tr>
<td>VPS</td>
<td>vacuolar protein sorting</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>v/w</td>
<td>volume per weight</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside</td>
</tr>
</tbody>
</table>
LIST OF BUFFERS

Hypotonic buffer:
10 mM Tris, 0.2 mM MgCl$_2$ [pH 7.4]

NTE:
100 mM NaCl, 10 mM Tris, 1 mM EDTA [pH 7.4]

PBS:
137 mM NaCl, 2.7 mM KCl, 4.3 mM Na$_2$HPO$_4$.7H$_2$O, 1.4 mM KH$_2$PO$_4$ [pH 7.3]

PSB (2x):
125 mM Tris-HCl [pH 6.8], 4% SDS, 20% glycerol, 10% 2-mercaptoethanol

TGS:
25 mM Tris-HCl [pH 8.3], 192 mM glycine, 0.1% SDS

Transfer buffer:
25 mM Tris, 192 mM glycine

Tris-glycine buffer:
25 mM Tris, 250 mM glycine
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii
SUMMARY ... iv
LIST OF ABBREVIATIONS ... vi
LIST OF BUFFERS .. viii

CHAPTER 1: LITERATURE REVIEW .. 1

1.1. INTRODUCTION .. 2
1.2. AFRICAN HORSESICKNESS (AHS) ... 2
 1.2.1. History and current status of AHS .. 2
 1.2.2. Host range and transmission .. 4
 1.2.3. AHS disease forms and pathogenesis .. 4
1.3. AFRICAN HORSESICKNESS VIRUS (AHSV) ... 6
 1.3.1. Classification .. 6
 1.3.2. Genome ... 6
 1.3.3. Structural proteins .. 6
 1.3.3.1. Outer capsid proteins .. 6
 1.3.3.2. Inner capsid proteins ... 7
 1.3.4. Non-structural proteins ... 8
1.4. BLUETONGUE VIRUS NS3 ... 10
 1.4.1. BTV life cycle .. 10
 1.4.2. Role of BTV NS3 in the viral life cycle ... 11
1.5. ROTAVIRUS NSP4 .. 14
 1.5.1. Role of NSP4 in rotavirus morphogenesis ... 15
 1.5.1. Role of NSP4 in rotavirus pathogenesis ... 16
1.5. ALTERATION OF MEMBRANE PERMEABILITY BY ANIMAL VIRUSES 18
1.6. GENOME SEGMENT REASSORTMENT .. 22
1.7. AIMS .. 24

CHAPTER 2: GENOME SEGMENT REASSORTMENT IDENTIFIES NS3 AS A KEY PROTEIN IN AHSV RELEASE AND MEMBRANE PERMEABILISATION .. 26

2.1. INTRODUCTION .. 27
2.2. MATERIALS AND METHODS ... 29
 2.2.1. Cells and viruses ... 29
2.2.2. Isolation of AHSV reassortants ... 29
2.2.3. Genome segment assignment ... 29
 2.2.3.1. Isolation and polyacrylamide gel electrophoresis (PAGE) of dsRNA 29
 2.2.3.2. Sequencing of genome segments ... 29
2.2.4. Virus titration ... 31
2.2.5. Cytopathic effect (CPE) and cell viability ... 31
2.2.6. Hygromycin B (Hyg B) membrane permeability assay 31
2.2.7. Statistical analysis .. 32
2.3. RESULTS .. 33
 2.3.1. Production and characterisation of AHSV reassortants 33
 2.3.2. Virus yield and release ... 37
 2.3.3. Induction of CPE .. 39
 2.3.4. Infected Vero cell viability and protein synthesis levels 42
 2.3.5. Membrane permeability of infected cells .. 43
2.4. DISCUSSION .. 44

CHAPTER 3: COMPARISON OF THE CYTOTOXICITY AND MEMBRANE PERMEABILISING ACTIVITY OF AHSV, BTV AND EEV NS3 AND IDENTIFICATION OF DOMAINS IN AHSV NS3 THAT MEDIATE THESE ACTIVITIES .. 48

3.1. INTRODUCTION .. 49
3.2. MATERIALS AND METHODS .. 51
 3.2.1. Expression of orbiviral NS3 proteins as recombinants in insect cells 51
 3.2.1.1. Cells and baculoviruses ... 51
 3.2.1.2. Trypan blue cell viability assay .. 51
 3.2.1.3. CellTiter-Blue™ Cell Viability Assay ... 51
 3.2.2. Expression of orbiviral NS3 proteins, and truncated AHSV NS3 mutants, in E. coli ... 51
 3.2.2.1. PCR amplification of orbiviral S10 genes and truncated AHSV S10 mutants 53
 3.2.2.2. Cloning of S10 amplicons into pET-41 and screening recombinants 55
 3.2.2.3. Transformation of E. coli with recombinant pET-41 plasmids 56
 3.2.2.4. Induction and analysis of recombinant protein expression in E. coli 56
 3.2.2.5. E. coli cell growth assays ... 56
 3.2.2.6. Hygromycin B E. coli membrane permeability assay 57
 3.2.2.7. β-galactosidase E. coli membrane permeability assay 57
 3.2.2.8. Purification of N- and C-terminal regions of AHSV-2 NS3. 57
3.3. RESULTS ... 59
 3.3.1. Comparison of the cytolytic properties of BTV, AHSV and EEV NS3 in Sf9 cells 59
3.3.2. Expression of BTV, AHSV and EEV NS3 in *E. coli* cells .. 61

3.3.2.1. Cloning AHSV and BTV S10 genes into pET-41c ... 62

3.3.2.2. Analysis of expression of AHSV, BTV and EEV NS3 in *E. coli* .. 63

3.3.2.3. Viability of *E. coli* expressing AHSV, BTV and EEV NS3 .. 65

3.3.2.4. Membrane permeability of *E. coli* expressing AHSV, BTV and EEV NS3 66

3.3.2. Expression of AHSV NS3 truncated mutants in *E. coli* cells .. 67

3.3.2.1. Cloning of truncated mutants of the AHSV S10 gene into pET-41c 68

3.3.2.2. Viability and membrane permeability of *E. coli* expressing truncated AHSV NS3 variants .. 72

3.3.2.3. Expression and purification of N- and C-terminal regions of AHSV-2 NS3 75

3.4. DISCUSSION .. 80

CHAPTER 4: COMPARISON OF THE NS3 PROTEINS OF AHSV-2, AHSV-3 AND AHSV-4... 84

4.1. INTRODUCTION ... 85

4.2. MATERIALS AND METHODS .. 87

4.2.1. AHSV-2, AHSV-3 and AHSV-4 NS3 sequence analysis and computational comparison 87

4.2.2. Expression of AHSV-2, AHSV-3 and AHSV-4 NS3 in Sf9 cells ... 87

4.2.2.1. Cloning of AHSV-2 and AHSV-4 NS3 as eGFP fusions in the BAC-TO-BAC™ expression system .. 87

4.2.2.2 Western blot analysis of recombinant NS3 expression in Sf9 cells 88

4.2.3. Exogenous addition of baculovirus expressed NS3 to Vero cells .. 89

4.2.4. Trypan Blue cell viability assay .. 89

4.2.5. Subcellular fractionation and membrane flotation assay ... 89

4.2.6. Analysis of the membrane topology of AHSV-2 NS3 .. 90

4.2.6.1. Production of antibodies against N- and C-terminal of AHSV-2 NS3 90

4.2.6.2. Immunofluorescence assays ... 90

4.2.7. Confocal Microscopy .. 91

4.3. RESULTS ... 92

4.3.1. Comparison of AHSV-2, AHSV-3 and AHSV-4 NS3 sequences .. 92

4.3.2. Expression of AHSV-2, AHSV-3 and AHSV-4 in Sf9 cells ... 95

4.3.2.1. Cloning AHSV-2 and AHSV-4 NS3 into pFastBac-eGFP .. 95

4.3.2.2. Analysis of expression of AHSV NS3 and NS3-eGFP fusion proteins 96

4.3.3. Effect of exogenously added NS3 on Vero cell membrane permeability 98

4.3.4. Effect of in *vivo* expression of AHSV-2, AHSV-3 and AHSV-4 NS3 on insect cell viability .. 99