Antidiabetic activity of pentacyclic triterpenes and flavonoids isolated from stem bark of *Terminalia sericea* Burch.Ex DC

BY

NOLITHA KHANYA NKOBOLE

Submitted in partial fulfilment of the requirements for the degree of

Masters of Science (Medicinal Plant Science)

University of Pretoria

Faculty of Natural and Agricultural Sciences

Department of Plant Science

July 2009

Promoter: Prof N.Lall
DECLARATION

I declare that the dissertation, which I hereby submit for the degree of Masters of science at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

Signed;

Date:
Table of Contents

List of Figures .. XI

List of Tables ... XVII

List of Abbreviations .. XIX

Abstract ... XX

Chapter 1: Introduction ... 1

1.1 History of Diabetes mellitus .. 1

1.2. Classification of diabetes mellitus .. 2

1.2.1 Type 1: Insulin dependent diabetes mellitus .. 2

1.2.1.1 Pathogenesis of IDDM ... 3

1.2.2 Type 2: Non-insulin dependent diabetes mellitus .. 4

1.2.3 Pathogenesis of NIDDM .. 4

1.3 Complications associated with diabetes mellitus ... 5

1.4 Diagnosis of DM ... 7

1.5 Epidemiology of DM ... 9

1.7 Therapeutic intervention and limitations associated with them 10

1.6.1 Alpha glucosidase and amylase enzymes ... 10

1.6.1.1 Alpha glucosidase and alpha amylase inhibitors .. 11
1.6.2 Sulfonylureas ...12

1.6.3 Biguanides e.g. metformin ..12

1.6.4 Meglitinides e.g. prardinic and starlic ..13

1.6.5 Insulin ...15

1.6.5.1 Chain of events upon the discovery of insulin ..15

1.6.5.2 Structure and function ..16

1.6.5.3 Glucose homeostasis ..16

1.6.5.4 The role of insulin and glucagon ..17

1.7 Antioxidants and diabetes mellitus ...18

2. Use of plants against diabetes mellitus ..19

3. Objectives of the study ..21

4. Structure of dissertation ...21

5. References ..23

Chapter 2: Selected plants for the study

Introduction ...31

2.1.1 Psidium guajava ...31
2.1.1.1 Description ...31
2.1.1.2 Distribution ...32
2.1.1.3 Phytochemistry ...32
2.1.1.4 Medicinal uses ...34

2.1.2 Terminalia sericea ...35
 2.1.2.1 Description ...35
 2.1.2.2 Distribution ...35
 2.1.2.3 Phytochemistry ...35
 2.1.2.4 Medicinal uses ...35

2.1.3 Artemisia afra ...36
 2.1.3.1 Description ...36
 2.1.3.2 Distribution ...37
 2.1.3.3 Phytochemistry ...37
 2.1.3.4 Medicinal uses ...37

2.1.4 Aloe ferox ...38
 2.1.4.1 Description ...38
2.1.8 Spirostachys africana ...45

2.1.8.1 Description ..45
2.1.8.2 Distribution ...45
2.1.8.3 Phytochemistry ...45
2.1.8.4 Medicinal uses ...46

2.2 References ..47

Chapter 3: α-Glucosidase, α-Amylase inhibitory activities and antioxidant activities of plant extracts

3.1 Introduction ..52

3.2 Materials and methods ..53

3.2.1 Plant material ...53

3.2.2 Preparation of extracts ...53

3.2.3 Assay for bakers yeast α-glucosidase inhibitory activity53

3.2.4 Assay for porcine pancreatic α-amylase inhibitory activity55

3.2.5 DPPH assay ...56

3.2.6 Toxicity screening (XTT viability assay)57

3.3 Statistical analysis ..57

3.3 Results and discussion ..57

3.3.1 α-Glucosidase and Amylase inhibitory activity58
3.3.2 Antioxidant activity...64

3.3.3 Cytotoxicity of compounds on Vero cell lines...69

3.4 Conclusion..70

3.5 References...72

Chapter 4: Isolation of compounds from *Terminalia sericea*

4.1 Introduction..78

4.2 Materials and Methods..81

4.2.1 Extraction and isolation of pure compounds...81

4.2.2 Determining alpha glucosidase inhibition by the fractions...85

4.2.3 Statistical analysis...85

4.3 Results and Discussion...85

4.3.1 Alpha glucosidase activity...85

4.3.2 Characterization of compound 1+2..86

4.3.3 Characterization of compound 3+4..87

4.3.4 Characterization of compound 5..89

4.3.5 Characterization of compound 6..90

4.3.6 Characterisation of compound 7..91
Chapter 5: α-Glucosidase, α-Amylase inhibitory activities and antioxidant activities of isolated compounds

5.1 Introduction ..97

5.2 Materials and Methods ...97

5.3 Statistical analysis ...97

5.4 Results and discussion ...98

5.4.1 α-Glucosidase and Amylase inhibitory activity ...98

5.4.2 Antioxidant activity ..101

5.4.3 Cytotoxicity of compounds on Vero cell lines ..104

5.5 Conclusion ..107

5.6 References ..109
Chapter 6: Summary and general conclusions

6.1 Introduction...115

6.2 Conclusion and recommendations for future work..116

Chapter 7: Acknowledgements..118

Chapter 8: Appendices A...120

8.1 1HNMR and 13CNMR of isolated compounds from *Terminalia sericea*........120

Appendices B

8.2 Compounds isolated from plants for the Dictionary of Natural Products...129

Appendices C

8.3 Publications and conference presentations resulting from this thesis........140

8.3.1 Publications..140

8.3.2 Conference presentations...140
LIST OF FIGURES

Chapter 1

Figure 1.1: Complications that arise as a result of diabetic complications, A) Diabetic foot, B) Atherosclerosis in diabetics

Figure 1.2: Chemical structures of alpha-amylase (A) and alpha glucosidase

Figure 1.3: Chemical structure of acarbose (Precose)

Figure 1.4: Chemical structure of metformin

Figure 1.6: Drugs used for the treatment of diabetes mellitus

Figure 1.7: Role of insulin for the control of glucose homeostasis

Chapter 2

Figure 2.1: Psidium guajava L

Figure 2.2: Terminalia sericea Burch. Ex DC

Figure 2.3: Artemisia afra Jacq. Ex Willd
Chapter 3

Figure 3.1 Inhibitory activity of plant extracts on α-glucosidase

Figure 3.2 Inhibitory activity of plant extracts on α-amylase

Figure 3.3: A) α- Amylase on glass tubes: activation of α-amylase enzyme results in the formation of dark blue colour, when this activity is inhibited; a light blue colour results.

B) Inhibitory activity of α-Glucosidase enzyme by the plant extracts. Activation of the enzyme results in formation of yellow colour on 96-well plates, inhibition is indicated by light-yellow colour as compared to the well were enzyme is activated.
Figure 3.4: The percentage absorbance of the antioxidant activities of the acetone extracts of selected plants and Vitamin C (standard control)..67

Figure 3.5: Antioxidant activity of T. sericea..68

Figure 3.6: Effect of T. sericea crude extract and (Doxorubicin) on normal Vero cells..70

Chapter 4

Figure 4.1: Different plant parts of Terminalia sericea (Combretaceae)
A=bark, B=fruit, C=leaves and twigs..79

Figure 4.2: Chemical structures of sericoside (A) and analignan B (B) isolated from T. sericea...80

Figure 4.3: Silica gel column chromatographic purification of acetone extract of T. sericea..82

Figure 4.4: TLC plates of fractions obtained from chromatographic separation of acetone extract of T. sericea
Solvent system: DCM: MeOH (95:5)...83
Detection: Vanillin in H₂SO₄...83

Figure 4.5: Isolation of compounds from the acetone extract of T. sericea........84
Figure 4.6: Dose dependent inhibition of alpha glucosidase enzyme by fractions using p-nitrophenyl α-D-glucopyranoside as a substrate.................................86

Figure 4.7: Chemical structure of compounds isolated from stem bark of T. sericea..87

A) Chemical structure of catechin, epicatechin, gallocatechin and galloepicatechin isolated from the bark of T. sericea..87

B) Chemical structure of lupeol and β-sitosterol isolated from the bark of T. sericea..............90

C) Chemical structure of β-sitosterol-3-acetate and stigma-4-ene-one isolated from the bark of T. sericea...91

Chapter 5

Figure 5.1: Inhibitory activity of compounds isolated from T. sericea on α-glucosidase...100

Figure 5.2: Antioxidant activity of isolated compounds from T. sericea104

Figure 5.3: Effect of isolated compounds on the viability of Vero cells.............107
Chapter 8

Figure 8.1: 1HNMR spectrum of ‘lupeol’ isolated from the acetone extract of Terminalia sericea...120

Figure 8.2: 13CNMR of ‘lupeol’ isolated from the acetone extract of Terminalia sericea...121

Figure 8.3 1HNMR spectrum of ‘β-sitosterol-3-acetate’ isolated from the acetone extract of Terminalia...122

Figure 8.4: 1HNMR spectrum of ‘3-one-stigmasterol’ isolated from the acetone extract of Terminalia sericea...123

Figure 8.5: 1HNMR spectrum of ‘β-sitsterol’ isolated from the acetone extract of Terminalia sericea...124

Figure 8.6: 1HNMR spectrum of ‘catechin-epicatechin’ isolated from the acetone extract of Terminalia sericea...125

Figure 8.7: 13CNMR of ‘catechin-epicatechin’ isolated from the acetone extract of Terminalia sericea...126

Figure 8.8: 1HNMR spectrum of ‘gallocatechin-epigallocatechin’ isolated from the acetone extract of Terminalia sericea...127
Figure 8.9: 13C NMR of ‘gallocatechin-epigallocatechin’ isolated from the acetone extract of Terminalia sericea…………………………………………………………………………….128

List of isolated compounds from Dictionary of Natural Products…………………………..129
LIST OF TABLES

Chapter: 1

Table 1.1: Diagnostic thresholds for diabetes and lesser degrees of impaired glucose regulation ... 8

Table 1.2: Non-insulin dependent diabetes statistics worldwide (1994-2010).........9

Chapter: 2

Table 2.1: Constituents of P.guajava and their biological activities 33

Chapter 3

Table 3.1: Medicinal plants investigated in the study...................................... 54

Table 3.2: Effect of plant extracts on the activity of α-glucosidase and α-amylase enzymes .. 61

Table: 3.3: A summary of fifty percent inhibitory concentration (IC₅₀ values) of extracts on alpha (α) - glucosidase, α-amylase and DPPH66
Table 3.4: IC50 values for the acetone extracts of selected plants (Vitamin C IC50 = 2.52µg/ml) ...68

Table 3.5: Fifty percent inhibitory concentration values of crude extract of T. sericea after 4 days on Vero cells ...70

Chapter 4

Table 4.1: Fifty percent inhibitory concentration (IC50 values) of fractions on alpha (α) – glucosidase ...86

Table 4.2: 1HNMR and 13CNMR data of catechin-epicatechin and gallocatechin-epigallocatechin ..88

Chapter 5

Table 5.1: Fifty percent inhibitory concentration of extracts for alpha glucosidase and alpha amylase ..99

Table 5.2: Inhibition of DPPH (percent) by the compounds at 100µg/ml103

Table 5.3: Fifty percent inhibitory concentration values of isolated compounds after 4 days ...105
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>Advanced glycosylated end products</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DPPH</td>
<td>1, 2-diphenyl-2-picrylhydrazil</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated kinases</td>
</tr>
<tr>
<td>GLUT4</td>
<td>Glucose transporter</td>
</tr>
<tr>
<td>IDDM</td>
<td>Insulin dependent diabetes mellitus</td>
</tr>
<tr>
<td>IRS-1</td>
<td>Insulin receptor substrate 1</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein (MAP) kinases</td>
</tr>
<tr>
<td>NIDDM</td>
<td>Non-insulin dependent diabetes mellitus</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>PEPCK</td>
<td>Phosphoenopyruvate carboxykinase</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>T1DM</td>
<td>Type-1 diabetes mellitus</td>
</tr>
<tr>
<td>T2DM</td>
<td>Type-2 diabetes mellitus</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violet</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>XTT</td>
<td>2, 3-bis-[2-methoxy-4-nitrophenyl]-2H-tetrazolium-5-carboxanilide</td>
</tr>
</tbody>
</table>
Antidiabetic activity of pentacyclic triterpenes and flavonoids isolated from the stem bark of *Terminalia sericea* Burch. Ex DC

Abstract

Diabetes mellitus (DM) represents a series of metabolic conditions associated with hyperglycemia and caused by defects in insulin secretion, and/ or insulin action. Exposure to chronic hyperglycemia may result in microvascular complications in the retina, kidney or peripheral nerves. According to the World Health Organization (WHO) global burden of disease, more than 176 million people are diabetic with about two thirds of these living in developing countries. With a long course and serious complications that often result in high incidences of mobility and mortality rate, the treatment of diabetes is often costly. The management of this disease is not without side effects and this is a challenge to the medical system. This has led the researches to seek new antidiabetic agents from plants.

Acetone extract of 8 plants namely *Terminalia sericea* Burch. Ex DC, *Euclea natalensis* A.DC, *Warbugia salutaris* Bertol.f.) Chiov., *Artemisia afra* Jacq.ex Willd., *Aloe ferox* Mill, *Sclerocarya birrea* (A.Richi.) Hochst. subsp. caffra, *Spirostachys Africana* Sond and *Psidium guajava* L were evaluated for antidiabetic and antioxidant properties. In addition extracts were tested for cytotoxicity. Different parts of all these plants are traditionally used in South Africa for diabetes treatment. Plants were selected based on ethnobotanical information and phytochemical constituents. For determining inhibitory activity against each enzyme (α-glucosidase and α-amylase), all extracts were tested at concentration that ranged from 2×10^{-5} to 0.2mg/ml for α-glucosidase and 0.025 to 1.25mg/ml for α-amylase and fifty percent inhibition or higher was taken
as significant (p<0.05). The extracts of *A. ferox* and *S. africana* showed no inhibition against α-glucosidase at the highest concentration tested (0.2mg/ml) whereas *A. afra* showed weak inhibition (47.15%). *T. sericea* showed to be a potent inhibitor of α-glucosidase exhibiting 97.44 % inhibition of the enzyme (p<0.05). *W. salutaris, S birrea* and *E. natalensis* also showed good activity on α-glucosidase as they demonstrated 71.84; 97.44 and 92.60 % inhibition respectively (p<0.05). Other plant extracts such as *A. ferox* and *S. africana* did not exhibit any activity on α-glucosidase.

T. sericea and *S. birrea* showed the best inhibitory activity on α-amylase enzyme, exhibiting 91.91 and 94.94 % inhibition respectively at 1.25mg/ml. *A. afra, E. natalensis, P. guajava* and *W. salutaris* also showed good inhibitory activity on α-amylase enzyme at 1.25mg/ml which was the highest concentration tested (p<0.05).

Low levels of plasma antioxidants is a risk factor associated with diabetes therefore, it has been suggested that plant-based medicines that contain antioxidant properties add an advantage in curbing complications that arise during DM aetiology. The antioxidant activity of plant extracts was carried out using 2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) assay. Six plant extracts which showed good α-glucosidase and α-amylase inhibitory activity were evaluated for antioxidant activity. The radical scavenging activity was measured in terms of the amount of antioxidants necessary to decrease the initial DPPH absorbance (EC$_{50}$). The EC$_{50}$ is the amount of antioxidants necessary to decrease initial DPPH absorbance by 50%. All 6 tested plant extracts showed good activity. *W. salutaris* and *T. sericea* demonstrated the highest activity exhibiting EC$_{50}$ values of 5.08 and 5.56µg/ml respectively as compared to ascorbic acid/Vitamin C (EC$_{50}$=2.52µg/ml), a well- known potent antioxidant. This was followed by *P. guajava* (EC$_{50}$=6.97µg/ml); *E. natalensis* (EC$_{50}$=8.46µg/ml) and *S. birrea* (EC$_{50}$=9.41µg/ml). *A. ferox* showed EC$_{50}$ value of 48.53µg/ml.
It has been suggested that plant extracts and compounds must undergo toxicity test for safety before drug discovery is taken into consideration. Due to the large number of plants screened in this study and limited resources in our laboratory, only the acetone extract of *T. sericea* (which demonstrated good α-glucosidase and α-amylase inhibitory activities) was tested for cytotoxicity. Acetone extract of *T. sericea* demonstrated moderate toxicity against primary vervet monkey kidney cells (VK) cells exhibiting IC\(_{50}\) values of 20.94 µg/ml when tested at 400µg/ml. Consequently, the acetone extract of *T. sericea* was selected for the isolation and identification of bioactive compounds. A bio-assay guided fractionation of the acetone extract of *T. sericea* led to the isolation of 4 pure compounds namely β-sitosterol, β-sitosterol-3-acetate, lupeol and 3-one-stigmasterol and two sets of mixtures of isomers (epicatechin-catechin; MI1 and epigallocatechin-gallocatechin; MI2).

Antidiabetic, antioxidant and cytotoxicity activities of isolated compounds were evaluated. β – Sitosterol and lupeol showed best inhibitory activity on α-glucosidase exhibiting 50% inhibitory concentration (IC\(_{50}\)) value of 54.50 µM and 66.48 µM respectively (p<0.05). This was followed by the MI2; epigallocatechin-gallocatechin (IC\(_{50}\)=119.34 µM); β-sitosterol-3-acetate (IC\(_{50}\)=129.34 µM); 3-one-stigmasterol (IC\(_{50}\)=164.87 µM) and the MI1; epicatechin-catechin (IC\(_{50}\)=255.76 µM).

During the evaluation of purified compound’s inhibitory activity on α-amylase, compounds of interest were lupeol and β-sitosterol which exhibited IC\(_{50}\) values of 140.72 µM and 216.02 µM respectively as compared to the positive drug-control acarbose (IC\(_{50}\)=65.25 µM). Epicatechin-catechin and epigallocatechin-gallocatechin also demonstrated α-amylase inhibitory properties and the IC\(_{50}\) values were found to be lower than 100µg/ml. Epigallocatechin-gallocatechin, epicatechin-catechin and lupeol showed good free radical scavenging activity as they inhibited DPPH by 98.19; 96.98 and 70.90 % at 100µg/ml respectively (p<0.05). The DPPH scavenging activity was very low in case of 3-one-stigmasterol (21.5% inhibition), whilst β-sitosterol and its derivative β-sitosterol-3-acetate did not show any activity.
During cytotoxicity evaluation of pure compounds against monkey kidney cells, all the compounds except \(\beta \)-sitosterol did not inhibit the growth of these cells lines at the highest concentration tested (200\(\mu \)g/ml). \(\beta \)-Sitosterol showed moderate toxicity exhibiting IC\(_{50}\) values of 197.72 \(\mu \)M. \(\beta \)-Sitosterol-3-acetate, epicatechin-catechin, lupeol and epigallocatechin-gallocatechin were found to be non-toxic to Vero cells as 100% cell viability was observed when Vero cells were exposed to these samples at 200\(\mu \)g/ml.

The compounds isolated and the extract of \textit{T. sericea} demonstrated significant antidiabetic and antioxidant properties as compared to well known drugs acarbose (a known \(\alpha \)-glucosidase and \(\alpha \)-amylase inhibitor) and Vitamin C (a well known antioxidant). This study is the first to report \(\alpha \)-glucosidase, \(\alpha \)-amylase and antioxidant properties of epicatechin-catechin, epigallocatechin-gallocatechin, \(\beta \)-sitosterol-3-acetate and stigma-4-ene-3-one isolated from \textit{T. sericea}. In addition, epicatechin-catechin, epigallocatechin-gallocatechin, \(\beta \)-sitosterol-3-acetate and stigma-4-ene-3-one are isolated from \textit{T. sericea} for the first time. Overall all results scientifically validated the traditional use of the bark of \textit{T. sericea} for diabetes in South Africa.