AN INVESTIGATION CERVICAL CANCER, HUMAN PAPILLOMAVIRUS (HPV) INFECTION AND STEROID CONTRACEPTION

Manivasan Moodley

Submitted in partial fulfilment of the requirement for the degree of Philosophiae Doctor in Obstetrics Gynaecology

University of Pretoria
Pretoria
South Africa

Supervisor: Professor BG Lindeque
Submitted in partial fulfilment of the requirements for the
degree of PhD in the department of Obstetrics and
Gynaecology, University of Pretoria, South Africa
ABSTRACT

PROJECT ONE

Introduction

HPV is detected in about 99.7% of cervical cancers. However, the HPV type distribution in South African women is unknown.

Objectives

To determine HPV-type distribution among women with cervical dysplasia in relation to oral contraceptive usage.

Methods

Prospective cross-sectional study of four groups of patients according to oral contraceptive usage: non-users, users of less than five years duration, users of between five years and ten years and users of more than ten years duration. Swabs of the cervix were analysed for HPV DNA using polymerase chain reaction method.

Results

A total of 124 women were recruited for the study. There were 75 HIV-infected patients (seroprevalence 61%). Of the 102(82%) HPV-positive patients, 79 patients had high-risk HPV DNA (78%). In terms of the four oral contraceptive groups, high-risk HPV DNA was detected in 70% (n=21), 79% (n=22), 90% (n=21) and 71% (n=15) of patients, respectively. The odds of having HPV DNA was six times higher for the combination of contraceptive users of less than 5 years duration/non-users (OR 5.9, 95% CI: 1.87 - 18.77).
There was no change when adjustment was made for age (OR 6.1, 95% CI: 1.9 - 19.4).

HPV DNA types 16 and or 18 was present in a total of 21 patients (49%) (non-contraceptive users and users < 5 years duration) versus 15 patients (42%) who used oral contraceptives of more than 5 years duration (p=0.524). HPV type 16 was the commonest HPV type detected (20.2%) and HPV type 58 was the next commonest high-risk HPV type (16.1%). HPV types 58 and 33 was detected in a much greater percentage of our population and HPV 16 in a much smaller percentage of our population compared with a non-South African population.

Conclusion

The findings of this study demonstrate an interesting distribution of HPV types in a South African population.

PROJECT TWO

Introduction

Various risk factors have been implicated in the causation of cervical cancer including human papillomavirus (HPV), the early genes (E6 and E7) of which encode the main transforming proteins. Studies have suggested that steroid hormones may enhance the expression of these genes leading to loss of p53 gene-mediated cell apoptosis.
Methods

A total of 120 cervical tissue samples were obtained from patients with proven cervical cancer. Patients who used depo-medroxyprogesterone acetate steroid contraception were recruited as part of the study arm. Only HPV DNA type 16 samples were used for the study. Controls included three cell lines (CaSki, SiHa, & C33A) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal housekeeping gene. Of 120 patients, there were 111 patients with HPV type 16 identified. Of this number, RNA was present in 63 samples. There were 30 women (30/63) who used steroid contraception. In relation to patients who used contraception, HPV 16 E6 gene expression was present in 79% (n = 23) and 88% (n = 30) of steroid users compared to nonusers, respectively. In total there were 25 patients (40%) with expression of the HPV 16 E6*I gene and 30 patients with expression of the E6*II gene. There were 57% of steroid users (n = 17) who had expression of the E6*I/E6*II gene, compared to 52% (n = 17) of nonusers (P = 0.800).

Conclusion

From a molecular level, this study reflects almost similar distribution of the HPV 16 E6/E6*I and E6*11 and does not confirm the role of injectable progesterones in cervical carcinogenesis.

Further studies with larger patient numbers are needed.
DECLARATION

This study represents work done by the author.

The research described in this thesis was performed in the Department of Obstetrics and Gynaecology, Inkosi Albert Luthuli Central Hospital, Durban, South Africa.
ACKNOWLEDGEMENTS

1. Professor BG Lindeque for his unwaivering support and encouragement over the years.

2. Susan Sewart, Department of Biological and Life Sciences, University of Liverpool, Liverpool, United Kingdom, for her technical assistance in the project.

3. Dr I Kleinsmidt and Cathy Connolly, Biostatistics, Medical Research Council, Durban, South Africa

4. The South African Society of Obstetricians and Gynaecologists for their financial support.

5. Mr A Hirasen for his expert drawings

6. Mr H Garbers (MSD South Africa) for granting permission to use the HPV phylogentic tree

7. All patients who contributed to the project.
PRESENTATION ARISING FROM THE PROJECT

1. ACADEMIC MEETING DEPARTMENT OBSTETRICS
 GYNAECOLOGY 2005
2. THE OBSTETRIC AND GYNAECOLOGY UPDATE, UNIVERSITY OF
 PRETORIA, MAY 2009.
3. SOUTH AFRICAN SOCIETY OBSTETRICIANS GYNAECOLOGISTS
 2010

PUBLICATIONS ARISING FROM THE STUDY

1. An investigation into oral contraceptive use, human papillomavirus (HPV)-
type distribution and cervical intraepithelial neoplasia, Durban, South
 Africa. Eur J Gynaecol Oncol 2009 (accepted for publication).
2. The interaction between steroid hormones, human papillomavirus type 16,
 E_6 oncogene expression and cervical cancer. Int J Gynecol Cancer 2003; 13:
 1-9.
3. The role of steroid contraceptive hormones in the pathogenesis of invasive
4. Use of the nested reverse transcription-polymerase chain reaction for the
 detection of human papillomavirus 16 E6 transcriptional activity in cervical
TABLE OF CONTENTS

CHAPTER ONE

INTRODUCTION 1

1.0 EPIDEMIOLOGY OF CERVICAL CANCER 2

1.1 RISK FACTORS AND AETIOLOGY OF CERVICAL CANCER
AND IT’S PRECURSORS 5

1.1.1 PARITY 5

1.1.2 THE NUMBER OF SEXUAL PARTNERS AND
FREQUENCY OF SEXUAL INTERCOURSE 6

1.1.3 SMOKING 6

1.1.4 ROLE OF THE MALE PARTNER 8

1.1.5 ROLE OF DIETARY FACTORS 9

1.1.6 ROLE OF SEXUALLY TRANSMITTED INFECTIONS
OTHER THAN HPV 9

1.1.7 ROLE OF THE HUMAN IMMUNODEFICIENCY VIRUS
(HIV) INFECTION 11

2.0 THE HUMAN PAPILLOMAVIRUS AND ITS LINK TO
INTRAEPITHELIAL AND INVASIVE CERVICAL NEOPLASIA 16

2.1 HISTORICAL PERPECTIVE 16
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>EPIDEMIOLOGICAL EVIDENCE LINKING HPV AND CERVICAL NEOPLASIA</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>CLASSIFICATION AND STRUCTURE OF PAPILLOMAVIRUSES</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>STRUCTURE OF THE HUMAN PAPILLOMAVIRUS</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>THE HPV NUCLEIC ACID/GENOME</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.5.1 ORFs WITH ONCOGENIC PROPERTIES</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2.5.2 REGULATORY GENES</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>2.5.3 UNKNOWN GENE FUNCTIONS</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>2.5.4 LATE CAPSID PROTEINS AND THE UPSTREAM REGULATORY REGION</td>
<td>39</td>
</tr>
<tr>
<td>2.6</td>
<td>REPLICATION CYCLE OF THE HUMAN PAPILLOMAVIRUS</td>
<td>40</td>
</tr>
<tr>
<td>2.7</td>
<td>IMMUNOLOGY OF HPV INFECTIONS</td>
<td>41</td>
</tr>
</tbody>
</table>
3.0 CLINICAL CORRELATES OF HPV TYPES

3.1 CUTANEOUS HPVs IN IMMUNO-COMPETANT POPULATION

3.2 CUTANEOUS HPVs IN IMMUNO-COMPROMISED INDIVIDUALS

3.3 HPVs AFFECTING THE AERO-DIGESTIVE AND ANOGENITAL MUCOSAE

3.3.1 LOW-RISK HPV TYPES

3.3.2 HIGH-RISK HUMAN PAPILLOMAVIRUSES

3.3.2.1 HPV TYPE 16 VIRUS

3.3.2.2 HPV TYPE 18 VIRUS

4.0 VULNERABILITY OF THE HOST TO CERVICAL NEOPLASIA

4.1 THE CELL CYCLE AND ITS ASSOCIATION WITH HUMAN PAPILLOMAVIRUS INFECTION

4.2 CELL-CYCLE PROTEINS

4.2.1 CYCKLIN-DEPENDENT KINASES

4.2.2 CYCLINS
4.2.3 CYCLIN-DEPENDENT KINASE INHIBITORS

4.2.4 CYCLE-CYCLE PHASES

4.2.4.1 G1/S PHASE

4.2.4.2 G2/M PHASE

4.2.4.3 CELL-CYCLE CHECKPOINTS

5.0 THE ROLE OF HPV IN RELATION TO THE CELL CYCLE

6.0 THE p53 GENE AND ITS ROLE IN CERVICAL CANCER

6.1 HISTORY

6.2 THE p53 GENE AND CERVICAL CANCER

7.0 THE ROLE OF TELOMERASE ACTIVITY IN HPV-RELATED CERVICAL CANCER

8.0 THE ROLE OF DNA METHYLATION IN CERVICAL CANCER

9.0 MICROSTAEllITE INSTABILITY AND CERVICAL CANCER

10.0 THE ROLE OF STEROID CONTRACEPTION, HUMAN PAPILLOMAVIRUS AND CERVICAL NEOPLASIA
10.1 INTRODUCTION
10.2 THE BENEFITS OF STEROID CONTRACEPTION
10.3 CANCERS LINKED TO STEROID CONTRACEPTION
10.4 REVIEW OF PUBLISHED DATA LINKING STEROID CONTRACEPTION TO CERVICAL NEOPLASIA
10.4.1 EVIDENCE FROM COHORT STUDIES
10.4.2 EVIDENCE FROM CASE-CONTROLLED STUDIES
10.5 ROLE OF PROGESTERONE-ONLY CONTRACEPTIVE AGENTS IN THE PATHOGENESIS OF CERVICAL NEOPLASIA
11.0 POSTULATED MECHANISMS OF STEROID-RELATED CERVICAL CARCINOGENESIS AND THE LINK BETWEEN STEROID CONTRACEPTION AND HUMAN PAPILLOMAVIRUS INFECTION
12.0 THE IMPLICATIONS OF THE EVIDENCE PROVIDED FOR CLINICAL PRACTICE WITH REGARDS TO STEROID CONTRACEPTION
13.0 HPV VACCINES AND THE FUTURE
14.0 PART ONE OF THE PROJECT

AN INVESTIGATION INTO ORAL CONTRACEPTIVE USAGE, HUMAN PAPILLOMAVIRUS (HPV)-TYPE DISTRIBUTION AND CERVICAL INTRAEPITHELIAL NEOPLASIA, DURBAN, SOUTH AFRICA

14.1 AIMS

14.2 PATIENTS AND METHODS

14.3 STATISTICAL METHODS

14.4 RESULTS

14.5 DISCUSSION

15.0 PART TWO OF THE PROJECT

AN INVESTIGATION INTO HPV 16 E6 ONCOGENE- EXPRESSION AND USE OF INJECTABLE MEDROXY-PROGESTERONE STEROID CONTRACEPTIVES AMONG WOMEN WITH INVASIVE CERVICAL CANCER
15.1 HYPOTHESIS OF THE STUDY

15.2 AIMS

15.3 MATERIALS AND METHODS

15.4 LABORATORY METHODS

15.4.1 TYPING OF THE CERVICAL TISSUE SPECIMENS FOR HPV 16

15.4.1.1 DNA EXTRACTION

15.4.1.2 HPV TYPING

15.4.2 GROWTH OF CELL LINES IN VITRO

15.4.3 EXTRACTION OF RIBONUCLEIC ACID (RNA) FROM TISSUE SPECIMENS;

15.4.4 ASSESSMENT OF THE QUALITY AND QUANTITY OF RNA EXTRACTED BY SPECTROPHOTOMETRY;

15.4.5 REVERSE TRANSCRIPTION OF RNA TO SYNTHESISE cDNA USING REVERSE TRANSCRIPTASE ENZYME;

15.4.6 MOCK REVERSE TRANSCRIPTION OF RNA WITHOUT REVERSE TRANSCRIPTASE ENZYME TO DIFFERENTIATE RNA FROM GENOMIC DEOXYRIBONUCLEIC ACID (DNA);
15.4.7 POLYMERASE CHAIN REACTION OF PRODUCTS FROM 16.5) AND 16.6) ABOVE USING SPECIFIC PRIMER PAIRS TO THE E6 ONCOGENE; 131

15.4.8 NESTED POLYMERASE CHAIN REACTION OF PRODUCTS FROM 16.7) ABOVE USING SPECIFIC PRIMER PAIRS TO DETERMINE THE EXPRESSION OF HPV 16 E6*I AND E6*II SPliced VARIANTS; 136

15.4.9 GEL ELECTROPHORESIS TO DETERMINE THE EXPRESSION OF THE E6, E6*I AND E6*II ONCOGENES IN BOTH GROUPS OF PATIENTS; 137

15.4.10 COMPARISON OF THE PRESENCE OR ABSENCE OF BANDS WITH THE USE OF THE S3/S4 PRIMERS AND S1/S2 PRIMERS IN RELATION TO THE USAGE OF STEROID CONTRACEPTION 138

16.0 STATISTICAL METHODS 138
17.0 RESULTS

17.1 PATIENT DEMOGRAPHICS

17.2 CLINICAL DATA

17.3 CONTRACEPTIVE DATA

17.4 SMOKING

17.5 RNA EXTRACTION

17.6 HISTOLOGY FOR 63 PATIENTS

17.7 CLINICAL STAGES FOR 63 PATIENTS

17.8 EXPRESSION OF HPV 16 E6, E6*I & E6*II ONCOGENES FOR 63 PATIENTS

17.9 CLINICAL STAGE VERSUS HPV 16 E6 ONCOGENE EXPRESSION

17.10 EXPRESSION OF THE HPV TYPE 16 E6*I/E6*II ONCOGENES IN STEROID USERS AND NON-STEROID USERS

17.11 EXPRESSION OF THE HPV 16 E6*I/E6*II IN RELATION TO STAGE

18.0 DISCUSSION