DETERMINATION OF FACTORS INFLUENCING THE DEGREE OF REDUCTION DISINTEGRATION IN NORTHERN CAPE LUMP ORE AND THE ROLE OF GANGUE MINERALS IN THE PROPAGATION OF CRACKS

WF VAN DER VYVER

Dissertation submitted in partial fulfilment of the requirements of the degree Philosophiae Doctor (Metallurgy) in the Faculty Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria

2008-07-29
SYNOPSIS

The fundamental cause of low temperature breakdown (reduction disintegration) is reduction of hematite to magnetite, resulting in a volume expansion and stress relief through the formation of cracks. Serious reduction disintegration causes poor gas permeability, high flue dust production and scaffolding, poor gas distribution, higher fuel consumption and lower productivity.

Northern Cape iron ore generally performs well when tested for reduction disintegration properties both for blast furnaces and Corex; nevertheless, significant breakdown is experienced when used in the Corex process (at Saldanha Steel).

This study was hence conducted to determine the effects of the following on reduction disintegration:

- different ore types (from Northern Cape)
- initial particle size
- temperature range
- reduction gas composition

Although disintegration is clearly triggered by reduction, no direct correlation could be established between the percentage reduction and the percentage fines generated.
The results indicated that the presence of gangue minerals alone does not cause fractures to form, but does influence the direction and intensity of fractures to some extent. In many cases cracks form randomly, with no specific preference for either gangue minerals or iron oxides. For most of the samples, an incubation period was observed before the first cracks formed. No crack propagation was observed after initial cracking.

This study indicates that the degree of reduction disintegration depends mostly on furnace conditions. Reduction disintegration increased with higher hydrogen percentages (>5%), higher temperatures (in the 500°C-700°C range) and longer exposure. Disintegration of the samples decreased at temperatures higher than 750°C.

For particles smaller than 16 mm an inverse relationship was found between the average particle size and the percentage of fines generated, in line with the observation that most of the disintegration is due to spalling from particle edges rather than particles breaking into smaller clumps.

The results indicate that it is important to manage the temperature in the top of the blast furnace and the COREX shaft, and the time spent at temperatures below 750°C, to minimize the amount of fines generated.
TABLE OF CONTENT

1 BACKGROUND .. 1
 1.1 IRONMAKING .. 1
 1.1.1 Blast furnaces .. 1
 1.1.2 COREX ... 5
 1.1.3 Other ... 10
 1.2 IRON ORES .. 11
 1.3 DECREPITATION/DEGRADATION OF IRONBEARING RAW MATERIALS 15
 1.4 PROBLEM STATEMENT .. 32
 1.5 MINERALOGICAL EVALUATION ... 34
 1.5.1 Northern Cape Ore Type 1 .. 35
 1.5.2 Northern Cape Ore Type 2 .. 37
 1.5.3 Northern Cape Ore type 3 .. 38
 1.5.4 Northern Cape Ore type 4 .. 38
 1.5.5 Northern Cape Ore Type 5 .. 40
 1.5.6 Northern Cape Ore type 6 .. 40
 1.5.7 Northern Cape ore type 7 .. 42
 1.5.8 Scanning Electron Microscopy (SEM) Analysis ... 43

2 TESTWORK ... 45
 2.1 REDUCTION DISINTEGRATION ... 46
 2.2 EVALUATION OF CRACK OCCURANCE AND PROPAGATION 49
 2.2.1 Analysis Method .. 49
 2.3 HIGH TEMPERATURE MICROSCOPE REDUCTION TESTS 50

3 RESULTS ... 54
 3.1 REDUCTION DISINTEGRATION ... 54
 3.2 EVALUATION OF CRACK FORMATION AND PROPAGATION 66
 3.3 HIGH TEMPERATURE MICROSCOPE REDUCTION TESTS 75
 3.4 SEM ANALYSIS .. 87
 3.4.1 Group 1: Mono-Mineralic Hematite Samples .. 88
 3.4.2 Group 2: Poly-Mineralic Samples ... 89
 3.4.3 Group 3: Porous Samples .. 93
 3.4.4 Group 4: Other .. 95

4 DISCUSSION .. 97
 4.1 EFFECT OF BURDEN SIZE ... 97
 4.2 EFFECT OF GAS COMPOSITION ... 97
 4.3 EFFECT OF REDUCTION TEMPERATURE AND REDUCTION TIME 98
 4.4 EFFECT OF REDUCTION .. 99
 4.5 ORE COMPOSITION AND MICROSTRUCTURE ... 101

5 RECOGNITIONS .. 110
6 REFERENCES

LIST OF TABLES

Table 1: Optimum grain sizes for lumpy ore, sinter and pellets iv 7
Table 2: Comparison of reduction integration properties of Northern Cape Iron ore and Brockman ores ... 33
Table 3: COREX test results of Northern Cape iron ore. .. 33
Table 4: Minerals identified by means of SEM analysis in the various ore types 44
Table 5: Chemical analysis of samples before testing. ... 45
Table 6: RDI results of samples according to ISO 4696 .. 47
Table 7: List of different tests performed .. 48
Table 8: Illustrative data using Figure 24 to illustrate the methodology used to evaluate the occurrences of cracks using SEM analysis ... 50
Table 9: List and test conditions of samples reduced under the high temperature microscope. ... 53
Table 10: Results of sieve analysis and fractional reduction after reduction disintegration testing .. 55
Table 11: Chemical analysis of the different size fractions after reduction disintegration tests for the different ore types ... 56
Table 12: XRD analysis of the different size fractions after reduction disintegration tests for the different ore types ... 58
Table 13: Crack association in the different size fractions of Northern Cape STD (-10+8mm) as determined from SEM images .. 71
Table 14: Crack association in the different size fractions of Northern Cape Ore Type 2 as determined from SEM images ... 72
Table 15: Crack association in the different size fractions of Northern Cape Ore Type 4 as determined from SEM images ... 73
Table 16: Crack association in the different size fractions of Northern Cape Ore Type 5 as determined from SEM images ... 74
Table 17: Results of the crack association in the different size fractions of Northern Cape Ore Type 6 as determined from SEM images ... 75
Table 18: Summary of the cracks observed during and after reduction tests in high temperature microscope. .. 76
Table 19: Summary of SEM-analysis of iron ore samples after reduction under high temperature microscope. .. 86
Table 20: Alphabetical listing of the minerals mentioned in this report, their ideal chemical formulae and the theoretical iron content of the minerals and definitions b

LIST OF FIGURES

Figure 1: Schematic diagram of the blast furnace... 3
Figure 2: Schematic diagram of the temperature distribution and reduction zones of the blast furnace... 3
Figure 3: Blast furnace tap hole. (Photo taken at blast furnace at Mittal Vanderbijlpark.)........ 4
Figure 4: Flowsheet of the COREX process. ... 6
Figure 5: A schematic diagram of the COREX-Linder test apparatus................................. 10
Figure 6: Photo of the COREX-Linder test apparatus at Kumba Iron Ore 10
Figure 7: Crystals of Hematite and Magnetite... 12
Figure 8: Volume per Fe atom of hematite and magnetite crystals vs temperature. 14
Figure 9: Schematic representation of reduction degradation process in sinter.......................... 16
Figure 10: Schematic Free Energy-Composition Diagram for the iron-oxygen system in the Fe3O4:Fe2O3 region showing possible reaction paths on reduction of hematite to lath magnetite. ... 19
Figure 11: Proposed reactions, mass transport paths and transformations for the formation of lath magnetite on the reduction of hematite. ... 19
Figure 12: Volumetric changes observed during reduction from hematite to magnetite........ 20
Figure 13: Relative dilatation vs time accompanying reduction of hematite to magnetite 20
Figure 14: Effect of heating rate on the degree of reduction disintegration............................... 24
Figure 15: Effect of reducing gas composition on the degree of reduction disintegration. (Poor gas – 45% CO, 33% CO2, 15% H2, 7% N2; Standard gas - 52% CO, 25% CO2, 17% H2, 6% N2; Rich gas - 60% CO, 16% CO2, 15% H2, 6% N2) ... 24
Figure 16: Effect of reduction temperature on apparent volume increase of hematite........... 28
Figure 17: Stages in low temperature reduction of hematite... 28
Figure 18: Northern Cape ore, Reduction with CO, T = 850°C

Figure 19: Northern Cape Ore, Reduction with H2, T = 850°C

Figure 20: Change in volume of Northern Cape ore during reduction with CO and H2

Figure 21: Map of morphological regions given in the (T, CO/CO2) plane.

Figure 22: Cracking (α) vs time (h) of samples reduced at 350°C in CO/CO2 (20/80) gas mixture. (A sample was annealed at 1300 °C for 4 d in oxygen (to avoid any dissociation).

Figure 23: Particle distribution of Northern Cape and Brockman ores after dynamic reduction disintegration tests.

Figure 24: Photomicrographs of the textures observed in Northern Cape Ore Type 1. Magnification 30x.

Figure 25: Photomicrographs of ore textures observed in ore sample Northern Cape Ore Type 4.

Figure 26: Photomicrographs showing the different textures in Northern Cape Ore Type 6...

Figure 27: Photomicrographs showing the various textures encountered in Northern Cape Ore Type 7.

Figure 28: Illustration of methodology used to evaluate the occurrences of cracks using SEM images.

Figure 29: Graphical representation of high temperature microscope.

Figure 30: Illustration of test conditions used in the high temperature microscope.

Figure 31: Effect of burden size on the degree of reduction disintegration on Northern Cape STD.

Figure 32: Degree of reduction disintegration for the different Northern Cape Ore types.

Figure 33: Percentage reduction after reduction disintegration tests for Northern Cape STD and the various ore types plotted against the % fine material (-6.3mm) generated during the test.

Figure 34: Effect of gas composition on the degree of reduction and the percentage fine material generated.

Figure 35: Effect of reduction time on the degree of reduction disintegration for samples of different sizes of Northern Cape STD.

Figure 36: Effect of temperature on reduction disintegration for -12.5+10mm burdens after 60, 90 and 120 minutes of Northern Cape STD.
Figure 37: Effect of time and temperature ... 64
Figure 38: Effect of temperature on the reduction disintegration of Northern Cape STD. The
burden was -12.5+10mm and the reduction time 60 minutes ... 65
Figure 39: Effect of Temperature .. 65
Figure 40: SEM images of the -12+10mm fraction after reduction disintegration test for
Northern Cape Ore Type 2 ... 66
Figure 41: SEM images of the -10+8mm fraction after reduction disintegration test for Northern
Cape Ore Type 2 ... 66
Figure 42: SEM images of the -8+6.3mm fraction after reduction disintegration test for
Northern Cape Ore Type 2 ... 67
Figure 43: SEM images of the -6.3+3.15mm fraction after reduction disintegration test for
Northern Cape Ore Type 2 .. 67
Figure 44: SEM images of the -3.15+2mm fraction after reduction disintegration test for
Northern Cape Ore Type 2 .. 67
Figure 45: SEM images of the -2+1mm fraction after reduction disintegration test for Northern
Cape Ore Type 2 ... 68
Figure 46: SEM images of the -1+0.5mm fraction after reduction disintegration test for
Northern Cape Ore Type 2 .. 68
Figure 47: SEM images of the -0.5mm fraction after reduction disintegration test for Northern
Cape Ore Type 2 ... 68
Figure 48: SEM images of the -12+10mm fraction after reduction disintegration test for
Northern Cape Ore Type 4 ... 69
Figure 49: SEM images of the -10+8mm fraction after reduction disintegration test for Northern
Cape Ore Type 4 ... 69
Figure 50: SEM images of the -8+6.3mm fraction after reduction disintegration test for
Northern Cape Ore Type 4 .. 69
Figure 51: SEM images of the -6.3+3.15mm fraction after reduction disintegration test for Northern
Cape Ore Type 4 .. 70
Figure 52: SEM images of the -3.15+2mm fraction after reduction disintegration test for
Northern Cape Ore Type 4 .. 70
Figure 53: SEM images of the -2+1mm fraction after reduction disintegration test for Northern Cape Ore Type 4. ... 70
Figure 54: SEM images of the -1+0.5mm fraction after reduction disintegration test for Northern Cape Ore Type 4. ... 71
Figure 55: SEM images of the -0.5mm fraction after reduction disintegration test for Northern Cape Ore Type 4. ... 71
Figure 56: Graphical representation of crack association in the different size fractions of Northern Cape STD (-10+8mm).. 72
Figure 57: Graphical representation of crack association in the different size fractions of Northern Cape Ore Type 2. .. 73
Figure 58: Graphical representation of the crack association in the different size fractions of Northern Cape Ore Type 4. .. 73
Figure 59: Graphical representation of the crack association in the different size fractions of Northern Cape Ore Type 5. .. 74
Figure 60: Graphical representation of the crack association in the different size fractions of Northern Cape Ore Type 6. .. 75
Figure 61: Optical microscope image during the high temperature microscope reduction test of Sample 1 (10X). ... 77
Figure 62: Optical microscope image during the high temperature microscope reduction test of Sample 13 (10X). ... 78
Figure 63: Optical microscope image during the high temperature microscope reduction test of Sample 14 (10X). ... 78
Figure 64: Optical microscope image during the high temperature microscope reduction test of Sample 15 (10X). ... 78
Figure 65: Optical microscope image during the high temperature microscope reduction test of Sample 16 (10X). ... 79
Figure 66: Optical microscope image during the high temperature microscope reduction test of Sample 16 (10X). ... 79
Figure 67: Optical microscope image during the high temperature microscope reduction test of Sample 17 (10X). ... 79
Figure 68: Optical microscope image during the high temperature microscope reduction test of Sample 17 (10X).. 80
Figure 69: Optical microscope image during the high temperature microscope reduction test of Sample 17 (10X).. 80
Figure 70: Optical microscope image during the high temperature microscope reduction test of Sample 17 (10X).. 80
Figure 71: Optical microscope image during the high temperature microscope reduction test of Sample 18 (10X).. 81
Figure 72: Optical microscope image during the high temperature microscope reduction test of Sample 18 (10X).. 81
Figure 73: Optical microscope image during the high temperature microscope reduction test of Sample 18 (10X).. 82
Figure 74: Optical microscope image during the high temperature microscope reduction test of Sample 19 (10X).. 82
Figure 75: Optical microscope image during the high temperature microscope reduction test of Sample 19 (10X).. 83
Figure 76: Optical microscope image during the high temperature microscope reduction test of Sample 19 (10X).. 83
Figure 77: Optical microscope image during the high temperature microscope reduction test of Sample 20 (10X).. 84
Figure 78: Optical microscope image during the high temperature microscope reduction test of Sample 20 (10X).. 84
Figure 79: Optical microscope image during the high temperature microscope reduction test of Sample 20 (10X).. 85
Figure 80: Optical microscope image during the high temperature microscope reduction test of Sample 21 (10X).. 85
Figure 81: Optical microscope image during the high temperature microscope reduction test of Sample 21 (10X).. 86
Figure 82: Electron backscatter image of sample 3 showing the homogeneity of the sample. The sample is essentially mono-mineralic and comprises almost exclusively of hematite. Small radial fractures occur at the edge of the sample, where it has been reduced......................... 88
Figure 83: Electron backscatter image of sample 3 showing a rare internal fracture. This fracture is not associated with gangue minerals, porosity or reduction. 88
Figure 84: Electron backscatter image of sample 3 showing a pre-existing fracture filled with muscovite. 89
Figure 85: Electron backscatter image of sample 12 showing large fractures perpendicular and parallel to the edge of the sample. Smaller fractures occur perpendicular to the edge of the sample. 89
Figure 86: Electron backscatter image of sample 17 showing regularly spaced fracture/joint set in the sample. 89
Figure 87: Electron backscatter image of sample 1 showing fractures originating and terminating within quartz (grey) without extending into the surrounding hematite. 90
Figure 88: Electron backscatter image of sample 1 showing large fractures that do not appear to be influenced by the sample mineralogy. The fractures propagate through both gangue and ore minerals. 90
Figure 89: Electron backscatter image of sample 1 showing regularly spaced fractures at the edge of the sample, related to the volume change during the reduction of hematite to magnetite. 90
Figure 90: Electron backscatter image of sample 10 showing the development of fractures along the edge of the samples, where it has been reduced. The stippled line indicates where the sample has been reduced. 90
Figure 91: Electron backscatter image of sample 10 showing the development of fractures in quartz. The secondary fractures do not extend into the surrounding hematite. 91
Figure 92: Electron backscatter image of sample 10 showing an area within the sample where no reduction or fracturing has occurred. 91
Figure 93: Electron backscatter image of sample 10 showing intergrown hematite and gangue. The presence of gangue phases does not necessarily lead to fracture formation. 91
Figure 94: Electron backscatter image of sample 14 showing intergrown hematite and quartz in the center of the sample. There are no fractures observed here as no reduction has been able to occur with the low sample porosity. 91
Figure 95: Electron backscatter image of sample 14 showing fractures developed at the edge of the sample where reduction has occurred. Notice how the gangue allows for more
extensive development of the fracture network that does not extend into the surrounding hematite. 92

Figure 96: Electron backscatter image of sample 14 showing fractures developed along the edge of the sample where it has been reduced. Where a fracture intersects gangue minerals the gangue appears to facilitate the development of fractures.. 92

Figure 97: Electron backscatter image of sample 14 showing fractures developed within the sample. The fractures appear to join open pores where reduction has occurred....................... 92

Figure 98: Electron backscatter image of sample 14 showing fractures developed within the sample. Where a fracture intersects gangue minerals the gangue appears to facilitate the development of fractures that do not extend into the surrounding hematite.......................... 92

Figure 99: Electron backscatter image of sample 15 showing intergrown hematite and gangue with very low porosity and no visible fractures, even at the edge of the sample where fractures are unusually prolific. .. 93

Figure 100: Electron backscatter image of sample 2 showing a very large fracture that has occurred at a boundary between granular hematite (left) and porous specularite (aciccular hematite). ... 94

Figure 101: Electron backscatter image of sample 2 showing large fractures originating/terminating in areas of low porosity. ... 94

Figure 102: Electron backscatter image of sample 2 showing a network or regularly spaced and oriented fractures formed in an area of dense homogenous ore. 94

Figure 103: Electron backscatter image of sample 2 showing a large fracture through low porosity granular hematite. The fracture occurs without a large network of feeder fractures or ancillary fractures... 94

Figure 104: Electron backscatter image of sample 16 showing a large fracture associated with acicular hematite.. 94

Figure 105: Electron backscatter image of sample 16 showing a small fracture at the edge of the sample associated with reduction of hematite. ... 95

Figure 106: Electron backscatter image of sample 16 showing fractures at the edge of the sample where reduction has taken place. The influence of acicular hematite and gangue minerals is uncertain. .. 95
Figure 107: Electron backscatter image of sample 6 showing fractures oriented parallel to the foliation fabric...96

Figure 108: Electron backscatter image of sample 6 showing a regularly spaced network of fractures that occur at right angles to each other. There are no compositional or textural features to influence the fracture orientation...96

Figure 109: Effect of gas composition on the percentage fine material (-6.3mm) vs the total percentage reduction...98

Figure 110: Effect of temperature on the magnitude of breakdown and reduction during reduction disintegration tests...99

Figure 111: Effect of temperature and reduction time on the total percentage reduction vs the reduction time...100

Figure 112: Fractional reduction of the +6.3mm and -6.3mm fractions for all the samples....101

Figure 113: % Fine material (-6.3mm) vs % reduction for the different ore types.............102

Figure 114: % Fine material (-6.3mm) vs % SiO2 in samples for the different ore types.......102

Figure 115: % Fine material (-6.3mm) vs % Al2O3 in samples for the different ore types.....103

Figure 116: Percentage cracks associated with gangue minerals vs the percentage gangue minerals in the sample...103

Figure 117: Fracture forming secondary cracks in quartz..106

Figure 118: Effect of burden size on the percentage fine material generated during reduction disintegration tests...108