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INTONATION MODELLING FOR THE NGUNI LANGUAGES

BY NATASHA GOVENDER

PROFESSORETIENNE BARNARD

DEPARTMENT OFCOMPUTER SCIENCE, MASTER OFCOMPUTER SCIENCE

Although the complexity of prosody is widely recognised, there is a lack of widely-accepted

descriptive standards for prosodic phenomena. This situation has become particularly noticeable

with the development of increasingly capable text-to-speech (TTS) systems. Such systems require

detailed prosodic models to sound natural. For the languages of Southern Africa, the deficiencies in

our modelling capabilities are acute. Little work of a quantitative nature has been published for the

languages of the Nguni family (such as isiZulu and isiXhosa), and there are significant contradictions

and imprecisions in the literature on this topic.

We have therefore embarked on a programme aimed at understanding the relationship between

linguistic and physical variables of a prosodic nature in this family of languages. We then

use the information/knowledge gathered to build intonation models for isiZulu and isiXhosa as

representatives of the Nguni languages.

Firstly, we need to extract physical measurements from the voice recordings of the Nguni

family of languages. A number of pitch tracking algorithms have been developed; however, to our

knowledge, these algorithms have not been evaluated formally on a Nguni language. In order to

decide on an appropriate algorithm for further analysis, evaluations have been performed on two state-

of-the-art algorithms namely the Praat pitch tracker and Yin (developed by Alain de Cheveingné).

Praat’s pitch tracker algorithm performs somewhat better than Yin in terms of gross and fine errors

and we use this algorithm for the rest of our analysis.

For South African languages the task of building an intonation model is complicated by the

lack of intonation resources available. We describe the methodology used for developing a general-

purpose intonation corpus and the various methods implemented to extract relevant features such as

fundamental frequency, intensity and duration from the spoken utterances of these languages.

In order to understand how the ‘expected’ intonation relates to the actual measured characteristics

extracted, we developed two different statistical approaches to build intonation models for isiZulu

and isiXhosa. The first is based on straightforward statistical techniques and the second uses a

classifier. Both intonation models built produce fairly good accuracy for our isiZulu and isiXhosa

sets of data. The neural network classifier used produces slightly better results for both sets of data

than the statistical method. The classification model is also more robust and can easily learn from the

training data. We show that it is possible to build fairly good intonation models for these languages

using different approaches, and that intensity and fundamental frequency are comparable in predictive

value for the ascribed tone.

Keywords: prosody, Nguni languages, fundamental frequency, intensity, intonation corpus,

intonation modelling, pitch tracking, autocorrelation, classification, tone
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CHAPTER ONE

INTONATION MODELLING: HOW AND WHY

In Section 1.1 we describe what is meant by the term intonation, why intonation modelling is

important and the difficulties experienced when building an intonation model for a language.

In Section 1.2 we provide background information with regard to the main topics discussed in

subsequent chapters.

1.1 INTRODUCTION

Intonation is a paradoxical aspect of human language [1]. It is universally used yet highly variable

across languages. Every language possesses intonation and many of the linguistic and paralinguistic

functions of intonation systems seem to be shared by languages of widely different origins. Despite

the universal character of intonation, the specific features of a particular speaker’s intonation system

also depend strongly on the language, the dialect, and even the style, the mood and the attitude of the

speaker.

In the literature, a variety of different meanings have been associated with the term ’intonation’.

We use the term in its broad sense, to refer to themelodic pattern of an utterance, either

occurring at word level (lexical intonation) or over larger sections of an utterance (supralexical or

syntactic intonation). This ‘pattern’ represents the non-phonetic content of speech, and includes

perceptual characteristics such astone, stressand rhythm. A basic distinction is made between the

perceptual attributes of sound, especially a speech sound, and the measurable physical properties that

characterise it. These perceptual or abstract characteristics correspond to physical measurements such

as fundamental frequency, intensity and duration in an often complex manner. Intonation is achieved

by varying the levels of stress, pitch and duration in the voice. An overview of intonation as observed

in a variety of languages is provided in [1]. Since there is no universal agreement on the semantics of

this domain, we use the terms prosody and intonation interchangeably.
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CHAPTER ONE INTONATION MODELLING: HOW AND WHY

Although humans naturally produce and perceive intonation as a rich channel of communication,

it has to date not been a productive part of most automatic speech-processing systems. Even for

well-studied languages (such as languages in the Indo-European family) much remains to be learnt.

For example, the equivalent of an International Phonetic Alphabet for the unambiguous, language-

independent description of intonation and other prosodic phenomena currently seems like a distant

ideal, despite ongoing efforts to define such a system.

An analysis of intonation is further complicated by the fact that measurable, physical quantities

such as fundamental frequency, intensity, and duration depend in a complicated manner on linguistic

variables such as tone, stress and quantity. Thus, the intuitive notion that tone is solely expressed in

the fundamental frequency of an utterance, and stress in intensity or duration, does not hold up under

closer inspection [2]. The interaction between lexical and non-lexical contributions to the intonation

of an utterance further complicates the relationship between measurable and linguistic variables.

Attempting to create an intonation model for any language is a complex task. This difficulty is

exacerbated by the fact that there is little agreement about appropriate descriptive frameworks for

modelling intonation. The lack of widely-accepted descriptive standards for prosodic phenomena has

meant that prosodic systems for most of the languages of the world have, at best, been described

in impressionistic rule-based terms. This situation has become particularly noticeable with the

development of increasingly capable text-to-speech (TTS) systems [3]. Such systems require detailed

prosodic models to sound natural, and the development of these detailed models poses a significant

challenge to the descriptive systems employed for prosodic quantities. A diagram depicting the role

that an intonation model plays in a text-to-speech system is displayed in Figure 1.1.

For languages such as English or Japanese, for example, the ToBI marking system [4] has gained a

significant following because of its utility in producing predictions for these quantities. These models

allow developers to employ the methods of pattern recognition to compute numerical targets for the

fundamental frequency and amplitude of spoken utterances, based on their written representation.

In this regard, the status of the Southern African languages in the Bantu family is quite interesting.

On the one hand, intonation in these languages has attracted much attention because of its historical

role in the elucidation of autosegmental phonology [5] and it’s intricate tonal structure. On the other

hand, little work of a quantitative nature has been published, and as Roux [6] points out, there are

significant contradictions and imprecisions in the literature on this topic, which partially stems from

the lack of quantitative, measurement-driven analysis.

This leaves those who wish to develop technology for Bantu languages in a difficult situation.

Whereas there is ample theoretical evidence that prosodic factors should receive significant attention

in these languages, there is little by way of concrete models to guide one in this process. For these

Southern African languages, the deficiencies in our modelling capabilities are acute.

We have therefore embarked on a programme aimed at understanding the relationship between

linguistic and physical variables of a prosodic nature in this family of languages. We then use the

information/knowledge gathered to build intonation models for isiZulu (isiZulu is the largest family

DEPARTMENT OFCOMPUTER SCIENCE 3

 
 
 



CHAPTER ONE INTONATION MODELLING: HOW AND WHY

Figure 1.1:Basic system architecture of a TTS system
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CHAPTER ONE INTONATION MODELLING: HOW AND WHY

in the Nguni subfamily of the Bantu family of languages; it is also the most common first language

of citizens of South Africa) and isiXhosa.

isiZulu and isiXhosa are considered to be tonal languages i.e. a language in which pitch variations

are used to indicate differences in meaning between words otherwise similar in sound. Tonal

languages differ from other languages in three main ways:

• The length of the span of each tone melody is roughly the size of a word in a tone language,

whereas in a non-tone language, its size ranges between that of a syntactic phrase and that of a

sentence.

• The tone melody of an utterance in a tone language is composed of the tone melodies that are

directly contributed by the lexical items in the utterance, and to a slightly lesser extent by the

syntactic constructions present in the sentence, whereas the tone melody of an utterance in a

non-tonal language is generally determined by the information structure of the sentence, so that

it helps primarily to specify what information in the utterance is presupposed, what is taken as

new, and so forth.

• Tone languages generally have phonological rules that modify the tone melodies depending on

the tones found around them as well as the syntactic structure in which they occur. The changes

that these tones rules give rise to may consist either of modifying the actual shape of the tone

melody, or of shifting the relationship in time between the tone melody and the syllables that

comprise the utterance.

Tonal languages give words a distinctive relative pitch e.g. high or low, or a distinctive pitch

change e.g. level, rising, or falling which determines the meaning of the word. An example of such a

word in isiZulu is shown in Table 1.1 below.

Word Meaning
ithanga thigh
ithanga pumpkin

Table 1.1:Same word with different meanings depending on the pitch cue

1.2 BACKGROUND

In this section we provide background information on the main topics discussed in this thesis.

• Section 1.2.1 provides an overview of the different pitch tracking algorithms available and the

corpora on which they have been evaluated.

• Section 1.2.2 discusses the current approaches used for building intonation models for

languages.
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CHAPTER ONE INTONATION MODELLING: HOW AND WHY

• Section 1.2.3 describes the current linguistic knowledge on intonation that is available for

isiZulu and isiXhosa.

1.2.1 PITCH TRACKING ALGORITHMS

To extract relevant features such as pitch, intensity and duration accurately from spoken utterances, a

good pitch tracking algorithm is required.

A large number of pitch tracking algorithms have been developed to extract F0 from a speech

waveform (see [7] for a review). The most comprehensive review remains that of W.Hess [8] that cites

literally hundreds of methods. A few examples of recent approaches include instantaneous frequency

methods [9–11], statistical learning and neural networks [12,13] and auditory models [14,15]. These

algorithms generally differ in the way they compute the degree of invariance in a signal, and in the

ways that they use additional information (such as temporal smoothness) to adapt to the period-by-

period changes that occur in speech. The development of algorithms that do this in an accurate and

computationally efficient manner remains a topic of active research [16].

A major weakness in this field is that it is often hard to judge the performance of the algorithms

proposed in comparison with other methods because they are evaluated on different databases. A

comparative evaluation of different fundamental frequency estimation algorithms was done by Alain

de Cheveigné [17], using the same databases namely (English, Japanese and French) together with

the accompanying laryngograph data. The Yin pitch tracking algorithm produced the most accurate

results from the different algorithms evaluated [7]. This method combines autocorrelation and AMDF

(Average Magnitude Difference Function) methods with a set of modifications to reduce errors. From

the databases used in the evaluation, English and French are considered to be stress languages and

Japanese is an intermediate between a stress and tone language generally referred to as a pitch accent

or a tonal accented language.

On the other hand isiZulu and isiXhosa are considered to be tonal languages - defined in detail

in Section 1.1 - and also possess unique characteristics such as the clicking sound present in isiZulu.

For these reasons it is necessary for us to perform our own evaluations on pitch tracking algorithms

using voice recordings from these two languages.

1.2.2 INTONATION MODELLING

Intonation modelling methods have been incorporated within the traditional fields of rhetoric and

elocution for centuries. The most complete and accessible overview of modern prosodic analysis

as embedded in mainstream linguistic theory is Ladd’s Intonational Phonology [18], which covers

the precursors, current standard practise, and remaining unsolved issues of the highly influential

autosegmental theory of intonation phonology.

The description of an intonation system is the result of a complex interaction between a language

and an explicit or implicit theory. The difficulties experienced in describing an intonation model for

a particular language are discussed in detail in Section 1.1.

DEPARTMENT OFCOMPUTER SCIENCE 6

 
 
 



CHAPTER ONE INTONATION MODELLING: HOW AND WHY

A major obstacle is the remarkable absence of any consensus concerning the transcription of

intonation. There are literally hundreds of approaches to modelling intonation from rule-based

approaches to statistical techniques to using vector quantised models [19]. For an international

transcription system to be effective, it needs to embody a certain number of hypotheses about what

possible variations of prosodic features are significant across languages. There have been attempts to

create such a system for modelling intonation. These are listed below:

• INTSINT: an INternationalTranscriptionSystem for INTonation was developed during the

preparation of a study of the intonation of twenty languages [1]. It aims to capture the

surface distinctions used in different languages for building intonation patterns. It is based

on a stylisation procedure of the fundamental frequency - or pitch - contour (F0) built up from

interpolation between target points in which significant changes occur. It is then a system which

is closely linked to the the phonetic realisation of the intonation contour, but at the same time

is able to symbolise this contour in terms of a phonological representation. INTSINT aims

therefore at the symbolisation of pitch levels or prosodic target points, each characterising a

point in the fundamental frequency curve.

• ToBI: Tone and Break Indiceswas proposed for the transcribing of English [20]. There has

been much interest in the possibility of adapting this system to other languages, although

the authors have pointed out on several occasions that they do not believe it can be used

directly for describing other languages or dialects, since, like a broad phonemic transcription,

it presupposes that the inventory of tonal patterns of the languages is already established.

• Tilt: The Tilt intonation model facilitates automatic analysis and synthesis of intonation [21].

The analysis algorithm detects intonational events in F0 contours and parameterises them in

terms of the continuously varyingtilt parameters which represent the amount of fall and rise

in the accent. A Tilt labelling for an utterance consists of an assignment of one of four basic

intonational events: pitch accent, boundary tones, connections and silence. All events have a

start parameter for the fundamental frequency at the start of the event (measured in Hertz). Pitch

accents and boundary tones are also described by duration (seconds) and absolute amplitude

(Hertz).

A number of other approaches for intonation modelling exists [1]. Since the existing intonation

models for the Nguni languages are not sufficiently detailed for our purposes, we will inspect relevant

intonation models built for tonal languages. We will specifically investigate the Chinese and Thai

language models. The perceived tones which occur in these two languages are in some ways similar

to those which are considered to occur in both the isiZulu and isiXhosa languages.

Chinese is described as possessing four lexical tones i.e. high, rising, low and falling although

as Kratochvil [22] demonstrates an adequate characterisation of tonal phenomena in Chinese needs

to account for both pitch and intensity variations. Thai is described as having five distinctive tones:

high, mid, low, rising and falling.

DEPARTMENT OFCOMPUTER SCIENCE 7

 
 
 



CHAPTER ONE INTONATION MODELLING: HOW AND WHY

To build a Thai intonation model, Sudaporn Luksaneeyanawin [23] studies the interplay of lexical

tone and sentence intonation by the analysis of one word utterances. The tonal behaviour of the five

tones in one word utterances under different meanings are studied and a systematic description of the

tones or intonation system of Thai is postulated from the results. The fundamental frequency (F0)

is extracted from the one word utterances using the PGR program module [24]. The extracted pitch

values are used to obtain a clear, visual representation of the relative acoustic values of pitch, length

and intensity.

The approach for the Chinese intonation model, as described by Paul Kratochvil [22], is different.

Instead of using one word utterances, an informal monologue of a native speaker of the Beijing dialect

of Chinese, was recorded. The words were analysed by hand from spectrograms using analytical

procedures [25]. From each segment the fundamental frequency (F0), amplitude and duration were

extracted at six equally distanced points within each segment. Various statistical procedures were then

applied in the course of the analysis of the data. Apart from the normal descriptive procedures based

on mean value and standard deviation calculations, they also used a discriminant analysis program

for classifying and reclassifying data in relation to established classes on the basis of distinctive

configurations of values.

The methodologies used for building intonation models for Chinese and Thai can be translated

and used for creating intonation models for isiZulu and isiXhosa. However, it is difficult to decide

which approach is better suited for the Nguni set of languages because there is no easy way to

establish comparisons across languages. It is very often difficult to decide whether differences

between descriptions are due to different theoretical and/or methodological approaches or whether

they result from genuine differences between the systems constituting language specific prosodic

parameters. Possible candidates for such parameters are listed below.

• Lexical characteristics: These are probably the most heavily theory-dependent of all prosodic

characteristics. A typology is defined by two independent parameters: accent and tone. It is not

at all evident what objective criteria might be used for establishing these parameters since, the

fact that stress and tone are lexically distinctive in a given language does not necessarily imply

any easy identifiable acoustic pattern.

• Non-lexical characteristics: As with dialectal variations, these can be grouped under three

headings: rhythm and temporal organisation, sentence accent (and emphasis) and pitch

patterns.

Since there is no concrete scientific method for deciding which of the numerous intonation models

built for various languages is the best, the methodology to be used for building the intonation models

for isiZulu and isiXhosa, would be a combination of techniques which have been proven to work well.

DEPARTMENT OFCOMPUTER SCIENCE 8

 
 
 



CHAPTER ONE INTONATION MODELLING: HOW AND WHY

1.2.3 LINGUISTIC THEORY FOR ISIZULU AND ISIXHOSA

isiXhosa and isiZulu are traditionally regarded as tone languages proper, which implies that a specific

tonal melody is assigned to a lexical representationper se. An interesting debate regarding the status

and the phonological description of the two Nguni languages, isiZulu and isiXhosa as pure tone

languages has emerged in recent years. Whilst Laughren [26] regards isiZulu as a tonal language

and analyses it in autosegmental terms, Clark [27] argues for an analysis of isiZulu as a pitch-accent

language. This latter approach is also found in the work of Goldsmith [28] describing the prosodics

of the isiXhosa verbal system in accentual terms within a metrical framework. Claughton [29] on

the other hand rejects the idea of isiXhosa being treated as a pitch-accented language and continues

to view it as a tone language proper [6]. There is still much debate around this issue, but for the

purposes of this thesis we will take the standpoint of Laughren and Claughton and consider isiZulu

and isiXhosa as pure tonal languages.

The Nguni languages (and the Southern Bantu languages in general) have interesting tonal

characteristics, which have been the topic of extensive research. In early work, Doke [30]

distinguished nine different lexical tone levels in isiZulu; subsequent theoretical advances have

simplified this description, and three tone assignments (low, high, and falling) are currently thought

sufficient to describe the words of isiZulu [31] – or possibly only the first two. The tendency when

describing the intonation for isiXhosa is to use two tones namely high and low [6,28,32].

However, in these modern formulations, the rules for assignment of tone levels to specific

syllables are quite complex [5], and we appear to be a long way from the mathematically precise

formulations that have been so useful for TTS in languages such as English, Japanese and German.

1.3 OVERVIEW OF THESIS

Since very little work has been done in building intonation models for these languages, extraction

of relevant features from the speech recordings is required. In Chapter 2, we discuss the selection

of an appropriate pitch tracking algorithm for extracting relevant features from the recordings of

these languages. In Chapter 3, we describe the methodology implemented for building intonation

corpora for isiZulu and isiXhosa. Chapter 4 describes the two intonation models built for isiZulu and

isiXhosa. In Chapter 5 we compare the accuracy of the two intonation models built. We summarise

the contribution of this thesis, and discuss further applications and future work.
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CHAPTER TWO

SELECTION OF A PITCH TRACKING ALGORITHM

2.1 INTRODUCTION

In order to extract physical measurements from the voice recordings of the Nguni family of languages

as described in Chapter 3, an accurate pitch tracking algorithm is required. In these experiments we

use voice recordings from the isiZulu language, as a representative of the Nguni family.

A number of pitch tracking algorithms have been developed as stated in Section 1.2; however,

to our knowledge, these algorithms have not been evaluated formally on a Nguni language such as

isiZulu. Although the expectation is that pitch extraction algorithms will not differ greatly between

different languages, it is worthwhile to verify this assumption. In order to decide on an appropriate

algorithm for further analysis, and to test the assumption that isiZulu utterances are served well by that

algorithm, a number of analyses have been performed with two state-of-the-art algorithms namely the

Praat pitch tracker [33] and Yin [7].

In Section 2.2 we explain some basic facts about the fundamental frequency of a speech signal

and various ways in which it is extracted. In Section 2.3 we define the methodology undertaken to

select an appropriate algorithm for extracting fundamental frequency from isiZulu utterances. We

also describe the various databases and algorithms used in the experiments. In Section 2.4 we display

the results obtained from the experiments, and in Section 2.5 we summarise our conclusions from

these experiments.

2.2 FUNDAMENTAL FREQUENCY AND PITCH

We hear sounds as being different because they create different patterns of air pressure variation.

When a guitar string is plucked, a similar pattern of air pressure variations is repeated at regular

intervals. Each individual pattern is known as a pitch period and a waveform that consists of a
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CHAPTER TWO SELECTION OF A PITCH TRACKING ALGORITHM

number of pitch periods is said to be periodic. Speech waveforms are never absolutely periodic:

the pitch periods are not all exactly the same length, and they vary slightly in shape. Nevertheless,

when discussing speech waveforms, we shall refer to these as periodic while recognising that there

will always be some deviations from absolute periodicity.

A periodic speech waveform is the acoustic correlate of vocal fold vibration that characterises

most phonetically voiced sounds and that gives rise to the auditory quality of pitch. Since voiceless

sounds are produced without vocal fold vibration, the corresponding waveform is nonrepetitive and

there is no pitch.

In periodic waveforms, each pitch period corresponds to a single cycle of vocal fold vibration.

Consequently, the time that each pitch period takes, or the duration of each pitch period, can be used

to give an estimate of the rate of vocal fold vibration or the fundamental frequency (F0). From a

listener’s point of view, changes in the rate of vocal fold vibration are perceived as changes in pitch.

When the vocal fold vibration/fundamental frequency increases, we hear a rising pitch; when it falls,

we hear a falling pitch [34]. F0 correlates well, though not perfectly with the subjective experience

of pitch. It is therefore common practice to use the terms F0 and pitch interchangeably.

In general, tones of differing pitch have different inherent perceived loudness. The sensitivity

of the ear varies with the frequency and the quality of sound. Perceived pitch will therefore also

change as intensity is increased and frequency is kept constant [35]; we will investigate those effects

in Chapter 4.

2.3 METHODOLOGY

Yin [7] and the Praat [33] pitch tracker are two widely used algorithms for F0 extraction. In

order to compare these algorithms, F0 was extracted from a number of spoken utterances in three

different languages, namely English, French and isiZulu. In the French and English databases,

each (acoustic) utterance is accompanied by a laryngograph trace. The laryngograph measures the

electrical resistance between electrodes on either side of the throat, and therefore provides a fairly

accurate measurement of the fundamental frequency that was actually produced by the speaker.

Hence, F0 as determined from the laryngograph data is used as ground truth when comparing the

algorithms on the French and English databases.

Both Yin and the Praat algorithm are characterised by a number of tunable parameters. In order

to make a fair comparison, the values recommended by the algorithm developers were used for all

the parameters, except where the same parameter occurred in both algorithms: these were set to

reasonable and equal values. In particular, the minimum allowable pitch frequency was set to 30

Hertz, the maximum to 2000 Hertz, and a window size of 20 milliseconds was used. Although Praat

extracted the pitch values at the correct time intervals i.e. every 20 milliseconds, the time points

at which it extracted the pitch did not correspond to those produced by Yin. To rectify this problem,

linear interpolation was used to align the times that the pitch values were extracted by both algorithms.

Since the laryngograph data is itself a temporal waveform, F0 has to be extracted from the
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CHAPTER TWO SELECTION OF A PITCH TRACKING ALGORITHM

laryngograph before it can be used as baseline. Fortunately,both algorithms produced very similar

results (as would be expected from the highly periodic nature of laryngograph data in voiced speech)

and thus either could be used as the basis for the experiments. The pitch values extracted by Yin for

all the laryngograph databases were consequently used as the basis for our comparisons.

Pitch extraction algorithms can fail in a number of ways. They can fail to detect periodicity when

voicing is present, or assign pitch values to unvoiced regions of speech. In voiced speech, gross errors

occur when the algorithm computes a completely wrong estimate of pitch (for example, pitch halving

or pitch doubling), and fine errors reflect on the detailed computation of the pitch period. In order to

understand these various classes of errors, we calculated a number of measures for each of the files in

our corpus:

1. The number of gross errors for each file was calculated. This was defined as the number of

times that the value obtained from the laryngograph differed from the corresponding value for

the acoustic file by more than a set threshold. We used a threshold of 50 Hertz.

2. We also computed the number of false positive detections of pitch (when the laryngograph

did not indicate voicing, but a pitch value was extracted from the acoustic waveform) and,

conversely, the number of false negative detections.

3. The mean square error was calculated only across those pitch periods where both the

laryngograph data and the acoustic data indicated the presence of voicing, and where no gross

error occurred.

Since no laryngograph data was available for the isiZulu database, we computed the number

of gross differences between the two methods (rather than the number of gross errors), and also

computed the mean squared difference between the answers produced by the two algorithms. Finally,

a manual process was used to decide which of the two algorithms was in error when gross differences

occurred. That is, a random selection of files was made. Each file was manually inspected at the

points were the fundamental frequency extracted by the two algorithms differed by more than the

threshold value. At these points, the period (and hence the pitch) was calculated manually to decide

which of the algorithms is in error.

2.3.1 DATABASES

Four databases were used in this study. These comprise a total of 1.16 hours of speech. The first three

included a laryngograph waveform recorded together with the speech.

• DB1: Two male speakers of English produced a total 0.2

hours of speech. The speech recordings are available at

http://recherche.ircam.fr/equipes/pcm/cheveign/data/nick/nickspeech.tgz and the

laryngograph data at http://recherche.ircam.fr/equipes/pcm/cheveign/data/nick/nicklx.tgz
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CHAPTER TWO SELECTION OF A PITCH TRACKING ALGORITHM

• DB2: One male pronounced 150 English sentences for a total of 0.17

hours of speech. The database is available with the laryngograph data from

http://www.festvox.org/examples/cstrus ked timit.

• DB3: Two male and two female speakers each pronounced between 42 and 55 French

sentences for a total of 0.46 hours of speech. The voice recordings are available at

http://www.lam.jussieu.fr/Individu/Henrich/database.

• DB4: An adult male whose first language is isiZulu produced the isiZulu voice recordings. He

pronounced 150 sentences with a total of 0.33 hours of speech.

2.3.2 ALGORITHMS

Both algorithms used in the experiments use the basic autocorrelation function for pitch tracking,

with each implementing their own set of modifications to the function.

Autocorrelation is useful for finding repeating patterns in a signal, such as determining the

presence of a periodic signal which has been buried under noise, or identifying the fundamental

frequency of a signal which doesn’t actually contain that frequency component, but implies it with

many harmonic frequencies.

The autocorrelation function (ACF) of a discrete signalxt may be defined as:

rt(τ) =

t+W∑

j=t+1

xjxj+τ (2.1)

wherert(τ) is the autocorrelation function of lagτ calculated at time indext, and W is the

integration window size.

The compared algorithms (Yin and the Praat pitch tracker) are briefly described below.

• Yin is an implementation of the method developed by Alain De Cheveigné [7]; it combines the

Autocorrelation Function and Average Magnitude Difference Function(AMDF) methods [12]

with a set of modifications that reduce common errors of those algorithms. No post-processing

is used.

• ThePraat pitch tracker performs an acoustic periodicity detection on the basis of an accurate

autocorrelation method, as described in Boersma [36]. This method tends to be more

accurate, noise-resistant, and robust, than methods based on cepstrum or combs, or the original

autocorrelation methods. In order to estimate a signal’s short term autocorrelation function

on the basis of a windowed signal, this method divides the autocorrelation function of the

windowed signal by the autocorrelation function of the window. It is available with the Praat

toolkit at http://www.fon.hum.uva.nl/praat/.
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2.4 RESULTS

2.4.1 GROSS ERRORS

The average number of gross errors1 measured for the English and French databases, across all files, as

well as the number of gross errors manually measured for each on the isiZulu database are reported in

Table 2.1. Across all three languages, the Praat algorithm tends to make fewer gross errors (possibly

because of the more sophisticated post-processing done by Praat as part of its tracking algorithm).

Alternatively, these differences may be a consequence of the relatively conservative voicing detection

algorithm used by Praat (see below).

Database Praat Yin

English DB1 3.87 12.18
English DB2 0.23 10.27

French 49.67 65.87
isiZulu 0.80 1.30

Table 2.1: Mean number of gross errors per utterance for Praat and Yin across all databases,
as computed from a comparison with laryngograph data(English or French) or manual
inspection(isiZulu)

2.4.2 ERRORS IN THE DETECTION OF VOICING

Tables 2.2 and 2.3 contain the average number of false positive and false negative detections of

voicing, respectively, for the various databases. These results indicate that the two algorithms have

different thresholds for voicing detection - Praat makes fewer positive errors, at the cost of additional

missed detections.

Database Praat Yin

English DB1 0.05 26.68
English DB2 0.28 34.10

French 17.70 65.65

Table 2.2:The average number of false positive voicing detections per utterance

2.4.3 MEAN SQUARE ERROR

Table 2.4 contains the mean square errors obtained for the English and French databases, expressed

as a percentage of the measured F0 values. Both algorithms are highly accurate, with the Praat

1Note that the number of errors is not comparable across databases, as this number is correlated with utterance length
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Database Praat Yin

English DB1 75.39 10.92
English DB2 38.73 4.15

French 63.84 15.79

Table 2.3:The average number of false negative voicing detections per utterance

algorithm consistently more accurate than Yin. (The values reported in Table 2.4 are very close to

those obtained in [7]; the small observed differences are most likely the result of differences in our

experimental protocols.) As with the gross errors, the relative superiority of Praat may either be the

result of intrinsic algorithmic factors, or the more conservative voicing detection used in Praat.

Database % Mean Squared Error
Praat Yin

English DB1 0.19 1.82
English DB2 0.08 1.88

French 0.39 1.08

Table 2.4:The average mean squared error of both algorithms when compared with laryngograph
measurements

The mean squared difference between the values obtained with the two algorithms on the isiZulu

database (for which we did not have a laryngograph-derived baseline) was 0.115%. This difference is

somewhat smaller than would be expected from the values in Table 2.4, but broadly in line with those

values.

2.5 CONCLUSION

Both Yin and the Praat pitch tracker perform very well on the databases studied here; however, the

Praat algorithm performs somewhat better than Yin in terms of gross and fine errors. The main

negative aspect of the Praat algorithm is that it is more prone to missing frames in which voicing was

actually present. This disadvantage may weigh heavily in applications such as speech recognition, but

is relatively unimportant for our purposes of analysing the relationship between F0 and tone. Praat

will therefore be used in the rest of our work. Also, the numerical results reported above, as well

as our subjective inspection of the computed values, confirm that the performance on isiZulu data is

very comparable to that on the other two languages. This gives us confidence that the algorithm will

perform well on our isiZulu data.
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CHAPTER THREE

DEVELOPING INTONATION CORPORA FOR

ISIXHOSA AND ISIZULU

3.1 INTRODUCTION

The description of an intonation system of a language or dialect is a particularly difficult task since

intonation is paradoxically at the same time one of the most universal and one of the most language

specific features of human language. Every language possesses intonation and many of the linguistic

and paralinguistic functions of intonation systems seem to be shared by languages of widely different

origins. Despite the universal character of intonation, the specific features of a particulars speaker’s

intonation system also depend strongly on the language, the dialect, and even the style, the mood and

the attitude of the speaker.

Thus, attempting to create an intonation model for any language is a complex task. This difficulty

is exacerbated by the fact that there is little agreement about appropriate descriptive frameworks for

modelling intonation. It is widely agreed that the various abstract intonation characteristics (tone,

stress and rhythm) interact with the syntactic and semantic characteristics of an utterance, and give

rise to the physical measurements (fundamental frequency, amplitudes, durations) associated with

intonation. The details of each of these processes have generally been tackled in ad-hoc fashion for

each language of interest.

For South African languages this task is further complicated by the lack of intonation resources

available. While intonation corpora exist for more researched languages such as French and English,

there are no such corpora available for South African languages.

In Section 3.2 we describe the methodology used for developing a general-purpose intonation

corpus. In Section 3.3 we describe the corpora developed and the various information that can be

extracted. In Section 3.4 we report on some of the global measurements related to F0 that were
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CHAPTER THREE DEVELOPING INTONATION CORPORA FOR ISIXHOSA AND ISIZULU

extracted from our corpus; the more localised measurements,which are the main focus of this

research, are described in subsequent chapters.

3.2 METHODOLOGY

Our aim was to develop an annotated intonation corpus that will support further statistical research in

intonation modelling. Corpus development was not guided by specific linguistic hypotheses (although

the testing of such hypotheses is certainly supported by these corpora, as we describe in the rest of

this dissertation), but rather was aimed at collecting natural read speech from a number of speakers,

and annotating this data in ways that are meaningful from a pattern recognition perspective. The

methodology used for building such corpora for two Nguni languages (isiZulu and isiXhosa) is

described in detail below, illustrating the process from initially building the corpus of sentences,

generating the voice recordings and tone markings, to extracting the fundamental frequency (F0),

intensity and duration values.

3.2.1 COLLECTION OF TEXT CORPORA

The first step consisted of the selection of an appropriate text corpus for recording purposes. Initially

a large collection of text sentences was obtained from various isiXhosa and isiZulu websites. In total

2300 isiXhosa and 1700 isiZulu sentences were collected. These sentences were then verified as

logically and grammatically correct by first language speakers of the respective languages.

From this larger corpus, we aimed to select those sentences that would provide the most value in

terms of varying tone levels. Based on the assumption that a large variation in graphemic bigrams

would result in a large variation of intonation phenomena, a subset of sentences was selected that

provided large graphemic variability. This was done using a greedy search algorithm, which selects

each successive sentence as the sentence which adds the greatest set of additional bigrams to the pool

of covered bigrams. The algorithm was initialised based on graphemic bigram frequencies occurring

in the larger text corpus, as illustrated in Table 3.1.

isiXhosa bigram frequencies
i-d 12
i-j 6
>-r 1
h-i 84
m-i 57
#-y 91
#-p 16

Table 3.1:Examples of bigram frequency counts

For isiXhosa 53 of the original 2300 sentences were selected. For isiZulu 153 of the original 1700

DEPARTMENT OFCOMPUTER SCIENCE 17
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sentences were selected for recording.

3.2.2 RECORDING OF SENTENCES

The sentences selected by the text optimiser were recorded by one first language isiXhosa male and

one female speaker and the isiZulu sentences by one first language isiZulu male and one female

speaker, in a quiet office environment. All recordings were obtained at a recording rate of 16Khz,

using the open source Audacity toolkit on a laptop computer, and a close-talking microphone.

3.2.3 MARKING OF SENTENCES

Tones can be understood as labels for perceptually salient levels or movements of F0 on syllables.

Pitch levels and movements on accented and phrase-boundary syllables can exhibit a bewildering

diversity, based on the speaker’s characteristics, the nature of the speech event, and the utterance

itself. For modelling purposes, it is useful to have an inventory of basic, abstract pitch types that

could in principle serve as the base inventory for expression of linguistically significant contrast.

In order to understand how the ‘expected’ intonation relates to the actual measured characteristics,

the syllabic intonation was marked as either High (H) or Low (L) depending on how utterances were

expected to be pronounced in the context of the sentence, without using the voice recordings as guide.

These marking were performed by a first language isiXhosa speaker for the isiXhosa sentences and a

first language isiZulu speaker for the isiZulu sentences. Note that different speakers were used than

during the recordings, i.e. these markings were independent of the recorded audio data.

For each sentence the boundaries of every syllable were marked and transcribed using Praat [33].

An example of the syllable markings for a portion of an isiZulu sentence in Praat is illustrated in

Figure3.1.

3.2.4 EXTRACTION OF INTONATION MEASUREMENTS

3.2.4.1 FUNDAMENTAL FREQUENCY

In Chapter 2, it was shown that Praat’s implementation of a pitch tracking algorithm produced the best

results for the studied languages [37]. Thus, this algorithm was selected to extract the pitch values

from the isiXhosa and isiZulu voice recordings.

The most fundamental distinction between sound types in speech is the voiced/unvoiced

distinction. Voiced sounds including vowels, have in their time and frequency structure a roughly

regular pattern that unvoiced sounds, such as constants likes, lack.

The fundamental frequency (F0) values were extracted at the syllable boundaries, i.e. they were

extracted at the start and end of each syllable in the sentence. However, the fact that unvoiced

segments often occur at the beginning of a syllable meant that a large percentage of the values

extracted for both isiXhosa and isiZulu were not defined in this way, and hence a large number of

the pitch values extracted were undefined.
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Figure 3.1:A portion of a signal extracted for an isiZulu sentence and the pitch contour
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In order to rectify this problem, two different approaches were implemented and the more accurate

of these was selected. The two approaches implemented were:

• MOMEL (MOdelisation de MELodie) algorithm [38] was used to obtain a smoothed contour

of the F0 values. MOMEL is an algorithm for the automatic modelling of fundamental

frequency curves, factoring them into a macroprosodic and a microprosodic component. The

macroprosodic component is modelled as a quadratic spline function i.e a continuous smooth

sequence of segments of parabolas defined by a sequence of target points corresponding to

points where the first derivative of the curve is nil.

The F0 for each recording was extracted at every 10 milliseconds, and MOMEL used to

generate an interpolated F0 contour. The boundary times (i.e the starting time and ending time)

for each syllable were then compared to the output and the corresponding F0 value extracted.

This process is illustrated in Figure 3.2. Note how the ’undefined’ values provided by Praat

(zeros values in the figure) have been removed in the MOMEL contour.

• The second approach, referred to as the Non-Zero method, extracts the first non-zero pitch

value and the last non-zero pitch value for each syllable in a sentence. The first non-zero pitch

value extracted is then used as the starting pitch and the last non-zero pitch value extracted as

the ending pitch for that particular syllable. This is illustrated in Figure 3.3. In this figure,1

denotes the point of the last non-zero pitch for syllableneand2 the point of the first non-zero

pitch to be extracted for the next syllablee.

From the experiments the Non-Zero method was proven to obtain more accurate results. The

experiments and the overall results are discussed in detail in Chapter 4.

3.2.4.2 INTENSITY

The intensity was calculated at each of the syllable boundaries, as the average squared value of the

signal within a 5 millisecond window.

3.2.4.3 DURATION

To calculate duration of each syllable, the starting and ending times of the syllable were obtained

from the hand labels, and subtracted.

3.3 RESULTS

At this point the information contained in the intonation corpus includes:

• the actual voice recordings, grouped per speaker,

• the orthographic transcription per voice recording,
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Figure 3.2:A graph showing the difference in the pitch values obtained between Praat and MOMEL
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Figure 3.3:A portion of an isiZulu signal depicting the points at which the pitch values would be
extracted using the non-zero method
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• syllabification markings,

• the expected High/Low markings for each syllable,

• the pitch values extracted using the Non-Zero method

• the extracted intensity values, and

• the extracted duration values.

Table 3.2 illustrates a typical example of the pitch values obtained using the Non-Zero method

for an isiZulu sentence. The intensity and duration values extracted would be the same for both

algorithms.

Segment Marking starting F0 ending F0 Intensity Duration

i H 158.24 167.84 86.23 0.13
si L 167.84 129.21 86.44 0.31

mo L 129.21 132.95 84.93 0.30
so L 143.82 131.37 82.21 0.23
ku L 131.37 136.04 81.41 0.90

Table 3.2:An example of an annotated isiZulu data item

3.4 OBSERVATIONS

3.4.1 DECLINATION IN F0

In many of the languages of the world, F0 has a consistent tendency to decline within a phrase [1].

However, the extent of this declination varies significantly between different languages, for different

speaking styles, and possibly also depends on factors such as the gender and age of the speaker.

We investigated the magnitude of this effect for our languages and speakers, by computing the

average values across all utterances (in increments of 25 milliseconds), as a function of the duration

from the beginning of the utterances. These averages are shown in Figure 3.4 for the two isiZulu

speakers, and in Figure 3.5 for the two isiXhosa speakers.

We see that similar declinations occur in both languages, and that these declinations do not seem

to differ systematically by speaker gender.

3.4.2 PITCH VARIABILITY AND SPEAKER GENDER

The fact that F0 is generally higher for females than males is a simple consequence of anatomical

tendencies; however, there are also gender differences in the production of prosody that are cultural

in origin. Our subjective experience is that the extent of pitch variation is such a difference in the

Nguni (and related) languages – specifically, we hypothesise that female speakers tend to produce

wider variability in F0 than males.

DEPARTMENT OFCOMPUTER SCIENCE 23

 
 
 



CHAPTER THREE DEVELOPING INTONATION CORPORA FOR ISIXHOSA AND ISIZULU

 50

 100

 150

 200

 250

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

 F
0 

(h
z)

 Time (s)

Male
Female

Figure 3.4:Mean pitch as a function of the time since the start of an utterance, for isiZulu
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Figure 3.5:Mean pitch as a function of the time since the start of an utterance, for isiXhosa
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In order to test this hypothesis, we define thepitch varianceof a spoken utterance as the variance

of the F0 values (as interpolated by MOMEL) observed when the utterance is sampled at 250

millisecond increments. The results are shown in Table 3.3: for our limited set of isiZulu speakers,

the hypothesis is indeed confirmed, but for the limited set of isiXhosa speakers the same hypothesis

does not hold.

Language Male Male Female Female
mean variance mean variance

isiZulu 117.10 21.60 203.80 33.70
isiXhosa 122.90 38.30 197.00 36.00

Table 3.3:Average pitch variance values for male and female speakers

3.5 CONCLUSION

We have motivated the need for intonation corpora in order to model spoken languages, and described

a general approach to the development of such corpora. For the case of isiZulu and isiXhosa, we have

developed limited corpora, consisting of one male speaker and one female speaker in each language.

By applying standard tools from the field of pattern recognition – preprocessing, feature extraction,

computation of statistical tendencies – it is possible to learn much from such corpora.

Our corpora are intended as a resource for various tasks, such as the development of models that

relate tone to F0 (which is important for applications in speech recognition and speech synthesis). We

have investigated a number of global characteristics of F0 that can be inferred from these corpora.

In particular, we have seen that similar rates of pitch declination are observed in both isiZulu and

isiXhosa for both genders. Also, female pitch values tend to be more variable than those of males in

one language but not the other.
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CHAPTER FOUR

COMPUTATIONAL MODELS OF PROSODY

4.1 INTRODUCTION

Thus far we have collected a corpus of speech by one native male speaker and one native female

speaker in each of the Nguni languages isiZulu and isiXhosa. In order to understand how the

‘expected’ intonation relates to the actual measured characteristics, we have developed statistical

methods to build intonation models for isiZulu and isiXhosa.

Two different statistical approaches were used to build such a model. The first is based on

straightforward statistical techniques and the second uses a classifier. The process used to extract

the relevant features from voice recordings is described in detail in Chapter 3.

In Section 4.2 we describe the methodology and results obtained from building an intonation

model using statistical techniques. In Section 4.3 we describe the methodology and results obtained

from building an intonation model using a neural network classifier.

4.2 INTONATION MODELLING USING A STATISTICAL APPROACH

4.2.1 INTRODUCTION

Statistical pattern recognition techniques have been applied to many natural language processing

tasks, such as part-of-speech tagging, grapheme-to-phoneme prediction, base noun phrase chunking

and prepositional-phrase attachment to name a few [39]. In all of the above tasks, statistical data

analysis has resulted in successful models, in the process either complimenting or contradicting

accepted linguistic practise. We are interested in the application of pattern recognition techniques

to the task of intonation modelling.

In Section 4.2.2 we define the methodology used to select an algorithm for predicting tone. In

Section 4.2.3 we describe the statistical methods implemented to improve the initial results obtained
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from the selected algorithm. In Section 4.2.4 we determine ifintensity has an influence on the tone

of a sentence.

4.2.2 METHODOLOGY

In Chapter 3, two algorithms were implemented, namely Momel and the Non-Zero method, to

overcome the problem of extracting undefined pitch values for unvoiced segments of speech. We ran

several experiments to determine which of the two algorithms produced more accurate pitch values.

We used the pitch values extracted by these two methods as inputs into our two methods used to

predict the tone of a segment i.e. if a segment should be assigned a tone of high or low. The points at

which the starting and ending pitch values were extracted for each method are explained in Chapter 3.

The average pitch for each segment was calculated using the average of the starting and ending pitch

values. For both the methods the average pitch value was used to predict the tone of the segment.

The methods implemented for predicting tone are:

• Word Average Predict: This method calculates the pitch average of each word in a sentence

using the starting and ending pitch values of that word. The average pitch for each individual

syllable in the word is also calculated. The syllable’s pitch average is then compared to the

average pitch of the word it constitutes. If the syllable’s pitch value is greater, it is assigned a

tone ofhigh else it is assigned a tone oflow.

• Relative Predict: This method predicts the tone of each syllable based on the pitch value and

assigned tone of the preceding syllable. The first syllable of a sentence is assigned an unknown

tonex. The average pitch of the next syllable is then inspected. If it is higher than the first

syllable’s average pitch, it is assigned a tone of high and the first syllable is assigned a tone

of low. If the pitch of the second syllable is lower, it is then assigned a tone of low and the

first syllable a tone of high. For each syllable thereafter, it’s average pitch is compared to the

previous syllable’s pitch average and depending on whether it is higher or lower, it is assigned

a tone of high or low respectively. This process is reset after each sentence.

These experiments were conducted for both the isiZulu and the isiXhosa corpora. Accuracy of

each method was calculated by comparing the predicted tone to those originally assigned to each

syllable by first language isiZulu and isiXhosa speakers as described in Chapter 3. Tables 4.1 and 4.2

display the results obtained from predicting high and low tones using the pitch values extracted by

Momel and the Non-Zero method respectively.

The results indicate that the pitch values extracted using the Non-Zero method produces better

results than the pitch values extracted using Momel, for both prediction methods. The relative predict

method produces more accurate results than the word average predict method.
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Database % Word Average Predict %Relative Predict
Female isiXhosa 54.12 65.20
Male isiXhosa 53.10 63.30
Male isiZulu 52.10 58.31

Table 4.1:Accuracy of tone prediction using pitch values extracted using Momel

Database % Word Average Predict %Relative Predict
Female isiXhosa 57.02 67.50
Male isiXhosa 57.65 65.27
Male isiZulu 53.11 60.32

Table 4.2:Accuracy of tone prediction using pitch values extracted using the Non-Zero method

4.2.3 IMPROVEMENTS

The results obtained using the relative predict algorithm does produce better results than the word

average predict method, but these results can be improved. A few parameters were introduced before

predicting the tone of syllable. We use the pitch values extracted by the Non-Zero method and the

relative predict algorithm.

4.2.3.1 REMOVING PAUSES

Pauses occur between sentences, phrases or words. This occurs when the speaker pauses to breathe

or for emphasis. When the sentences were transcribed into their phoneme and word level using the

Praat software, the pauses between words were also marked. An example of this type of marking is

shown in Figure 4.1.

Pitch values that were extracted from the pause boundaries were now removed when predicting

tone. For the isiZulu corpus, clicks were also removed. The results obtained when the pauses were

removed, and clicks for the isiZulu corpus, are displayed in the Table 4.3.

Database % Relative Predict(without pauses)

Female isiXhosa 67.90
Male isiXhosa 66.95
Male isiZulu 64.33

Table 4.3:Results obtained when pauses were removed

By removing the pauses in both databases and the clicking sound in the isiZulu corpus, there is a

slight improvement in accuracy. This may be due to that fact that pauses have little or no impact on
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Figure 4.1:A portion of a signal extracted for an isiXhosa sentence showing a pause in the sentence.
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the tone of the syllable or word following it.

4.2.3.2 THRESHOLD

A threshold parameter was implemented when comparing the pitch values of two syllables. If the

pitch value of the second syllable is higher than the pitch value of the preceding syllable, it is assigned

a tone of high or vice versa, as explained in Section 4.2.2. With a threshold implemented, this process

is altered. If the pitch value of the second syllable is within a certain range of the previous syllable’s

pitch value, it is assigned the same tone as the previous syllable regardless of whether the pitch value

is higher or lower. A syllable would be assigned a different tone if its pitch value falls outside the

given range and the general rule would then apply.

Varying threshold values were experimented with across each database and for each speaker.

The threshold that produces the most accurate result for each speaker is highly dependant on the

characteristics of the individual’s voice and the amount of pitch variation that is used. This experiment

excluded the pitch values extracted from pauses as described in the previous section. As shown in

Chapter 3 females vary their pitch more than males, so it is expected that the threshold that best

distinguishes a high tone from a low tone for a female would be lower than that for a male speaker.

Table 4.4 displays the results obtained for a female isiXhosa speaker and Table 4.5 for a male isiXhosa

speaker.

Threshold Accuracy

15 63.10
10 67.93
8 68.89
5 69.28
3 68.00

Table 4.4:Results of incorporating a threshold while predicting tone for a female isiXhosa speaker

Threshold Accuracy
25 70.00
20 74.43
18 74.24
15 72.12
10 68.35

Table 4.5:Results of incorporating a threshold while predicting tone for a male isiXhosa speaker

For a female isiXhosa speaker, the threshold that best distinguishes a high tone from a low tone is

5 hertz and this improves the accuracy from 67.9% to 69.28%.
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For a male isiXhosa speaker, a threshold of 20 hertz produces the most accurate results and

increases substantially from 66.95% to 74.43%.

The same experiment was conducted on the male isiZulu voice recordings. The results are

displayed in Table 4.6.

Threshold Accuracy

20 53.35
10 67.15
8 68.92
6 70.12
5 68.56
2 68.01

Table 4.6:Results of incorporating a threshold while predicting tone for a male isiZulu speaker

For a male isiZulu speaker, the threshold that produces the best results is 6 hertz. It improves the

prediction results from 64.327% to 70.12%.

4.2.3.3 INCORRECT PITCH VALUES

A pitch tracking algorithm can sometimes extract incorrect pitch values for certain voice segments if

it cannot properly follow the pitch contour. This results in pitch values being extracted that are either

very low or very high and are clearly out of an individual’s speaking range.

To determine the speaking range of each individual, the average pitch value was calculated for

each speaker using the entire database of voice recordings. From manual inspection it was determined

that approximately 35% above the average pitch value constitutes the highest pitch and 35% below

the average pitch value, the lowest pitch for the particular individual. The speaking range for each

speaker is displayed in Table 4.7.

Database Lowest Pitch (Hertz) Highest Pitch (Hertz)

Female isiXhosa 83.25 400.99
Male isiXhosa 61.57 340.37
Male isiZulu 65.68 360.54

Table 4.7:Speaker Range

Any pitch values lying outside these ranges were then excluded when predicting tone. After

filtering out these values,( and removing the pauses and implementing a threshold), the results when

predicting tone are displayed in Table 4.8.

Removing pitch values that are clearly incorrect i.e. either extremely low or extremely high,

improves the prediction accuracy.
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Database Accuracy

Female isiXhosa 71.15
Male isiXhosa 75.56
Male isiZulu 70.95

Table 4.8:Results of tone prediction when incorrect pitch values were removed

4.2.3.4 FALLING TONE

At the physical level, falling tones are present in the Nguni languages. A falling tone may be perceived

as high tone by one individual or a low tone by another individual. A syllable that has a falling tone

starts with a high pitch and ends on a much lower pitch.

We searched for falling tones in both corpora by looking at the difference between the starting

and ending pitch values of each syllable. If the difference was greater than a pre-determined value,

it was considered a falling tone. These syllables were then flagged as falling and disregarded when

calculating accuracy because of their ambiguous nature.

Experiments were then conducted to determine which threshold could best predict a falling tone

for each language. These experiments also included all the measures implemented in the previous

sections. The results for the isiXhosa and isiZulu corpora are displayed in Tables 4.9 and 4.10

respectively.

Falling tone value %isiXhosa Female %isiXhosa Male

20 79.61 82.46
25 77.38 80.58
40 73.78 78.61
50 72.36 77.77

Table 4.9:Results of removing falling tones from the isiXhosa database

Falling tone value %isiZulu Male

25 68.93
30 69.16
40 71.17
50 71.25
60 69.76

Table 4.10:Results of removing falling tones from the isiZulu database

By not taking into account falling tone for the isiXhosa database, the prediction result is improved

significantly. There is only a slight improvement in the isiZulu database indicating that falling tones
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may be more prevalent in our isiXhosa recordings than in our isiZulu recordings.

4.2.4 INTENSITY

Thus far we have investigated the effects of only pitch on the tone of syllables. The perception of

intonation is highly complex and involves a number of different attributes including pitch, intensity

and duration. In this section, we use the extracted set of intensity-derived features to determine if

intensity can be used successfully in predicting tone either on its own or in combination with pitch

values.

The starting and ending intensity values were extracted for each syllable. The average intensity

of each syllable was calculated using the average of the starting and ending intensity values of that

syllable.

Initially the tone of a syllable was predicted based only on its average intensity. For a syllable to

be assigned a high tone it should be greater than a pre-determined value, else it is assigned a tone of

low. Several thresholds were used in the experiment. The results are displayed in Table 4.11.

Intensity Threshold %isiXhosa female %isiXhosa male %isiZulu male

70 30.35 26.49 40.86
80 68.27 49.78 58.16
85 75.49 77.91 63.12

Table 4.11:Results for predicting tone based only on extracted intensity values

As shown in Table 4.11 using only the extracted intensity values to predict the tone of a segment,

we obtain fairly good results. This indicates that intensity does have an influence on the intonation of

a syllable.

We then wanted to investigate the implications of using both the extracted pitch and intensity

values. The results are displayed in Table 4.12.

%isiXhosa female %isiXhosa male %isiZulu male

80.60 84.32 70.76

Table 4.12:Results for predicting tone using both pitch and intensity values

The results from the experiments conducted indicate that using the average pitch and intensity

values individually does produce good results for predicting the tone of a segment. It is widely

accepted that pitch/fundamental frequency is the best indicator of tone. Here we have shown that

a combination of pitch and intensity values produces better results for prediction, indicating that

intensity also has an influence on the intonation of a sentence.
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Original State Next State Designation

High High HH
Low HL

Low High LH
Low LL

Table 4.13:Segment Tone Combinations

4.3 INTONATION MODELLING USING CLASSIFIERS

4.3.1 INTRODUCTION

Our goal was to train an automatic classifier to assign either an ’H’ or an ’L’ to a segment, based

on the tone assigned to the preceding segment and the measured F0 and intensity values of both the

current and the preceding segments.

Data input into a classifier is required to be separable for the classifier to be able to learn

and classify effectively. To determine if the pitch and intensity values extracted conformed to this

expectation, scatter plots were produced for the various segment combinations which are described

in Table 4.13.

For each combination above, the differences between consecutive pitch values were calculated

and plotted. The average pitch value of each segment was used. Figure 4.2 displays the results of a

’HH’ combination plotted against a ’HL’ combination and Figure 4.3 displays the results of a ’LL’

combination plotted against a ’LH’ combination for the isiXhosa corpus using only pitch values.

From the graph, we can deduce that there is a reasonable degree of separability between the two

combinations based on pitch alone.

Scatter plots were also produced for each segment combination using the difference between

consecutive pitch values and consecutive intensity values. Figure 4.4 displays the results of a

’HL’ combination plotted against a ’HH’ combination and Figure 4.5 displays the results of a ’LL’

combination plotted against a ’LH’ combination for the isiXhosa corpus using both pitch and intensity

values.

We can conclude from Figure 4.4 and Figure 4.5 that pitch values combined with the intensity

values are also reasonably separable and should work well as input to a classifier.

In Section 4.3.2 we describe the classifier used in the experiments. In Section 4.3.3 we describe

the methodology implemented to build the intonation model and the results obtained from the

classifier.

4.3.2 NEURAL NETWORK CLASSIFIER

A neural network classifier was selected to build our intonation model. Neural networks have found

application in a wide variety of problems. These range from function representation to pattern

recognition, which is what we consider here.
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Figure 4.2:HL consecutive segments plotted against HH consecutive segments using only pitch values
for isiXhosa
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Figure 4.3:LL consecutive segments plotted against LH consecutive segments using only pitch values
for isiXhosa
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Figure 4.4: HL consecutive segments plotted against HH consecutive segments using pitch and
intensity values for isiXhosa
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Figure 4.5: LL consecutive segments plotted against LH consecutive segments using pitch and
intensity values for isiXhosa
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A neural network consists of units (neurons), arranged in layers, which convert an input vector

into some output. Each unit takes an input, applies a (possibly nonlinear) function to it and then passes

the output on to the next layer. Generally the networks are defined to be feed-forward: a unit feeds

its output to all the units on the next layer, but there is no feedback to the previous layer. Weightings

are applied to the signals passing from one unit to another, and it is these weightings which are tuned

in the training phase to adapt a neural network to the particular problem at hand. This is the learning

phase.

Neural networks learn by example. The neural network gathers representative data, and then

invokes training algorithms to automatically learn the structure of the data which is essential to

building our model.

4.3.3 METHODOLOGY

For each language, we trained two types of classifiers, depending on whether the previous state had

been an ’H’ or an ’L’. These classifiers were trained on training data as shown in Table 4.14, and

evaluated on a separate set of test utterances (though from the same pair of speakers as the training

data, since our goal was not to construct a speaker-independent tone-assignment algorithm).

isiZulu
Training Testing

Utterances 100 50
Syllables 2243 808

isiXhosa
Training Testing

Utterances 28 15
Syllables 957 308

Table 4.14:The number of utterances and syllables used for the training and testing of the classifiers.

The features extracted for each segment as input into the classifier are:

• starting pitch

• ending pitch

• average pitch

• difference between the starting and ending pitches values

• starting intensity

• ending intensity

• highest intensity value (within a segment)
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• difference between the starting and ending intensity values

Initially we experimented with the number of hidden neurons for the neural network to determine

which produced optimal results for our type of input.

For the isiZulu database 16 hidden neurons produced the most accurate results for both sets of

data (pitch and intensity) and for the isiXhosa database 10 hidden neurons was found to produce the

most accurate results.

These values were then used as parameters in our classifier. With so many features extracted,

it was important to determine which feature/s contributed the most to improving the accuracy of

the classifier. For the initial experiment, each feature was individually trained and tested using the

classifier. The features were then ranked according to their accuracy.

The results for the isiZulu and isiXhosa databases are displayed in Table 4.15 and Table 4.16

respectively. The ’High’ and ’Low’ columns indicates the accuracy of the two types of classifiers

trained, depending on whether the previous state had been an ’H’ or an ’L’. There were a larger

number of ’HL’ segment combinations than ’HH’ segment combinations (approximately three times

as many). To prevent any biasness in the classification, we boosted the number of ’HH’ segment

combination to test if the classifier was learning or simply guessing. In the latter case the results

would not be better than chance which is 50%.

isiZulu

Feature % High %Low

difference in intensity 70.53 70.96
difference in pitch 68.03 70.96
average pitch 63.01 70.96
ending pitch 57.99 68.71
ending intensity 57.99 68.30
starting intensity 57.99 68.10
starting pitch 56.40 67.89
highest intensity 56.40 58.90

Table 4.15:Classifier results for each individual feature for the isiZulu database

Individually each feature does produce good results using the classifier. We then combined the

first two features for each database to train and test on the classifier to determine if the combination

would produce better results. Thereafter we added each feature on the list to the previous combination

and so forth, finally using all eight features. The results are displayed for isiZulu in Table 4.17 and

for isiXhosa in Table 4.18.

As shown in Table 4.19, we compared the classification accuracies achievable with the F0-derived

features to those of the amplitude derived features.

We were able to construct reasonably accurate classifiers for all four subproblems (i.e. those

designed for ’H’ and ’L’ preceding states, respectively, in both languages), despite the fact that the
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isiXhosa

Feature %High %Low

ending pitch 85.25 83.00
starting intensity 83.61 83.00
starting pitch 83.60 83.23
difference in pitch 83.60 82.40
ending intensity 82.47 82.19
average pitch 81.97 81.78
difference intensity 73.49 80.23
highest intensity 70.49 74.03

Table 4.16:Classifier results for each individual feature for the isiXhosa database

isiZulu

Combination %High %Low

(1) difference in pitch + difference in intensity 71.47 74.23
(2) Combination 1 + average pitch 73.35 75.87
(3) Combination 2 + ending pitch 73.67 77.3
(4) Combination 3 + ending intensity 75.24 77.71
(5) Combination 4 + starting intensity 75.64 77.71
(6) Combination 5 + starting pitch 75.64 78.21
(7) All features 77.74 78.32

Table 4.17:Classifier results for combination of features for the isiZulu database

transcribers had produced their predictions without access to any acoustic data. This suggests that

such surface-form tone assignments can be made with a fair amount of reliability.

4.4 CONCLUSION

From the two intonation models built we can deduce that the F0-based features and the amplitude-

based features produce comparable accuracy. This lends independent support to the hypothesis

advanced in Roux [6] regarding the substantial role of amplitude/intensity in the perception of tone –

based on our analysis, amplitude may even be somewhat more important than F0 in this determination.

Combining F0 and amplitude information produces lower classification accuracy than would be

expected if these had been independent information sources. One can therefore conclude that the

speakers tend to encode the same tonal information in both physical aspects, in a consistent manner.

A variety of factors may be responsible for the relatively better results obtained for isiXhosa in

comparison with isiZulu, ranging from more significant dialectal differences between transcribers

and speakers in isiZulu, through personal idiosyncrasies, to inherent languages differences. More

data would be needed to distinguish between these possibilities.
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isiXhosa

Combination %High %Low

(1) ending pitch + starting intensity 85.25 84.62
(2) Combination 1 + starting pitch 85.25 86.23
(3) Combination 2 + difference in pitch 85.7 86.23
(4) Combination 3 + ending intensity 85.7 86.23
(5) Combination 4 + average pitch 85.7 86.62
(6) Combination 5 + difference in intensity 81.97 86.23
(7) All features 86.89 86.32

Table 4.18:Classifier results for combination of features for the isiXhosa database

isiZulu
% High %Low

Pitch 67.71 74.44
Intensity 71.47 74.03

isiXhosa
%High %Low

Pitch 83.61 87.45
Intensity 85.25 83.40

Table 4.19:Accuracy obtained when classifying the tone of a syllable based on features derived from
F0, intensity, for preceding High and Low tones, respectively.

Both intonation models built produce fairly good accuracy for our isiZulu and isiXhosa sets of

data. Both intonation models use pitch values extracted by Praat using the Non-Zero method. The

statistical model using the relative predict method to predict the tone of the segment using just the

average pitch and intensity values. The classifier model uses four extracted F0-based features and

four amplitude-based features (as mentioned in Section 4.3) for classification. Thus, the models are

not entirely comparable because of the different feature sets they use to predict tone.

The neural network classifier, which uses eight extracted features, does produces overall better

prediction results. The statistical model is very much aligned with the voice characteristics of

an individual and it is also time consuming obtaining the various parameters for the model. The

classification model is also more robust and can easily learn from the training data but the eight

features also need to be extracted. We have shown that it is possible to build fairly good intonation

models for these languages using different approaches.

DEPARTMENT OFCOMPUTER SCIENCE 43

 
 
 



CHAPTER FIVE

CONCLUSION

5.1 INTRODUCTION

As initially discussed in Chapter 1, the aim of this thesis was three-fold: (a) to obtain an effective

pitch tracking algorithm for the Nguni set of languages; (b) to build an intonation corpus for isiZulu

and isiXhosa; and (c) to obtain a better understanding of the relationship between abstract tone and

physical measurables.

In this chapter we evaluate the extent to which we were able to achieve these goals and discuss

further applications and future work.

5.2 CONTRIBUTION

The final aim of this thesis was to build a model for the relationship between tone and measurables

such as pitch and amplitude, for isiZulu and isiXhosa as representatives of the Nguni languages.

For this to be achieved, there were a number of other experiments that initially needed to be

completed. Firstly, we had to select an appropriate pitch tracking algorithm for these languages,

which to our knowledge was not done before. The selected algorithm needed to cater for the unique

characteristics of these languages. Praat’s pitch tracking algorithm which uses a modified version of

the autocorrelation method produced the best results in our experiments for these languages.

Praat’s pitch tracking algorithm was then used to extract relevant features from the spoken

utterances of isiZulu and isiXhosa. These features included fundamental frequency, amplitude and

duration, which were used to build intonation corpora for these languages.

We built intonation models for both languages using the two approaches described in Chapter 4.

From our experiments we concluded that pitch and intensity play comparable roles in the prediction

of tone for a segment. A combination of both features does provide a slight improvement in the
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prediction results for both approaches. The neural network classifier produced better prediction

results than the statistical approach for both languages, showing that a certain degree of non-linearity

appears in the relationship between these quantities and tone. The publications arising from this

research were the following:

• Fundamental frequency and tone in isiZulu: initial experiments [37]

• Developing intonation corpora for isiXhosa and isiZulu [40]

• Computational models of prosody in the Nguni languages [41]

5.3 FURTHER APPLICATION AND FUTURE WORK

We would like to incorporate the intonation model built by the neural network classifier into a text to

speech system and speech recognition system for both languages. We can then investigate if including

this model into such systems makes a distinguishable difference to the quality of the system. We

would also like to continue with our investigations in various ways which include:

• using larger speaker groups

• analysing different dialects within these two languages

• using other languages in the Bantu family

Finally, we have found that pitch and amplitude play comparable roles in determining abstract

tone; it would be interesting to investigate whether duration is also involved in this relationship.
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