THE TRACTIVE PERFORMANCE OF A
FRICITION-BASED PROTOTYPE TRACK

TINGMIN YU

Submitted in partial fulfillment of the requirements for the

Degree of

Philosophiae Doctor

in

The Faculty of Engineering, Built Environment and Information Technology

University of Pretoria

Pretoria

October, 2005
SUMMARY

THE TRACTIVE PERFORMANCE OF A FRICTION-BASED PROTOTYPE TRACK

Supervisor: Professor H.L.M. du Plessis
Department: Civil and Biosystems Engineering
Degree: Philosophiae Doctor (Engineering)

In recent years, the interest in the design, construction and utilization of rubber tracks for agriculture and earth moving machinery has increased considerably. The development of such types of tracks was initiated by the efforts to invent a more environmentally friendly vehicle-terrain system. These tracks are also the result of the continuous effort to develop more cost-effective traction systems.

A rubber-surfaced and friction-based prototype track was developed and mounted on the patented modification of a new Allis Chalmers four wheel drive tractor. The track is propelled by smooth pneumatic tyres by means of rubber-rubber friction and the tractive effort of the track is mainly generated by soil-rubber friction between the rubber surface of the track elements and terrain.

The experimental track layer tractor, based on an Allis Chalmers 8070 tractor (141 kW) was tested on concrete and on cultivated sandy loam soil at 7.8%; 13% and 21% soil water content. The contact pressure and the tangential force on an instrumented track element, as well as the total torque input to one track, was simultaneously recorded during the drawbar pull-slip tests. Soil characteristics for pressure-sinkage and friction-displacement were obtained from the field tests by using an instrumented linear shear and soil sinkage device.
By applying the approach based on the classical bevameter technique, analytical methods were implemented for modelling the traction performance of the prototype track system. Different possible pressure distribution profiles under the tracks were considered and compared to the recorded data. Two possible traction models were proposed, one constant pressure model, for minimal inward track deflection and the other a flexible track model with inward deflection and a higher contact pressure at both the front free-wheeling and rear driving tyres. For both models, the traction force was mainly generated by rubber-soil friction and adhesion with limited influence by soil shear. For individual track elements, close agreement between the measured and predicted contact pressure and traction force was observed based on the flexible track model.

The recorded and calculated values of the coefficient of traction based on the summation of the traction force for the series of track elements were comparable to the values predicted from modelling. However, the measured values of drawbar pull coefficient were considerably lower than the predicted values, largely caused by internal track friction in addition to energy dissipated by soil compaction. The tractive efficiency for soft surface was also unacceptably low, probably due to the high internal track friction and the low travel speeds applied for the tests.

The research undertaken identified and confirmed a model to be used to predict contact pressure and tangential stresses for a single track element. It was capable of predicting the tractive performance for different possible contact pressure values.

Key terms: adhesion, contact pressure, rubber track, soil-rubber friction, traction, traction modelling, tractive performance.
ACKNOWLEDGEMENTS

I wish to express my appreciation to Professor H.L.M. du Plessis, my supervisor, for his instruction, advice, support and encouragement throughout my study and work.

Appreciation is also expressed to the following people for their valuable advice and help:

- Mr. C. du Toit, Agricultural Engineering Workshop Manager.
- Mr. J. Nkosi, Mr. D. Sithole and Mr. W. Morake, Technical Assistants in the Agricultural Engineering Workshop.
- Dr. R. Sinclair for reviewing the manuscript.

Finally, appreciation is expressed to my wife, my children and my parents for their love, support, encouragement and sacrifice.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>viii</td>
</tr>
</tbody>
</table>

CHAPTER I

INTRODUCTION

1.1 Developments in terrain-vehicle mechanics .. 1-1
1.2 Optimization of new traction systems .. 1-2
1.3 The prediction and evaluation of tractive performance 1-4
1.4 The development of a prototype track and the motivation for the research... 1-4

CHAPTER II

LITERATURE REVIEW

2.1 Soil characterization for traction modelling 2-1
 2.1.1 The cone penetrometer technique for soil characterization 2-2
 2.1.2 The bevameter technique for soil characterization 2-4
 2.1.2.1 Measurement of pressure-sinkage relationships 2-5
 2.1.2.2 Measurement of soil shear characteristics 2-9
 2.1.3 Friction and adhesion characterization for the soil-rubber contact surface 2-14
2.2 Traction performance modelling for wheeled vehicles 2-16
 2.2.1 Empirical methods for traction performance modelling 2-16
 2.2.2 Analytical methods for traction performance modelling 2-19
2.3 Traction performance modelling for tracked vehicles 2-23
 2.3.1 Empirical methods for traction performance modelling 2-23
 2.3.2 Analytical methods for traction performance modelling 2-23
2.4 Development of and traction characteristics for rubber tracks 2-30
2.5 Measurement of the distribution of contact and tangential stresses below a track 2-35
 2.5.1 Track link dynamometer by Wills (1963) 2-35
 2.5.2 Applications of extended octagonal ring transducers
 for measuring two perpendicular forces 2-36
2.6 Development of the prototype traction system based on soil-rubber friction 2-38
2.7 Justification for conducting this study ... 2-40
CHAPTER III

CONSTRUCTION OF THE PROTOTYPE

RUBBER-FRICTION TRACTION SYSTEM

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>3.2</td>
<td>The prototype track</td>
</tr>
<tr>
<td>3.2.1</td>
<td>The fundamental construction and layout</td>
</tr>
<tr>
<td>3.2.2</td>
<td>The centre ground wheels</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Track mounting, tensioning and driving friction at interface</td>
</tr>
<tr>
<td>3.2.4</td>
<td>The beam effect</td>
</tr>
<tr>
<td>3.3</td>
<td>The drive train, steering control and automatic differential lock</td>
</tr>
<tr>
<td>3.4</td>
<td>Dimensions of the prototype track</td>
</tr>
<tr>
<td>3.5</td>
<td>Preliminary tests and assessment of tractive performance</td>
</tr>
<tr>
<td>3.6</td>
<td>Summary and remarks</td>
</tr>
</tbody>
</table>

CHAPTER IV

DEVELOPMENT OF THE TRACTION MODEL

FOR THE PROTOTYPE TRACK

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>4.2</td>
<td>Characterization of rubber-soil friction and soil shear with displacement</td>
</tr>
<tr>
<td>4.3</td>
<td>Characterization of the relationship between contact pressure and sinkage</td>
</tr>
<tr>
<td>4.4</td>
<td>Analysis of the distribution of track-soil contact pressure</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Tractive effort for uniform and trapezoidal pressure distribution</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Tractive effort for a rigid track model with a tilt angle</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Tractive effort for the flexible track model</td>
</tr>
<tr>
<td>4.5</td>
<td>The prediction of motion resistance</td>
</tr>
<tr>
<td>4.6</td>
<td>Internal resistance and the friction drive between the wheel and the track</td>
</tr>
<tr>
<td>4.7</td>
<td>Total drawbar pull of the prototype track</td>
</tr>
<tr>
<td>4.8</td>
<td>The coefficient of traction and tractive efficiency</td>
</tr>
<tr>
<td>4.9</td>
<td>Modelling procedure</td>
</tr>
</tbody>
</table>

CHAPTER V

INSTRUMENTATION, CALIBRATION AND EXPERIMENTAL PROCEDURE

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.2</td>
<td>Apparatus for soil characterization</td>
</tr>
<tr>
<td>5.3</td>
<td>The extended octagonal ring transducers for measuring</td>
</tr>
</tbody>
</table>
the distribution of contact pressure and tangential stress.........................5-6
5.3.1 Design of the transducer...5-6
5.3.2 Calibration and installation of the transducers..............................5-8
5.4 Instrumentation for measuring torque, slip and drawbar pull.............5-13
5.4.1 Instrumentation for measuring the side shaft torque....................5-13
5.4.2 Instrumentation for measuring speed and slip.............................5-15
5.4.3 Instrumentation for measuring drawbar pull...............................5-18
5.5 The computerized data logging system...5-19

CHAPTER VI
FIELD EXPERIMENTS AND DATA COLLECTION...6-1
6.1 Measurement of soil properties ..6-1
6.1.1 Soil classification..6-1
6.1.2 Soil density, soil water content and cone index...........................6.1
6.2 Experimental procedure for soil characterization..............................6-2
6.2.1 Pressure-sinkage characterization for the test plot.......................6-2
6.2.2 Soil-rubber frictional and soil shear characterization....................6-6
6.3 Drawbar pull tests and data collection...6-10

CHAPTER VII
RESULTS, ANALYSIS AND MODEL VALIDATION7-1
7.1 Introduction...7-1
7.2 The distribution of contact pressure ...7-1
7.2.1 The contact pressure distribution and frictional stress on a hard surface..7-1
7.2.2 The effect of the ground wheels on the pressure distribution
and frictional stress for a hard surface..7-4
7.2.3 The contact pressure distribution and frictional stress
on a soft surface with zero drawbar pull...7-5
7.2.4 The effect of the ground wheels on the contact pressure distribution
and frictional stress for a soft surface..7-7
7.2.5 The influence of the soil water content and the drawbar pull
on the contact pressure distribution..7-9
7.3 The relationships of traction coefficient and total slip.......................7-14
7.4 The tractive efficiency...7-17
7.5 Analysis of the factors affecting the tractive performance..................7-19
7.5.1 Soil water content..7-19
7.5.2 Track tension...7-19
7.5.3 Motion resistance and internal friction.......................................7-20
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>contact area, (m^2).</td>
</tr>
<tr>
<td>b</td>
<td>track contact width, (m).</td>
</tr>
<tr>
<td>b_o</td>
<td>width of octagonal ring transducer, (m).</td>
</tr>
<tr>
<td>b_t</td>
<td>tyre section width, (m).</td>
</tr>
<tr>
<td>b_w</td>
<td>width of wheel, (m).</td>
</tr>
<tr>
<td>C</td>
<td>constant to relate the entrance and the exit angles.</td>
</tr>
<tr>
<td>C_a</td>
<td>a constant to calculate the actual speed based on (r_d) and (\pi).</td>
</tr>
<tr>
<td>C_t</td>
<td>coefficient of traction.</td>
</tr>
<tr>
<td>C_t</td>
<td>a constant to calculate the theoretical speed based on (r_d) and (\pi).</td>
</tr>
<tr>
<td>c</td>
<td>soil cohesion, (Pa).</td>
</tr>
<tr>
<td>c_a</td>
<td>soil-rubber adhesion, (Pa).</td>
</tr>
<tr>
<td>D</td>
<td>wheel diameter, (m).</td>
</tr>
<tr>
<td>d</td>
<td>tyre diameter, (m).</td>
</tr>
<tr>
<td>E</td>
<td>modulus of elasticity of octagonal ring transducer material, (Pa).</td>
</tr>
<tr>
<td>e</td>
<td>eccentric distance of centre of gravity in longitudinal direction, (m).</td>
</tr>
<tr>
<td>F</td>
<td>force, (N).</td>
</tr>
<tr>
<td>F_h</td>
<td>drawbar pull, (N).</td>
</tr>
<tr>
<td>F_h_i</td>
<td>longitudinal force on i-th track segment, (N).</td>
</tr>
<tr>
<td>F_h_max</td>
<td>maximum drawbar pull, (N).</td>
</tr>
<tr>
<td>F_t</td>
<td>tractive force, (N).</td>
</tr>
<tr>
<td>F_t_i</td>
<td>tractive force for i-th track segment, (N).</td>
</tr>
<tr>
<td>F_t_max</td>
<td>maximum tractive effort, (N).</td>
</tr>
<tr>
<td>F_x</td>
<td>force in horizontal direction, (N).</td>
</tr>
<tr>
<td>F_y</td>
<td>force in vertical direction, (N).</td>
</tr>
<tr>
<td>f_a</td>
<td>frequency recorded by ground speed sensor.</td>
</tr>
<tr>
<td>f_t</td>
<td>frequency recorded by theoretical speed sensor.</td>
</tr>
<tr>
<td>G</td>
<td>sand penetration resistance gradient, (Pa/m).</td>
</tr>
<tr>
<td>H</td>
<td>horizontal force, (N).</td>
</tr>
<tr>
<td>h</td>
<td>height, (m).</td>
</tr>
<tr>
<td>i</td>
<td>slip as decimal.</td>
</tr>
</tbody>
</table>
j tangential displacement, (m).
K tangential deformation modulus, (m).
K₁, K₂ empirical constants for soil shear.
Kₗ ratio of the residual shear stress τᵣ to the maximum shear stress τₘₐₓ.
Kₒ shear displacement where the maximum shear stress τₘₐₓ occurs, (m).
kᵉ constant for measuring force F for extended octagonal ring transducer.
kᵗ constant for measuring force P for extended octagonal ring transducer.
kₑ Bekker sinkage parameter related to cohesion, (kN/mⁿ⁺¹).
kᵦ Bekker sinkage parameter related to internal soil friction, (kN/mⁿ⁺²).
kₑ’ and kᵦ’ dimensionless constants related to pressure-sinkage tests.
L track contact length, (m).
Lₒ half distance between two circular centres of extended octagonal ring transducer, (m).
Lₜ average travel distance, (m).
ℓ length, (m).
ℓᵢ contact length, (m).
ℓᵢ track length represented by i-th track segment, (m).
Nₑₙ wheel numeric.
Nᵣ revolutions of drive wheel.
n exponent of terrain deformation for Bekker sinkage equations
nₚ number of periods.
P force, (N).
Pᵢₙ input power, (kW).
Pₒᵤᵣ output power, (kW).
p contact pressure, (Pa).
p₁ contact pressure at the front of the track, (Pa).
p₂ contact pressure at the rear of the track, (Pa).
pₑ pressure due to stiffness of the tyre carcass, (Pa).
pᵢ contact pressure for i-th track segment, (Pa).
pᵢᵣ tyre inflation pressure, (Pa).
p(x) contact pressure on track at distance x (meter) from front, (Pa).
R radius of deformed track between front and rear tires, (m).
R_c motion resistance due to soil compaction, (N).

R_e external track resistance, (N).

R_i internal track resistance, (N).

R_t total motion resistance, (N).

r wheel radius, (m).

r_d effective radius of the drum to measure ground speed, (m).

r_i radius for i-th track segment, (m).

r_o mean radius of octagonal ring, (m).

r_r rolling radius of wheel, (m).

r_t effective rolling radius of the track drive wheel, (m).

S_t total slip of track as decimal.

T torque, (N·m).

T_0 track pre-tension, (N).

t time, (second).

t_o thickness of octagonal ring transducer, (m).

V forward velocity of tractor, (m/s).

V_a absolute velocity, (m/s).

V_j slip velocity, (m/s).

V_t theoretical velocity, (m/s).

W total vertical load, (N).

W_f vertical load on front wheels, (N).

W_i vertical load on i-th track segment, (N).

W_r vertical load on rear wheels, (N).

X projected distance in horizontal direction, (m).

x distance, (m).

Z vertical difference in height of contact circle between front and rear wheels, (m).

Z_r depth of rut, (m).

z sinkage, (m).

z_0 wheel sinkage, (m).

z_f sinkage of track front, (m).

z_{f0} initial sinkage of track front, (m).
z_r sinkage of track rear, (m).
z_t track sinkage, (m).
α angle, (rad).
α_{1f} entrance angle of front tire, (rad).
α_{2f} exit angle of front tire, (rad).
α_{1r} entrance angle of rear tire, (rad).
α_{2r} exit angle of rear tire, (rad).
α_i entrance angle of i-th track segment, (rad).
α_{i+1} exit angle of i-th track segment, (rad).
β tilt angle, (rad).
γ_s unit weight of soil, (N/m3).
δ angle of rubber-soil friction, (degree).
ε_{4P} strain caused by force P.
ε_{4F} strain caused by force F.
η tractive efficiency.
θ angle, (rad).
θ_0 wheel entrance angle, (rad).
μ traction coefficient.
μ_g gross traction coefficient.
μ_{ϕ} friction coefficient between contact surfaces.
π wrap angle, (180°).
ρ motion resistance ratio.
σ contact pressure, (Pa).
τ shear stress, (Pa).
τ_f frictional stress, (Pa).
τ_{fi} frictional stress for i-th segment of track, (Pa).
$\tau_{f\text{max}}$ maximum frictional stress, (Pa).
τ_{max} maximum shear stress, (Pa).
τ_r residual shear stress, (Pa).
ϕ angle of soil internal shearing resistance, (degree).
ϕ_F nodal angle for measuring force F on octagonal rings, (degree).

ϕ_P nodal angle for measuring force P on octagonal rings, (degree).

ψ tyre deflection, (m).

ω angular velocity, (rad/s).

ω_d angular speed of the drum for measuring ground speed, (rad/s).

ω_t theoretical angular velocity, (rad/s).