The mechanisms regulating exocytosis of the salivary glands of the soft tick, *Ornithodoros savignyi*

by

Christine Maritz-Olivier

Submitted in partial fulfilment of the requirements for the degree

Philosophiae Doctor

in the

Faculty of Natural and Agricultural Science
Department of Biochemistry
University of Pretoria
Pretoria

July 2005
CONTENTS

List of Abbreviations ... vi
List of Figures .. xi
List of Tables ... xix
Acknowledgements .. xxii

Chapter 1: Literature review

1. Ticks: An overview ... 1
2. Biogenesis of secretory granules ... 6
3. The exocytotic pathways ... 13
4. Protein-protein interactions: A target for therapy? ... 19
5. Aims of this thesis ... 23
6. References ... 24

Chapter 2: Signaling pathways regulating protein secretion from the salivary glands of unfed female *Ornithodoros savignyi.*

2.1. Introduction .. 27
2.1.1. General anatomy of tick salivary glands .. 27
2.1.2. Extracellular stimuli .. 31
2.1.3. Adenylyl cyclase and cAMP .. 35
2.1.4. Prostanoids .. 38
2.1.5. Phospholipase C and intracellular calcium .. 43
2.1.6. Current model for the control and mechanism of secretion in ixodid ticks 44
2.2. Hypothesis .. 46
2.3. Aims .. 46
2.4. Materials ... 47
2.5. Methods ... 47
2.5.1. Tick salivary gland dissection .. 47
2.5.2. Apyrase activity assay .. 47
2.5.3. Agonist and antagonist treatment .. 49
2.5.4. Phosphorylation assay .. 49
2.6. Results and discussion ... 50
Chapter 3: Investigations into the conserved core machinery of regulated exocytosis in the salivary glands of *O. savignyi*

3.1. Introduction ... 80
3.1.1. Conserved core machinery for regulated exocytosis .. 81
3.2. Hypothesis .. 98
3.3. Aims .. 98
3.4. Materials ... 99
3.5. Methods ... 99
3.5.1. Salivary gland fractionation ... 99
3.5.2. Protein gel electrophoresis .. 100
3.5.3. Western blotting ... 100
3.5.4. Immuno-fluorescent localization using confocal microscopy 100
3.5.5. Degenerative primer design ... 101
3.5.6. Total RNA isolation ... 101
3.5.7. Conventional cDNA synthesis ... 102
3.5.8. SUPER SMART™ cDNA synthesis ... 102
3.5.9. cDNA amplification by LD-PCR ...104
3.5.10. Random amplification of 3’ cDNA ends (3’-RACE).................................104
3.5.11. DIG- labelling of probes using PCR ..105
3.5.12. DNA dot blotting ..106
3.5.13. Agarose gel electrophoresis ..106
3.5.14. PCR product purification ..106
3.5.15. Quantification of nucleic acids ...107
3.5.16. A/T cloning of PCR products into pGEM® T-Easy vector......................107
3.5.17. Preparation of electrocompetent cells ..107
3.5.18. Transformation by electroporation ...108
3.5.19. Miniprep plasmid isolation ..108
3.5.20. High pure plasmid isolation ...108
3.5.21. Automated DNA sequencing and data analysis109
3.6. Results and Discussion ..110
3.6.1. Western blotting of salivary glands with anti-SNARE and anti-Rab3a antibodies ..110
3.6.2. Localization of SNAREs and cytoskeleton proteins using confocal microscopy ..111
3.6.3. RNA isolation ...115
3.6.4. 3’-RACE using ss cDNA ...116
3.6.5. 3’-RACE using SUPER SMART™ ds cDNA ...124
3.7. Conclusion ..131
3.8. References ..133

Chapter 4: Investigation into protein-protein interactions between rat brain secretory proteins and an O. savignyi cDNA library by means of the GAL4 two-hybrid system

4.1. Introduction ...136
4.1.1. The yeast two hybrid system ...136
4.1.2. Using the two-hybrid system for the identification of binding partners of SNAREs and secretory proteins ...146
4.2. Hypothesis ...149
4.3. Aims ...149
4.4. Materials ..150
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adenosine / Alanine</td>
</tr>
<tr>
<td>AA</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>AD</td>
<td>Activation domain</td>
</tr>
<tr>
<td>Ade</td>
<td>Adenine</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine monophosphate</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>αSNAP</td>
<td>α-Soluble NSF attachment protein</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BD</td>
<td>Binding domain</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic local alignment search tool</td>
</tr>
<tr>
<td>bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celcius</td>
</tr>
<tr>
<td>C</td>
<td>Cytosine / Cysteine</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CCV</td>
<td>Clathrin-coated vesicle</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>cfu</td>
<td>Colony forming units</td>
</tr>
<tr>
<td>CgB</td>
<td>Chromogranin B</td>
</tr>
<tr>
<td>CHX</td>
<td>Cycloheximide</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>C-terminal</td>
<td>Carboxy terminal</td>
</tr>
<tr>
<td>D</td>
<td>Aspartic acid</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>dA</td>
<td>Deoxy adenosine</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacyl glycerol</td>
</tr>
<tr>
<td>dC</td>
<td>Deoxy cytosine</td>
</tr>
<tr>
<td>DDO</td>
<td>Double dropout</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethyl pyrocarbonate</td>
</tr>
<tr>
<td>dG</td>
<td>Deoxy guanosine</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>DIG</td>
<td>Digoxigenin</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNA-BD</td>
<td>DNA-binding domain</td>
</tr>
<tr>
<td>DNase</td>
<td>Deoxyribonuclease</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleotide triphosphate</td>
</tr>
<tr>
<td>DO</td>
<td>Dropout</td>
</tr>
<tr>
<td>ds</td>
<td>Double stranded</td>
</tr>
<tr>
<td>dT</td>
<td>Deoxy thymidine</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>E</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamine tetra acetic acid</td>
</tr>
<tr>
<td>EE</td>
<td>Early endosome</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylene-bis (oxyethylene nitrilo) tetra acetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>F</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>G</td>
<td>Guanidine / Glycine</td>
</tr>
<tr>
<td>GAL4</td>
<td>Galactose 4 regulatory protein</td>
</tr>
<tr>
<td>G_i</td>
<td>Inhibitory G-protein</td>
</tr>
<tr>
<td>G_s</td>
<td>Stimulatory G-protein</td>
</tr>
<tr>
<td>H</td>
<td>Histidine</td>
</tr>
<tr>
<td>I</td>
<td>Inosine / Isoleucine</td>
</tr>
<tr>
<td>InsP</td>
<td>Inositol phosphate</td>
</tr>
<tr>
<td>IP_3</td>
<td>Inositol 1,4,5-triphosphate</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>ISG</td>
<td>Immature granule</td>
</tr>
<tr>
<td>K</td>
<td>Lysine</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>L</td>
<td>Leucine</td>
</tr>
<tr>
<td>lacZ</td>
<td>β-Galactosidase gene</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Berthani</td>
</tr>
<tr>
<td>LDCV</td>
<td>Large dense core vesicle</td>
</tr>
<tr>
<td>LD-PCR</td>
<td>Long distance PCR</td>
</tr>
<tr>
<td>M</td>
<td>Methionine</td>
</tr>
<tr>
<td>MCS</td>
<td>Multiple cloning site</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>µmol</td>
<td>Micromole</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>mMol</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MSG</td>
<td>Mature secretory granule</td>
</tr>
<tr>
<td>N</td>
<td>Asparagine</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Centre for Biotechnology Information</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>NLS</td>
<td>Nuclear localization signal</td>
</tr>
<tr>
<td>nmol</td>
<td>Nanomole</td>
</tr>
<tr>
<td>NSF</td>
<td>N-Ethylmaleimide sensitive factor</td>
</tr>
<tr>
<td>N-terminal</td>
<td>Amino terminal</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame</td>
</tr>
<tr>
<td>ori</td>
<td>Origin of replication</td>
</tr>
<tr>
<td>P</td>
<td>Proline</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PEG</td>
<td>Poly-ethylene glycol</td>
</tr>
<tr>
<td>PG</td>
<td>Prostaglandin</td>
</tr>
<tr>
<td>PGE₂</td>
<td>Prostaglandin E₂</td>
</tr>
</tbody>
</table>
PIP$_2$ Phosphatidyl inositol 4,5-bisphosphate
PKA Protein kinase A
PKC Protein kinase C
PLC Phospho lipase C
pmol Picomole
pS picoSiemens
Q Glutamine
QDO Quadruple dropout
R Arginine
RACE Random amplification of cDNA ends
RNase Ribonuclease
RNA Ribonucleic acid
RRP Rapidly releasable pool
RSP Regulated secretory protein
RT-PCR Reverse transcription PCR
S Serine
SAP Shrimp alkaline phosphatase
SD Standard dropout
SDS Sodium dodecyl sulfate
SEM Scanning electron microscopy
SG Secretory granule
SNAP Soluble NSF attachment protein
SNARE SNAP receptor
SRP Slowly releasable pool
ss Single stranded
SSV Small synaptic vesicle
syt Synaptotagmin
T Thymidine / Threonine
TAE Tris-acetate EDTA buffer
Taq *Thermus aquaticus*
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBS</td>
<td>Tris buffered saline</td>
</tr>
<tr>
<td>TDO</td>
<td>Triple dropout</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>TGN</td>
<td>trans-Golgi network</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl) aminomethane</td>
</tr>
<tr>
<td>tRNA</td>
<td>Transfer RNA</td>
</tr>
<tr>
<td>U</td>
<td>Units</td>
</tr>
<tr>
<td>UAS</td>
<td>Upstream activating sequences</td>
</tr>
<tr>
<td>V</td>
<td>Valine</td>
</tr>
<tr>
<td>VAMP</td>
<td>Vesicle associated membrane protein</td>
</tr>
<tr>
<td>W</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>WT</td>
<td>Wild type</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside</td>
</tr>
<tr>
<td>Y</td>
<td>Tyrosine</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Chapter 1:
Figure 1.1. Diagram illustrating ixodid adult tick body structures..1
Figure 1.2. Diagram illustrating the typical 3-host cycle characteristics of most ixodid ticks...2
Figure 1.3. Diagram illustrating argasid adult tick body structures..3
Figure 1.4. Diagram illustrating the typical argasid multi-host life cycle with multiple parasitic phases and repeated gonotrophic cycles4
Figure 1.5. External anatomy of a female O. savignyi..5
Figure 1.6. Biogenesis of secretory granules in neuroendocrine cells....................................8
Figure 1.7. Sorting of regulated secretory proteins (RSPs) in the trans-Golgi network (TGN) by protein–lipid interactions...11
Figure 1.8. Schematic representation of the steps leading to secretory granule exocytosis...13
Figure 1.9. LDCV exocytosis viewed as sequential stages of docking, priming and fusion...15
Figure 1.10. Comparison of kiss-and-run exocytosis and full fusion....................................18
Figure 1.11. Structural model illustrating the putative binding site of peptides SNAP25_N2 on the SNARE complex ...21
Figure 1.12. α-Helical models of peptides identified from an α-helical constrained combinatorial peptide library ...22

Chapter 2:
Figure 2.1. SEM analysis of salivary glands from O. savignyi..27
Figure 2.2. TEM micrographs of the granules of type II granular alveoli31
Figure 2.3. Biosynthesis of the physiologically active amines dopamine, epinephrine and norepinephrine ..33
Figure 2.4. A model to demonstrate the receptors involved in salivary fluid secretion in ixodid ticks ..35
Figure 2.5. The mechanism of receptor-mediated activation / inhibition of adenylyl cyclase..36
Figure 2.6. Schematic representation of A. americanum cAPK-cDNAs and proteins ..38
Figure 2.7. Schematic representation of the prostanoid synthesis pathway……………………39
Figure 2.8. A schematic representation of the activation of PLC and the role of PIP2 in intracellular signaling ...43
Figure 2.9. Known and hypothesised factors and events controlling secretion in ixodid female salivary glands ..45
Figure 2.10. The effect of dopamine and extracellular calcium on apyrase secretion from the salivary glands of O. savignyi .. 50
Figure 2.11. The effect of isoproterenol on apyrase secretion from the salivary glands of O. savignyi ..51
Figure 2.12. The effect of carbachol on apyrase secretion from the salivary glands of O. savignyi ...52
Figure 2.13. The effect of intracellular calcium on dopamine-stimulated apyrase secretion from permeabilized salivary glands of O. savignyi ...52
Figure 2.14. The effect of OPC on dopamine-stimulated apyrase secretion from permeabilized salivary glands of O. savignyi .. 53
Figure 2.15. PGE2 stimulated apyrase secretion from intact salivary glands in the presence of HBSS with calcium ..54
Figure 2.16. PGE2 stimulated apyrase secretion from permeabilized salivary glands in the presence of HBSS with calcium .. 55
Figure 2.17. Rescue of OPC treated cells with PGE2 ..55
Figure 2.18. The effect of elevated extracellular cAMP levels on apyrase secretion from intact salivary glands of O. savignyi .. 56
Figure 2.19. The effect of elevated intracellular cAMP levels on apyrase secretion from permeabilized salivary glands of O. savignyi 56
Figure 2.20. The effect of elevated intracellular cAMP levels on dopamine-stimulated apyrase secretion from permeabilized salivary glands of O. savignyi ...57
Figure 2.21. The effect of verapamil on dopamine-stimulated apyrase secretion from intact salivary glands ..58
Figure 2.22. The effect of Ouabain on dopamine-stimulated apyrase secretion in HBSS with calcium ..59
Figure 2.23. The effect of dopamine and extracellular calcium on apyrase secretion from the salivary glands of O. savignyi in HBSS.....................................61
Figure 2.24. The effect of dopamine and extracellular calcium on apyrase secretion from the salivary glands of *O. savignyi* in AISS.................................61

Figure 2.25. Effect of N-ethylmaleimide on dopamine-stimulated apyrase secretion ..62

Figure 2.26. Effect of GTPγS on apyrase secretion ..63

Figure 2.27. Western blotting of dopamine and cAMP treated salivary glands using a monoclonal anti-phosphothreonine IgG ..64

Figure 2.28. A schematic presentation of the functions of the various reactions catalyzed by cellular phosphoinositide kinase isozymes.........................66

Figure 2.29. Effect of Wortmannin on dopamine-stimulated apyrase secretion ...67

Figure 2.30. Effect of IP₃ on apyrase secretion from permeabilized salivary glands of *O. savignyi* ..68

Figure 2.31. Effect of U73,122 on dopamine-stimulated apyrase secretion ..69

Figure 2.32. The effect of cytochalasin D on dopamine-stimulated apyrase secretion ..71

Figure 2.34. The effect of colchicine on dopamine-stimulated apyrase secretion ..72

Figure 2.35. Schematic representation of the proposed mechanisms underlying regulated exocytosis of apyrase from LDCVs from the salivary glands of *O. savignyi* ..75

Chapter 3:

Figure 3.1. Model of the ionic layer of the yeast post-Golgi SNARE complex83

Figure 3.2. Crystal structure of the neuronal Sec1/syntaxin 1a complex84

Figure 3.3. Protein structure of neuronal SNAP-25 and ubiquitously expressed homologues...87

Figure 3.4. A model for Rab recruitment ...91

Figure 3.5. Diagram of the domain structure of synaptotagmin I ...94

Figure 3.6. Flow chart of Super SMART™ cDNA synthesis ...103

Figure 3.7. Cloning strategy during 3’-RACE ..105

Figure 3.8. Identification of SNAREs and Rab3a using Western Blotting ...110

Figure 3.9. Identification of a high molecular mass core complex in the salivary glands of *O. savignyi* ..111
Figure 3.10. Immuno-localization of syntaxin in the salivary glands of *O. savignyi* using anti-rat brain syntaxin2 polyclonal antibodies

Figure 3.11. Immuno-localization of VAMP in the acini of *O. savignyi* using anti-rat brain VAMP2 polyclonal antibodies

Figure 3.12. Immuno-localization of VAMP in granular cells of *O. savignyi* salivary glands

Figure 3.13. Immuno-localization of SNAP25 in acini of *O. savignyi*

Figure 3.14. Immuno-localization of actin in acini of *O. savignyi*

Figure 3.15. Immuno-localization of tubulin in the acini of *O. savignyi*

Figure 3.16. Electrophoretic analysis of total RNA

Figure 3.17. *Agarose electrophoresis of the open reading frame amplified from recombinant synaptotagmin I*

Figure 3.18. *Amino acid similarity among five synaptotagmin isoforms*

Figure 3.19. *3'-RACE with synaptotagmin primer 1 (SDPYVK) and cDNA created from salivary glands of *O. savignyi*, whole *O. savignyi* ticks and rat brain (positive control)*

Figure 3.20. *3'-RACE with salivary gland RNA and the syt_2 primer*

Figure 3.21. *Hybridisation of the putative synaptotagmin clones obtained with the DIG-labelled sytI probe*

Figure 3.22. *Amino acid sequence alignment of various syntaxins*

Figure 3.23. *PCR amplification of syntaxin using the syn_1 degenerative primer from *O. savignyi* salivary gland cDNA*

Figure 3.24. *PCR amplification of syntaxin using the syn_1 degenerative primer from *Argas (P.) walkerae* cDNA

Figure 3.25. *DNA nucleotide and amino acid sequence of *A. walkerae* clone obtained with syn_1*

Figure 3.26. *Taguchi-PCR with syn_2 using salivary gland cDNA from *O. savignyi***

Figure 3.27. *High Pure isolation of the 500 bp band obtained with syn_2*

Figure 3.28. *Nucleotide and amino acid sequence of the 500 bp band obtained with syn_2 primer from salivary gland cDNA*

Figure 3.29. *Schematic presentation of the suppression PCR effect*

Figure 3.30. *Analysis of ds cDNA amplification by LD-PCR using Super SMART™ technology*
Figure 3.31. Taguchi_PCR with the syn_1 primer using ds SMART DNA from salivary glands of *O. savignyi* ...127

Figure 3.32. Agarose electrophoresis of the purified 450 bp product obtained with syn_1 and SMART DNA..127

Figure 3.33. Nucleotide and amino acid sequence of 450bp band obtained with syn_1 primer from SMART salivary gland cDNA127

Figure 3.34. Amino acid sequence alignment of various syntaxin isoforms 2 and 3 ...128

Figure 3.35. 3'-RACE with the syn_2/3 primer using ds SMART DNA from salivary glands of *O. savignyi* ..129

Figure 3.36. Localization of SNAREs and cytoskeletal proteins in the acini of *O. savignyi* ..131

Chapter 4:

Figure 4.1. Schematic diagram of the GAL4-based two-hybrid system ...138

Figure 4.2. pAS2-1 map and MCS ..139

Figure 4.3. pACT2 map and MCS ..142

Figure 4.4. Schematic presentation of a yeast promoter ...144

Figure 4.5. Reporter gene constructs in the yeast strains AH109 ..145

Figure 4.6. Schematic representation of directional cloning using *SfiI* digestion ...151

Figure 4.7. Schematic representation of fragmenting the full-length *SfiI* library using random primers ..155

Figure 4.8. Schematic presentation of (A) native syntaxin 1 and (B) truncated syntaxin 1 bait ...157

Figure 4.9. Schematic presentation of (A) native Rab3a and (B) mutated Rab3a bait constructs ..158

Figure 4.10. Analysis of ds cDNA amplification by LD-PCR using Super SMART™ technology ...165

Figure 4.11. Agarose gel electrophoresis of (1) polished ds cDNA and (2) purified *SfiI* digested ds SMART DNA ..166

Figure 4.12. Agarose gel electrophoresis of (1) *SfiI* digested pACT2, (2) *SfiI* digested pACT2 treated with T4 Ligase and (3) untreated intact pACT2 ..166
Figure 4.13. Transformation of various insert: vector ratios into electrocompetent BL21 *E. coli* cells ...167

Figure 4.14. Agarose gel electrophoresis of *SfiI* digested plasmids isolated from GAL4 AD/library transformed BL21 *E. coli* cells167

Figure 4.15. Agarose gel electrophoresis of the *XhoI* digested fragmented dsDNA ...168

Figure 4.16. PCR screening of cloned inserts from transformed BL21 *E. coli* cells ...169

Figure 4.17. DNA sequence of four similar molecular mass clones from the fragmented *SfiI/XhoI* GAL4AD fusion library169

Figure 4.18. PCR amplification of syntaxin bait constructs ..170

Figure 4.19. Amino acid sequence alignment of the syntaxin baits......................................171

Figure 4.20. ELISA of syntaxin transformed AH109 cells with polyclonal anti-syntaxin 2 IgG ...171

Figure 4.21. PCR amplification of the coding region of native mouse brain Rab3a ...172

Figure 4.22. ELISA of Rab3a T36N transformed AH109 cells with polyclonal anti-Rab3a IgG ...172

Figure 4.23. DNA nucleotide sequence alignment of the various Rab3a bait constructs ...173

Figure 4.24. PCR amplification of the coding region of native mouse brain α-SNAP ...174

Figure 4.25. DNA nucleotide sequence alignments of α-SNAP bait constructs175

Figure 4.26. AH109 yeast cells containing the pAs2_1 truncated syntaxin bait construct ...176

Figure 4.27. AH109 yeast cells co-transformed with truncated syntaxin bait and *SfiI/XhoI* truncated library ..177

Figure 4.28. AH109 yeast cells containing the pAs2_1 native Rab3a bait construct ...177

Figure 4.29. A typical β-galactosidase colony lift assay of AH109 yeast cells containing the pAS2_1 truncated syntaxin bait construct178

Figure 4.30. Partial sequence of the pACT2 plasmid ...179

Figure 4.31. Typical agarose electrophoresis pattern obtained after nested PCR of QDO-positive clones containing truncated syntaxin as bait179
Figure 4.32. Agarose electrophoresis pattern obtained after BamHI and HindIII digestion of nested PCR products obtained from QDO-positive clones containing truncated syntaxin as bait..180

Figure 4.33. Agarose electrophoresis pattern obtained after BamHI and HindIII digestion of nested PCR products obtained from QDO-positive clones containing α-SNAP as bait..180

Figure 4.34. Homology between domain I and syntaphilin using PSI-BLAST182

Figure 4.35. Homology between clone 10 and Casein kinase I epsilon isoform using PSI-BLAST ..182

Figure 4.36. Structure prediction of syntaxin interacting peptides ..184

Figure 4.37. Crystal structure of syntaxin 1N ..186

Figure 4.38. Secondary structure prediction of the α-SNAP interacting protein186

Figure 4.39. Multiple sequence alignment of syntaxins and α-SNAP interacting protein ...188

Figure 4.40. Modeled structure of the α-SNAP interacting protein ..189

Figure 4.41. Schematic presentation of a possible model for fusion complex formation in the salivary glands of O. savignyi ...190

Chapter 5:

Figure 5.1. Interactions of v- and t-SNAREs in yeast ..196

Figure 5.2. Plasmid map of the S. cerevisiae / E. coli shuttle vector pRS 413199

Figure 5.3. Putative α-SNAP binding sites on the SNARE complex ...202

Figure 5.4. Proposed SNAP-SNARE binding model ...203

Figure 5.5. Agarose gel electrophoresis of (i) the ds SMART cDNA synthesized using the BamHI SMART- and EcoR I CDS primers and (ii) the SMART ds DNA after BamHI I and EcoR I digestion ..210

Figure 5.6. Agarose gel electrophoresis of the ds SMART cDNA synthesized using the SacI SMART- and CDS III primer ..211

Figure 5.7. Agarose electrophoresis of the nested PCR products from suppressed H603 cells ...212

Figure 5.8. Agarose electrophoresis of the nested PCR products from KC8 cells ...212

Figure 5.9. Multiple sequence alignment of syntaxins and knockout suppressor peptides ...215
Figure 5.10. Multiple sequence alignments of clone 20 (H603_20) and human syntaxin 1 (1Dn1_B) ...216
Figure 5.11. Multiple sequence alignments of clone 27 (H603_27) and human syntaxin 1 (1Dn1_B) ...216
Figure 5.12. Secondary structure prediction of the knockout suppressor peptides ..217
Figure 5.13. Structure of the Complexin / SNARE Complex ..217
Figure 5.14. Modeled structure of the knockout fragment encoded by clone 27 ...218
Figure 5.15. ELISA of pull-down eluates using polyclonal antibodies against the various SNAREs and Rab3a ...219
Figure 5.16. SDS-PAGE of pull-down eluates ..219
Figure 5.17. Multiple sequence alignment of the putative syntaxins isolated from *O. savignyi* salivary glands ...221
LIST OF TABLES

Chapter 1:
Table 1.1. Properties of the granule components secreted by argasid ticks5
Table 1.2. Effects of altered loop-regions in various proteins...9
Table 1.3. Examples of RSPs associated with lipid microdomains.................................11
Table 1.4. Properties and binding partners of tethering proteins..................................14

Chapter 2:
Table 2.1. General features of female ixodid tick salivary gland acini28
Table 2.2. General features of the cell types found in the type II acinus of
the ixodid tick, R. appendiculatus ..29
Table 2.3. General features of the cell types found in the type III acinus of
ixodid ticks..30
Table 2.4. Structural classification of dopamine receptors ...32
Table 2.5. Structural classification of Protein kinases A / cAMP-dependent
kinases ..37
Table 2.6. Structural classification of the phospholipases A2 ..39
Table 2.7. Structural classification of prostanoid receptors ..40
Table 2.8. Schematic presentation of the micro-titer plate setup in the
secretion assay...48
Table 2.9. Molecular masses of proteins phosphorylated by a dopamine-
sensitive cAMP-kinase in the salivary glands of the ixodid tick A.
americanum and the argasid tick O. savignyi..64
Table 2.10. Characteristics of Type 1A and 1B phosphatidylinositol 3- kinases
sensitive to Wortmannin...66
Table 2.11. Comparison between the signaling pathways regulating
exocytosis from the salivary glands of A. americanum (Ixodidae)
and O. savignyi (Argasidae)...73

Chapter 3:
Table 3.1. Cells with secretory granules ..80
Table 3.2. Key proteins that function in exocytosis in neurons and in
secretory granule exocytosis..82
Table 3.3. Cellular and functional information about mammalian syntaxins85
Table 3.4. Cellular and functional information of synaptobrevins......................................86
Table 3.5. Localization, function and effectors of selected Rab GTPases93
Table 3.6. Properties of various synaptotagmin isoforms ...95
Table 3.7. Properties of the synaptotagmin degenerative primers117
Table 3.8. Properties of the syntaxin degenerative primers ...120
Table 3.9. Properties of the serine protease degenerative primer124
Table 3.10. Super SMART™ primers used for cDNA synthesis and LD-PCR125
Table 3.11. Properties of the syn_2/3 degenerative primer ...129
Table 3.12. Amino acid sequence of the proteins encoded for in the 450 bp and 300 bp bands amplified with the syn_2/3 primer ...129

Chapter 4:
Table 4.1. MATCHMAKER yeast strain genotypes and applications145
Table 4.2. The use of various SNAREs and secretory proteins in two-hybrid assays 146
Table 4.3. Primers used for synthesis and amplification of cDNA during cDNA library construction .. 151
Table 4.4. Ligation of the GAL4 AD / plasmid library using the pACT2 vector (8100 bp) .. 152
Table 4.5. MATCHMAKER yeast strain phenotypes .. 156
Table 4.6. Primers used for the amplification of native bait constructs 157
Table 4.7. Reverse primer used for the amplification of the syntaxin 1-265 construct .. 158
Table 4.8. Primers used for the site-directed mutagenesis of Rab3a 159
Table 4.9. Control vectors of the MATCHMAKER™ GAL4 two-hybrid system 2 .. 161
Table 4.10. Nested PCR primers .. 163
Table 4.11. Prey molecules identified using truncated syntaxin and truncated library 181
Table 4.12. Predict protein analysis of α-SNAP interacting protein 185

Chapter 5:
Table 5.1. Conserved sequence motifs in Ras proteins from different species196
Table 5.2. Properties of the primers used for SMART cDNA synthesis of the
BamHI / EcoR I library ...209
Table 5.3. Properties of the primers used for SMART cDNA synthesis of the
SacI / XbaI library ...210
Table 5.4. Properties of the SSO-mutated temperature sensitive yeast
strains...211
Table 5.5. Deduced amino acid sequence of inserts that suppressed the
SSO1 temperature sensitive phenotype of H603 cells...............213
Table 5.6. Calculated similarities and identities between identified protein
domains and various full-length syntaxin isoforms214

APPENDIX

Scheme 1: Overview of performing a yeast two-hybrid screen232
ACKNOWLEDGEMENTS

I am extremely grateful towards the following:

- Prof. A.W.H. Neitz, my supervisor at the Department of Biochemistry, University of Pretoria, whom inspired my love for biochemistry during the first lecture he presented on proteins during my 2nd year undergraduate studies; for opening numerous research opportunities, his continued support, interest and guidance during the duration of my post-graduate life.

- Prof. A.I. Louw, my co-supervisor at the Department of Biochemistry, University of Pretoria, for valuable advice, teaching me to write proper science, continued interest in this project and creating a passion for molecular biology.

- Prof. J.R. Sauer at the Department of Entomology, Oklahoma State University, USA for opening up his laboratory and home to me during my visit. Your Christian values and life will continue to be an inspiration throughout my life.

- Prof. H. Moolman-Smook at the Department of Medical Biochemistry, University of Stellenbosch, South Africa, for opening her laboratory to me, teaching me the art of the two-hybrid system and yeast, your support and valuable opinions.

- Dr. Fourie Joubert and Mr. Tjaart de Beer for their tireless advice on Bioinformatics, computational analyses of data and protein modeling.

- Dr. Ben Mans for the numerous discussions and philosophical talks on life. Your love for ticks inspired me to become a life-long tick person!

- Mrs. S. van Wyngaardt, for her support, advice, helping hands and guidance during this project.

- My fellow students and friends, for always inspiring me to do better!
• My parents, family and friends. Your love, motivation and prayer make life worth living.

• My husband, Nicholas Olivier, who supported me throughout my postgraduate studies. Your kindness, inspiration, guidance, prayer and love are the center of my being.

• The Andrew F. Mellon Foundation for the Mellon Foundation Postgraduate Mentoring Fellowship. This opportunity opened a tremendous amount of opportunities during this study. The scientific exposure I received shaped me into the scientist I am today.

• The National Research Foundation of South Africa for their financial assistance during this study.

• My heavenly Father, thanks for always being the same, unchangeable Rock of my life. Your presence kept me going throughout the good and bad times of this study. I admire your creation, in awe!