

Sensitivity and Integration of Efficiency Estimates from Input Distance Functions and Stochastic Production Frontiers: Application to Maize Production in Benue State Nigeria

By

Goodness Chioma Aye

Submitted in partial fulfilment of the requirements for the degree of

PhD Agricultural Economics

Department of Agricultural Economics, Extension and Rural Development Faculty of Natural and Agricultural Sciences University of Pretoria South Africa

March 2011

© University of Pretoria

DEDICATION

This thesis is first dedicated to our Lord God Almighty under whose everlasting arm I lean for His sustenance and second to my husband Sylvester and daughter Joy for their love and support.

DECLARATION

I declare that this thesis, which I hereby submit for the degree of PhD at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

Signed:

Name: Goodness Chioma Aye

March 2011

ACKNOWLEDGEMENT

My profound gratitude goes first to God Almighty for His loving kindness, goodness, favour, provision and sustenance throughout the period of this programme. I sincerely wish to say big thank you to my husband, Engr. Sylvester Aondolumn Aye and daughter, Joy Terdoo Nkechi Aye for their love, understanding, prayers, financial and moral support during this programme. I deprived my husband and daughter my presence most often in the struggle to complete this programme. May the Lord Jesus reward them abundantly. I appreciate my supervisor, Dr. Eric D. Mungatana for his constructive criticism, intellectual advice, patience and tolerance that led to the successful completion of this work.

I am also grateful to all the academic staff in the Department of Agricultural Economics, Extension and Rural Development and especially Prof. Johann Kirsten, the Head of department, Prof. Charles Machete, the Chair, and other members of the postgraduate committee for their comments that fine tuned the work. I thank all the administrative staff both in the department and faculty for their wonderful co-operation during my programme. Special thanks to Dorothy Tau for helping in making my admission to the University of Pretoria possible. To my fellow students and friends at the University of Pretoria: Ali, Mariam, Edidah, Sanga, Mulatu, Dee, Kiibi, Danbala, John, Thinah, Choolwe, Charity, Leah, Oliver, Dennis, Vanduzai, William and all the members of the PhD room- your support and encouragement are highly appreciated. I thank the academic staff in the Department of Economics and Management Sciences for their intellectual impact that broadened my knowledge base.

My gratitude goes to my parents, Mr & Mrs B.N. Oparah and my mother in-law, Mrs Cecilia Aye for their love and care. To the rest of my family members and their children: Pastor & Sis. Favour C.M.C. Oparah, Mr & Mrs. Lawman Cedar Nzenwa, Mr. & Mrs Kenndey Nzenwa, Promise Nzenwa, Pastor & Sis. Dominic Dikeocha, Mr & Mrs Dennis Udechukwu, Dr. & Mrs Fortunatus Chancellor Nzenwa, Amos Aye, Daniel Aye, Mr & Mrs Ehiedu, Mr & Mrs Tunde, Mr & Mrs Akin, Blessing Aye,

Nguuma Aye, Nguwese Aye, Mlumun Aye- thank you for your spiritual, financial and moral support. I will not fail to thank all my Pastors, leaders and brethren in the church both in Nigeria, South Africa and SADC for their spiritual support. I say Adieu to my late father in-law whose presence I would have so much love to behold on my return to Nigeria but God decided to take him before the completion of my programme.

My gratitude also go to the Vice Chancellor University of Agriculture Makurdi, Prof. D.V. Uzah; Dean Faculty of Agricultural Economics, Extension and Management Technology, Prof. Oto Okwu, immediate past head of Department of Agricultural Economics, Dr. (Mrs) W.L. Lawal, Prof. Obinne and other staff of the University of Agriculture Makurdi for their support, co-operation and for the study leave that made the conduct of this study possible. To ANSTI/DAAD and MMMF I say thank you for providing the fellowship and fund that assisted the successful completion of the research phase of this programme. I am also grateful to Prof Charlotte Du Toit, Prof Renée van Eyden and Ms Stella De Kock for giving me the opportunity to serve as a Researcher in African Institute of Econometric Modelling (AFRINEM) based at the University of Pretoria. The experience gained and funding was of great help to me. I will also not fail to appreciate the African Econometric Society (AES) for selecting me as one of the Young African Scholars which made it possible for me to present part of this thesis in the AES 2010 conference at the American University in Cairo, Egypt in July, 2010. I also thank Dr. Victor Oboh, Mr. Chris Ogbanje and his team, and the ADP staff, Benue State chapter that assisted in the successful collection of the data for this study.

For all these people and others whose names are not mentioned here but who were instruments to the success of my PhD programme, may the blessings and favour of the Lord be your constant portion in Jesus name.

Sensitivity and Integration of Efficiency Estimates from Input Distance Functions and Stochastic Production Frontiers: Application to Maize Production in Benue State Nigeria

By

Goodness Chioma Aye

Degree: PhD Agricultural EconomicsSupervisor: Dr. Eric D. MungatanaDepartment: Agricultural Economics, Extension and Rural Development

ABSTRACT

The selection of a suitable model for efficiency analysis is one of the most important issues in policy analysis. Given the recent interest in the use of distance functions as alternative representation of production technology, this study compares the empirical performances of the parametric stochastic input distance function to its nonparametric counterpart, data envelopment analysis. A further comparison is made between the alternatives of a distance and production function frontiers. It further integrates efficiency scores from the consistent approaches in order to evaluate the performance of the sampled farm households and for analysis of policy impacts on technical, allocative and cost efficiency. The usefulness of the proposed methodology is applied to smallholder maize production in Benue State Nigeria. The maize subsector has featured in a number of Nigeria's policy initiatives, the most current of which involves doubling of its production and productivity through promotion of improved technologies such as hybrid seed, inorganic fertilizer, pesticides, herbicides, and better management practices. Despite the policy initiatives, maize productivity has remained low raising questions about the efficiency of resource use by farmers and the benefits of Nigeria's technology policy. The study used data obtained from a field survey for the 2008/2009 agricultural year. A multistage stratified sampling technique was employed in selection of respondents. A total of 240 maize farm households were randomly selected and interviewed using structured questionnaires.

Results from all the approaches indicated considerable technical, allocative and cost inefficiency under both traditional and improved maize technology. Technical efficiency estimates range from 80 to 87 percent. Allocative efficiency estimates range from 53 to 74 percent while cost efficiency estimates range from 45 to 62 percent. The results from all the approaches indicated that inefficiency in maize production in Benue State is dominated by cost inefficiency suggesting the immense potential of enhancing production through improvement in overall efficiency. The overall consistency check shows that technical, allocative and cost efficiency measures from the three distance functions were consistent whereas similar conclusions could not hold when these were compared to the production frontier especially for technical efficiency estimates.

Given the consistency of results from the parametric and non-parametric distance functions, an integrated input distance model was developed for providing final efficiency estimates and analysis of policy impacts. The results show that both traditional and improved technology users were technically, allocatively and cost inefficient. The average technical, allocative and cost efficiency are 84.2, 65.7 and 54.5 percent, respectively implying that there is a possibility of raising maize production by 45.5 percent through overall efficiency improvement. Under the integrated approach, the study revealed that hybrid seeds, inorganic fertilizer and conservation practices have positive and significant impact on farm efficiency. Other determinants of efficiency include education, age, household size, land size, credit, and membership in a farmer group. The findings justify the need for further public investment in maize technology development and proper implementation of the relevant policies in order to enhance the efficiency with which maize has been produced thereby increasing its productivity, food security and farm incomes and subsequently reducing poverty in Nigeria.

Key Words: Technology, policy, efficiency, maize, Nigeria, parametric stochastic, non-parametric, distance function, production function, integrated model

TABLE OF CONTENTS

DEDICATION	ii
DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
CHAPTER 1	1
INTRODUCTION	1
1.1 Background to the Study	1
1.2 Problem Statement	5
1.3 Objectives of the Study	
1.4 Hypotheses	
1.5 Justification for the Study	
1.6 Organization of the Thesis	
CHAPTER 2	13
A REVIEW OF AGRICULTURAL POLICIES AND PROGRAMME	S IN
NIGERIA	
2.1 Introduction	13
2.1 Introduction	13 14
2.2 Agriculturar Foncy and Frogrammes in Nigeria	1/
2.2.1 The 110-1970 Era	15
2.2.2 The 1970-1905 Eld	
2.2.5 The 1960-1999 Eta	
2.2.4 The Tost 1999 Eld	
2.4 Summary and Conclusions	
CHAPTER 3	44
I ITED ATUDE DEVIEW ON EFFICIENCY MEASUDEMENT AND	`
EMPIRICAL APPLICATIONS	, 44
3.1 Introduction	11
3.2 The Concept of Efficiency and Frontier Models	····· 44 ///
3.2 The Concept of Efficiency and Flohues Mouels	····· 44 16
3.4 Decemetric Frontier Approach	
3.4 1 Deterministic Non Statistical Eventions	
3.4.1 Deterministic non-statistical Frontiers	

2 A 2 Starth and a Frankfurth Eff
5.4.5 Stochastic Fronuers
3.4.3.1 Panel Data
3.4.3.2 Duality Considerations and Cost System Approaches
3.4.3.3 Production Frontier and Efficiency Decomposition
3434 Distance Functions and Efficiency Decomposition 67
2.5 Empirical Studies on Efficiency Massurement
3.5 Empirical Studies on Efficiency Measurement
3.5.1 Empirical Comparative Studies in Agriculture
3.5.2 Empirical Comparative Studies in other Sectors involving Distance
Functions
3 5 3 Recent Empirical Efficiency Studies in Nigerian Agriculture 82
5.5.5 Recent Empirical Efficiency Studies in Mgerian Agriculture
CHAPTER 490
ANALYTICAL FRAMEWORK AND EMPIRICAL SPECIFICATIONS90
4.1 Introduction
4.2 Analytical Framework
1.2.1 The Production Frontier and Efficiency Decomposition 01
4.2.1 The Floudcuon Flouder and Efficiency Decomposition
4.2.2 Distance Function Approach to Efficiency Decomposition
4.2.2.1 The Parametric Stochastic Input Distance Function
4.2.1.2 The Non-Parametric Input Distance Function
4.3 Empirical Models
A 3.1 Parametric Stachastic Input Distance Function (SIDF) 100
4.3.1 Farametric Stochastic Input Distance Function (SIDF)
4.3.2 Non-parametric Input Distance Function
4.3.3 Parametric Stochastic Frontier Production Function (SFPF)106
4.3.4 Technology and Policy Impact on Efficiency107
CHAPTER 5110
STUDY AREA SURVEY DESIGN AND SOCIO-ECONOMIC
CILADA CTEDISTICS OF THE SAMPLE HOUSEHOLDS 110
CHARACTERISTICS OF THE SAMIFLE HOUSEHOLDS
5.1 Introduction
5 ? The Study Area 110
5.2 The Study Area manual and Sampling Dressdays
5.5 Survey Design and Sampling Procedure
5.4 Data Collection 114
5.5 Variable Description
5.6 Household and Farm Characteristics of Study Sample
CHAPTER 6122
COMPARISON OF RESULTS FROM ALTERNATIVE APPROACHES122
6.1 Introduction
6.2 Parameter Estimates and Efficiency Scores from the SIDF Model
6.3 Parameter Estimates and Efficiency Scores from the SEDE Model 122
6.4 Efficiency Cooper from the New convertes from the New Market 120
0.4 Efficiency Scores from the Non-parametric Input Distance Models
6.5 A Visual Comparison of Efficiency Estimates from Different Frontier Models
6.6 Sensitivity of Efficiency Scores to Estimation Approaches: Formal Tests, 140
67 Input Usage Ratios 1/3
6.8 Technological Innovation and Efficiency Comparison of Alternative Medel
o.o rechnological innovation and Efficiency: Comparison of Alternative Models

6.9 Conclusions
CHAPTER 7162
AN INTEGRATED INPUT DISTANCE MODEL FOR EFFICIENCY AND
POLICY ANALYSIS162
7.1 Introduction
7.2 The Integrated Model162
7.3. Results and Discussion166
7.3.1 Final Efficiency Scores and Distribution from the Integrated Model 166
7.3.2 Impact of Technological Innovation on Efficiency Estimates from the
Integrated Model 167
7.4 Conclusions
SUMMARY, CONCLUSIONS AND POLICY IMPLICATIONS
8.1 Summary and Conclusion
8.2 Policy Implications
8.3 Limitations of the Study and Areas for Future Research
REFERENCES181
APPENDIX 1: QUESTIONNAIRE

LIST OF TABLES

Table 2.1 Selected agricultural development indicators: 2000-2008
Table 5.1: Production and productivity trends of major crops in Benue State112
Table 5.2: Summary statistics of variables in the frontier functions 117
Table 5.3: Description of variables used in the second stage Tobit regression 118
Table 5.4: Household and farm characteristics of the sample households119
Table 6.1: The OLS and maximum likelihood estimates of the SIDF123
Table 6.2: Frequency distribution of efficiency estimates from SIDF model 125
Table 6.3: The OLS and maximum likelihood estimates of the SFPF
Table 6.4: Frequency distribution of efficiency estimates from SFPF model 128
Table 6.5: Frequency distribution of efficiency estimates from VRS DEA model
Table 6.6: Frequency distribution of efficiency estimates from CRS DEA model
Table 6.7: Tests of hypothesis of the difference between efficiency means 141
Table 6.8: Tests of hypothesis of the difference between efficiency variances 142
Table 6.9 Spearman's rank correlations among efficiency scores
Table 6:10: Input usage ratios of maize farmers in Benue State
Table 6.11: Technical efficiency estimates and test of difference in means for
traditional versus improved maize farmers
Table 6.12: Allocative efficiency estimates and test of difference in means for
traditional versus improved maize farmers
Table 6.13: Cost efficiency estimates and test of difference in means for
traditional versus improved maize farmers 147
Table 6.14: Summary result of Smith-Blundell test of exogeneity 149
Table 6.15: Tobit model results of impact of technological innovation on TE.152
Table 6.16: Tobit model results of impact of technological innovation on AE 153
Table 6.17: Tobit model results of impact of technological innovation on CE 154
Table 6.18: Marginal effects for the expected value of technical efficiency 158
Table 6.19: Marginal effects for the expected value of allocative efficiency 159
Table 6.20: Marginal effects for the expected value of cost efficiency
Table 7.1: Frequency distribution of efficiency scores from the integrated model
166

Table 7.2: Efficiency estimates and test of difference in means for traditional	
versus improved maize farmers	
Table 7.3: Summary of Smith-Blundel test for exogeneity	
Table 7.4 Tobit model results of impact of technological innovation on efficiency	
••••••	171

LIST OF FIGURES

Figure 2.1: Trend in production of food grains
Figure 2.2: Trend in productivity of food grains
Figure 2.3: Trend in production of some major crops
Figure 2.4: Trend in productivity of some major staples
Figure 2.5: Trend in producer prices of some major staples
Figure 2.6: Trend in fertilizer utilization40
Figure 3.1: Technical, Allocative and Economic Efficiency
Figure 3.2: The input distance function and the input set
Figure 4.1: Map of Nigeria showing the capital cities of each State
Figure 6.1: Scatter plot of technical efficiency from SIDF and SFPF models 131
Figure 6.2: Scatter plot of TE from SIDF and VRS DEA models132
Figure 6.3: Scatter plot of TE from SIDF and CRS DEA models
Figure 6.4: Scatter plot of TE from VRS DEA and SFPF models
Figure 6.5: Scatter plot of TE from CRS DEA and SFPF models134
Figure 6.6: Scatter plot of TE from VRS and CRS DEA models134
Figure 6.7: Scatter plot of allocative efficiency from SIDF and SFPF models. 135
Figure 6.8: Scatter plot of AE from SIDF and VRS DEA models
Figure 6.9: Scatter plot of AE from SIDF and CRS DEA models136
Figure 6.10: Scatter plot of AE from VRS DEA and SFPF models
Figure 6.11: Scatter plot of AE from CRS DEA and SFPF models
Figure 6.12: Scatter plot of AE from VRS and CRS DEA models
Figure 6.13: Scatter plot of cost efficiency from SIDF and SFPF models 138
Figure 6.14: Scatter plot of CE from SIDF and VRS DEA models
Figure 6.15: Scatter plot of CE from SIDF and CRS DEA models
Figure 6.16: Scatter plot of CE from VRS DEA and SFPF models
Figure 6.17: Scatter plot of CE from CRS DEA and SFPF models140
Figure 6.18: Scatter plot of CE from VRS and CRS DEA models

ACRONYMS AND ABBREVIATIONS

ADP	Agricultural Development Project
AE	Allocative Efficiency
APMEU	Agricultural Projects Monitoring and Evaluation Unit
BNARDA	Benue State Agricultural and Rural Development Agency
CADP	Commercial Agriculture Development Programme
CBN	Central Bank of Nigeria
CD	Cobb-Douglas
CE	Cost Efficiency
COLS	Corrected Ordinary Least Squares
CRS	Constant Returns to Scale
CSIS	Centre for Strategic and International Studies
DEA	Data Envelopment Analysis
DFID	Department for International Development
DFRRI	Directorate of Food, Roads and Rural Infrastructure
EE	Economic Efficiency
FACU	Federal Agricultural Coordinating Unit
FAO	Food and Agriculture Organization
FAOSTAT	Food and Agriculture Organization Statistics
FAS	Agricultural Service of United States Department of Agriculture
FCT	Federal Capital Territory
FEAP	Family Economic Advancement Programme
FMARD	Ministry of Agriculture and Rural Development
FRN	Federal Republic of Nigeria
GDP	Gross Domestic Product
На	Hectare
HDR	Human Development Report
ICARRD	International Conference on Agrarian Reform and Rural Development
IDRC	Development Research Centre
IFPRI	International Food Policy Research Institute
IITA	International Institute of Tropical Agriculture
Kg	Kilogram

LR	Likelihood Ratio
MLE	Maximum Likelihood Estimates
NACB	Nigerian Agricultural and Cooperative Bank
NACRDB	Nigerian Agricultural, Cooperative and Rural Development Bank
NAFPP	National Accelerated Food Production Project
NALDA	National Agricultural Land Development Authority
NBS	National Bureau of Statistics
NCRI	National Cereals Research Institute
NDE	National Directorate of Employment
NEEDS	National Economic Empowerment and Development Strategy
NERICA	New Rice for Africa
NPC	National Population Commission
NPFS	National Food Security Programme
NPN	National Party of Nigeria
NSS	National Seeds Service
OFN	Operation Feed the Nation
OLS	Ordinary Least Squares
PCU	Projects Coordinating Unit
R&D	Research and Development
SAP	Structural Adjustment Program
SFPF	Stochastic Frontier Production Function
SIDF	Stochastic Frontier Input Distance Function
TE	Technical Efficiency
TFP	Total Factor Productivity
TL	Translog
UNDP	United Nations Development Programme
USAID	United States Agency for International Development
VRS	Variable Returns to Scale