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SUMMARY 
 

 Two well-known methods of improving the reliability of a system are 

 

(i) provision of redundants units, and 

(ii) repair maintenance. 

 

In a redundant system more units are made available for performing the 

system function when fewer are required exactly. There are two major types of 

redundancy- parallel and standby. In this thesis we confine to both these 

redundant systems. A series system is also studied. 

 

Some of the typical assumptions made in the analysis of redundant systems are 

(i) the repair times are assumed to be exponential 

(ii) the system measures are modeled but not estimated 

(iii) the system is available continuously 

(iv) environmental factors not affecting the system 

(v) the failures take place only in one stage 

(vi) the switching device is perfect 

(vii) system reliability for given chance constraints 

(viii) the time required to transfer a unit from the standby 

state to the operating stage is negligible ( instantaneous 

switchover) 

(ix) the failures and repairs are independent 

 

 

However, we frequently come across systems where one or more of these 

assumptions have to be dropped. This is the motivation for the detailed study 

of the models presented in this thesis. 
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In this thesis we present several models of redundant systems relaxing one or 

more of these assumptions simultaneously. More specifically it is a study of 

stochastic models of redundant repairable systems with ‘rest period’ for the 

operator, non-instantaneous switchover, imperfect switch, intermittent use, 

and series system optimization. 

 

The thesis contains seven chapters. Chapter 1 is introductory in nature and 

contains a brief description of the mathematical techniques used in the 

analysis of redundant systems. 

 

In chapter 2, a two unit system with Erlangian repair time is studied by 

relaxing the assumptions (i) and (ii). The difference- differential equations are 

formulated for the state probabilities, and the system measures like reliability 

and the availability are obtained over a long run. The asymptotic interval 

estimation is studied for these system measures. The model has been 

illustrated numerically. 

 

In chapter 3, an n unit system operating intermittently, and in a random 

environment is studied, by relaxing the assumptions (iii) and ( iv). In an 

intermittently used system, the mean number of disappointments is one of the 

important measures, which has been obtained for this system in the steady 

state. 

In chapter 4, the assumption (v) and (vi) are relaxed. In most of the models 

studied earlier in reliability analysis is the study of system measures like 

reliability and availability. In this chapter, profit analysis of a single unit 

system with three possible modes of the failure of the unit is studied .This 

chapter consists of two models: in model 1, the unit goes under repair (if a 

repairman is available) the moment it fails partially, whereas in model 2 the 

unit goes under repair at complete failure. The repairman appears in, and 

disappears from, the system randomly. A comparison between these two 
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  vii

models has been studied, after calculating numerically the profit and the 

MTSF. 

 

Contrary to the previous chapters, stochastic optimization is studied using the 

Branch and Bound technique in chapter 5 (relaxing the assumption (vii)). In 

this chapter, an n unit system operating in a random environment is 

considered. The environment determines the number of units required for the 

satisfactory performance of the system. Assuming that a unit in standby can 

fail and that the environment is described by a Markov process, we obtained 

expressions for the distribution and the moments of the time to the first 

disappointment, and the expected number of disappointments over an arbitrary 

interval (0, t]. 

 

In chapter 6, the assumption (viii) is relaxed. The reliability, availability and 

the busy period analysis is studied with the assumption of the non-

instantaneous switchover (the time taken from standby state to the operating 

state is non-negligible random variable). It is also assumed that the unit has 

three possible failure modes (normal, partial and total failure). Numerical 

example illustrated the results obtained. 

 

The assumption (ix) is relaxed in chapter 7, and a two-unit cold standby 

system with the provision of rest for the operating unit is studied. Also, the 

failure and repair times of each unit assumed to be correlated by taking their 

joint density as bivariate exponential. The system is observed at suitable 

regenerative epochs to obtain various reliability characteristics of interest, 

such as the distribution of time to system failure and its mean, and the steady-

state  probabilities of the system being in up or down states or under repair. 

Earlier results are verified as particular cases. Numerical example illustrated 

the results obtained. 
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CHAPTER 1

INTRODUCTION
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1.1 Introduction

Reliability theory is one of the most important branches of Operations 

Research and Systems Engineering. Any systems analysis in order to be 

complete, must give due consideration to system reliability. With 

remarkable advances made in electronics engineering, military and 

communication systems have become more sophisticated and when such 

systems fail, very serious situations arise. Thus in the present day context, 

high system reliability has become very important from the view point of 

both makers and the users.

A system designer is often faced with problems of determining the various 

system measures like reliability, availability and interval reliability etc. He 

also has to suggest ways by which the efficiency of a given system can be 

improved. Due to the nature of the subject, the methods of Probability 

Theory and Mathematical Statistics are necessary to study and solve the 

problems that arise in reliability theory.

Many mathematical models have been proposed to evaluate various 

measures of system performance and methods of improving them. These 

models, which describe the various operational characteristics of the 

system taking into account its essential features, can be studied only with 

the help of probability theory. The present work is a study of some 

mathematical models representing the behaviour of a few complex 

systems. Introduction of redundancy and repair maintenance are two 

important methods of improving system reliability.

The manufacturing of tools and special equipment is part of human nature. 

At first experience, faults and accidents were the only schools for learning 

to make safer and more reliable equipment. Before structural design 
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became an engineering science, the reliability of a bridge was tested with a 

team of elephants. It is collapsed, a stronger bridge was built and tested 

again! Obviously, these methods could not continue and is human skills 

developed a wide variety of very reliable items and structures were 

designed and 

manufactured. One example is the undersea telephone cables built by Bell 

Telephone Laboratories.

Man’s earliest preoccupation with reliability was undoubtedly related to 

weaponry. Interest as a result of the terrible non-reliability of electronic 

weapons systems used during World War II. Increasingly complex 

systems, such as the first missiles, also emphasized the importance of 

successful operation of equipment in a specific environment during a 

certain time period. The V-1 missile, developed in Germany with high 

quality parts and careful attention, was catastrophic: the first 10 missiles 

either exploded on the launching pad, or landed short of their targets.

Technological developments lead to an increase in the number of 

complicated systems as well as an increase in the complexity of the 

systems themselves. With remarkable advancements made in electronics 

and communications, systems became more and more sophisticated. 

Because of their varied nature, these problems have attracted the attention 

of scientists from various disciplines especially the systems engineers, 

software engineers and the applied probabilists. An overall scientific 

discipline, called reliability theory, that deals with the methods and 

techniques to ensure the maximum effectiveness of systems (from known 

qualities of their component parts) has developed. ‘Reliability theory 

introduces quantitative indices of the quality of production’ (Gnedenko et 

al. (1969)) and these are carried through from the design and subsequent 

manufacturing process to the use and storage of technological devices. 
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Engineers, Scientists and Government leaders are all concerned with 

increasing the reliability of manufactured goods and operating systems. As 

‘Unreliability has consequences in cost, time wasted, the psychological 

effect of inconvenience, and in certain instances personal and national 

security’ (Lloyd & Lipow (1962)). In 1963 the first journal on reliability, 

IEEE-Transactions on Reliability saw the light.

Due to the very nature of the subject, the methods of Probability theory 

and Mathematical statistics (information theory, queuing theory, linear and 

nonlinear programming, mathematical logic, the methods of statistical 

simulation on electronic computers, demography, manufacturing, etc.), 

play an important role in the problem solving of reliability theory. Other 

areas include contemporary medicine, reliable software systems, 

geoastronomy, irregularities in neuronal activity, interactions of 

physiological growth, fluctuations in business investments, and many 

more. In human behaviour mathematical models based on probability 

theory and stochastic process are helpful in rendering realistic modelling 

for social mobility of individuals, industrial mobility of labour, 

educational advancements, diffusion of information and social networks. 

In the biological sciences stochastic models were first used by Watson and 

Galton (1874) in a study of extinction of families. Research on population 

genetics, branching process, birth and death process, recovery, relapse, 

cell survival after irradiation, the flow of particles through organs, etc, 

then followed. In business management, analytical models evolved for the 

purchasing behaviour of the individual consumer, credit risk and term 

structure. Income determination under uncertainty and more related 

subjects. Traffic flow theory is a well known field for stochastic models 

and studies have been developed for traffic of pedestrians, freeways, 

parking lots, intersections, etc. (Erasmus,2005)
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Problems encountered in the design of highly reliable technical systems 

have led to the development of high accuracy methods of reliability 

analysis. Two major problems can be identified, namely:

• Creating classes of probability-statistical models that can be used in 

the description of the reliability behaviour of the systems, and

• Developing mathematical models for the examination of the reliability 

characteristic of a class of systems.

Considering only redundant systems the classical examples are the models 

of Markov processes with a finite set of states (in particular birth and 

death processes) (Gnedenko et al. (1969)), Barlow (1984), Gertbakh 

(1989) and 

Kovalenko et al. (1997)), the renewal process method (Cox (1962)), the 

semi-Markov process method and its generalisations (Cinlar (1975a, b)), 

generalized semi-Markov process (GSMP) method (Rubenstein (1981)), 

special models for coherent systems (Aven (1966)) and systems in random 

and variable environment (Ozekici (1996)) and Finkelstein (1999a, b, c)), 

van Schoor (2005), Muller (2005).

Depending on the nature of the research, the applicable form of reliability 

theory can be introduced to each. A stochastic analysis is made based on 

some good probability characteristics. It is, however, not simply a case of 

changing terminology in standard probability theory (say, “random 

variable” changes to “lifetime”), but reliability distinguishes itself by 

providing answers and solutions to a series of new problems not solved in 

the “standard” probability theory framework. Gertbakh (1989) points out 

that reliability,

• of a system is based on the information regarding the reliability of 

the system’s components
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• gives a mathematical description of the ageing process with the 

introduction of several formal notations of ageing (failure rate, 

etc.)

• introduces well-developed techniques of renewal theory

• introduces redundancy to achieve optimal use of standby 

components (an excellent introduction to redundant systems is 

given in Gnedenko et al. (1969))

• includes the theory of optimal preventative maintenance (Beichelt 

and Fischer (1980))

• is a study of statistical inference (often from censored data)

Generally, the mathematical problems of lifetime studies of technical 

objects (reliability theory) and of biological entities (survival analysis) are 

similar, differing only in the notation. The term “lifetime” therefore does 

not apply to lifetimes in the strictest literal sense, but can be used in the 

figurative sense. The idea is that the statistical analysis done in this thesis 

should be true in any of the applicable disciplines, although the notation is 

mostly as for engineering 

(systems, components, units, etc). With minor modifications the discipline 

can be changed to biological, or financial, or any other disciplines.

1.2 FAILURE

‘A failure is the result of a joint action of many unpredictable, random 

processes going on inside the operating system as well as in the 

environment in which the system is operating.’ (Gertbakh (1989)). 

Functioning is therefore seriously impeded or completely stopped at a 

certain moment in time and all failures have a stochastic nature. In some 

cases the time of failure is easily observed. But if units deteriorate 

continuously, determination of the moment of failure is not an easy task. 

In this study we assume that failure of a unit can be obtained exactly. 
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Failure of a system is called a disappointment or a death and failure results 

in the system being in the down state. This can also be referred to as a 

breakdown (Finkelstein (1999a)).

Zacks (1992) points out that there are two types of data to consider, 

namely:

• data from continuous monitoring of a unit until failure is observed

• data from observations made at discrete time points, therefore failure 

counts

Villermeur (1992) gives an extensive list of possible failures and inter-

dependent failures. There are catastrophic failures, determined by a sharp 

change in the parameters and drift failures (the result of wear or fatique), 

arising as a result of gradual change in the values of the parameters. 

(Muller, 2005).

1.3 REDUNDANCY AND DIFFERENT TYPES OF REDUNDANT

 SYSTEMS

In a redundant system more units are built into it than is actually necessary 

for proper system performance. Redundancy can be applied in more than 

one way 

and a definite distinction can be made between parallel and standby

(sequential) redundancy. In parallel redundancy the redundant units form 

part of the system from the start, whereas in a standby system, the 
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redundant units do not form part of the system from the start (until they 

are needed).

1.3.1 Parallel systems

A parallel redundant system with n units is one in which all units operate 

simultaneously, although system operation requires at least one unit to be 

in operation. Hence a system failure only occurs when all the components

have failed.

Let k be a non-negative integer, such that k < n, counting the number of 

units in an n-unit system. It is customary to refer to such a system as k-

out-of-n system.

1.3.2  k-out-of-n: F system

If k-out-of-n system fails, when k units fail, it is called an F-system. The 

functioning of a minimum number of units ensures that the system is up 

(Sfakianakis and Papastavridis (1993)).

1.3.3 k-out-of-n: G-system

A G-system is operational if and only if at least k units of the system are 

operational. Recent work related to this topic can be seen in Zhang and 

Lorn (1998) and Liu (1998). Suppose a radar network has n radar control 

stations covering a certain area: the system can be operable if and only if 
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at least k of these stations are operable. In other words, to ensure 

functioning of the system it is essential that a minimum number of units, 

k, are functioning.

Lately attention moved to load-sharing k-out-of-n: G systems, where

• the serving units share the load

• the failure rate of a component is affected by the magnitude of the 

load it shares.

1.3.4   n-out-of-n: G system

A series that consists of n units and when the failure of any one unit 

causes the system to fail. Although this type of system is not redundant 

system, as all the units are in series and have to be operational, it can still 

be considered as a special case of a k-out-of-n system. There are many 

papers on the reliability of these systems. Scheuer (1988) studied 

reliability for shared-load k-out-of-n: G systems, where there is an 

increasing failure rate in survivors, assuming identically distributed 

components with constant failure rates. Shao and Lamberson (1991) 

considered the same scenario, but with imperfect switching. Then Huamin 

(1998) published a paper on the influence of work-load sharing in non-

identical, non-repairable components, each having an arbitrary failure time 

distribution. He assumed that the failure time distribution of the 

components can be represented by the accelerated failure time model, 

which is also a proportional hazards model when base-line reliability is 

Weibull. (Muller, 2005)

1.4   REPAIRABLE SYSTEM
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In order to increase the system reliability, failed units may be replaced by 

new ones. However when this proves to be very expensive, resort is made 

to repair the failed units. On failure, a unit is sent to a repair facility. If the 

repair facility is not free, failed units queue up for repair. The life time of a 

unit while online, while in standby and the repair time are all independent 

random variables. It is assumed that the distribution functions of these 

random variables are known and that they have probability density 

functions.

Barlow (1962) had considered some repairman problems and they have 

much in common with queuing problems. Rau (1964) had discussed the 

problem of finding the optimum value of m in an m out of n: G system for 

maximizing reliability.

Ascher (1968) has pointed out some inconsistencies in the modelling of 

repairable systems by renewal theory. Several authors, notably Barlow and 

Proschan (1965), Sandler (1963), Shooman (1968), Buzacott (1970) and 

Doyon and Berssenbrugge (1968) have used continuous time discrete state 

Markov renewal process model for describing the behaviour of a 

repairable system.

These conceptionally simple methods are not practically feasible for 

systems with large number of states. Gaver (1963), Gnedenko et al (1969), 

Osaki (1969, 70 a, b) and Srinivasan (1966) have employed the techniques 

of Semi-Markov processes for finding the reliability of a system with 

exceptional failures. By the use of Semi-Markov processes, Kumagi 

(1971) studied the effect of different failure distributions on the 

availability through numerical calculations. Branson and Shah (1971) 

studied repairable systems with arbitrary failure distributions using Semi-

Markov Processes. Srinivasan and Subramanian (1977), Venkatakrishnan 
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(1975), Ravichandran (1979), Natarajan (1980), Sarma (1982), Botha 

(2001), Muller (2005) have used 

regeneration point technique to analyse repairable systems with many, 

though not all, arbitrary distributions. More references in related topics 

can be found in the review papers by Subba Rao and Natarajan (1970), 

Osaki and Nakagawa (1976), Pierskalla and Voelker (1976) and Lie, 

Wang and Tillman (1977) and Kumar and Agarwal (1980), Gopalan 

(2004).

1.5 SYSTEMS WITH NON-INSTANTANEOUS SWITCHOVER

In the study of redundant systems it is generally assumed that when the 

unit operating online fails, the unit in standby is automatically switched 

online and the switchover from the standby state to online state is 

instantaneous. Srinivasan (1968), Osaki (1972), Khalil (1977), 

Subramanian and Ravichandran (1978 a), Gopalan and Marathe (1978, 

80), Singh et al (1979) and Kalpakam and Shahul Hameed (1980), 

Subramanian and Sarma (1982) have studied redundant systems 

incorporating non-negligible switchover times.

1.6 SYSTEMS WITH IMPEREFCT SWITCH

To transfer a unit from the standby state to the online state, a device 

known as ‘switching device’ is required. Generally we assume that the 

switching device is perfect in the sense that it does not fail. However; 

there are practical situations where the switching device can also fail. This 

has been pointed out by Gnedenko et al (1969). Such systems in which the 

switching device can fail are called systems with imperfect switch.
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Chow (1971), Osaki (1972), Nakagawa and Osaki (1975 a), Nakagawa 

(1977), Venkatakrishnan (1975), Prakash and Kumar (1970), Srinivasan 

and Subramanian (1980) and Subramanian and Natarajan (1980), 

Subramanian & Sarma (1984) have considered models where the 

switching device can also fail. 

1.7   INTERMITTENTLY USED SYSTEMS 

In almost all the models of redundant systems studied so far, it is assumed 

that the system under consideration is needed all the time. But in some 

practical 

situations continuous failure free performance may not be necessary. In 

such cases we have to take into consideration the fact that the system can 

be in down state during certain intervals without any real consequence. In 

this case the probability that the system is in the up state is not an 

important measure; what is really important is the probability that the 

system is available when it is needed. Gaver (1964) pointed out that is 

pessimistic to evaluate the performance of an intermittently used system 

solely on the basis of the distribution of the time to failure. Srinivasan 

(1966), Nakagawa et al (1976), Srinivasan and Bhaskar (1979 a, b, c), 

Kapur and Kapoor (1978, 80) extended Gaver’s results for two-unit 

systems. Detailed study of an n-unit intermittently used system is made. 

The statistical inference of some of these models has been studied recently 

by Yadavalli et al (2000, 2001).

1.8 MEASURES OF SYSTEM PERFORMANCE

The previous sections briefly describe the various types of redundant 

systems discussed in the literature. In this section some of the important 
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measures of system performance useful in different contexts are discussed 

(Barlow and Proschan (1965), Gnedenko et al (1969)).

(a) Reliability:

Reliability is the probability that the system will perform satisfactorily for 

a given period of time in its intended application. Let {ξ (t), t≥0} be the 

performance process of the system; then for a fixed t, ξ(t) is a binary 

random variable which takes the value 1 if the system operates 

satisfactorily at a given time t, and takes the value 0 otherwise. 

Then the reliability R (t) is given by

R (t) = Pr [system is up in (0, t]]

= Pr [ξ (u) = 1; for all u such that 0≤u≤t]

The expectation of the random variable representing the duration of time 

measured from the point the system starts operating till the instant it fails 

for the first time is called Mean time to System Failure (MTSF).It can be 

obtained from R (t) from the relation 

MTSF = ∫
∞

0

)( duuR

(b) Pointwise Availability:

This is defined as the ‘probability that the system is able to operate within 

the tolerances at a given instant of time’. In symbols:

Pointwise availability A (t) = Pr [ξ (t) = 1]
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(c) Asymptotic or Steady-State Availability:

 Steady-state availability ( )tAA
t ∞→∞ = lim .

It can be shown (Barlow and Proschan (1975)) that this is equal to the 

expected fraction per unit time in the long run that the system operates 

satisfactorily.

(d) Interval Reliability:

The interval reliability R (t, x) is the probability that the system is up in 

the interval[ ]xtt +, .

Hence:

 R (t, x) = Pr [ξ (u) = 1, for all u such that t ≤ u ≤ t + x]

We observe that the reliability R(x) and the pointwise availability A (t)

can be                                   obtained from the interval reliability R (t, x) 

by putting t = 0 and x = 0 respectively.

(e) Limiting interval reliability:

This is defined as the limit of R (t, x) as t→∞, and hence is denoted  

by )(xR∞ , which is the ordinary reliability function.

(f) Mean number of events in (0, t):
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Let N(x, t) denote the number of particular type of event (like break down 

etc.) in ( ]txx +, .Then the mean number of events in (0, t) is given by 

 E [N (0, t)] = duuh
t

)(
0

1∫

where )(1 th is the first order product density of the events (product 

densities are defined in a subsequent section in this chapter) .The 

stationary rate of occurrence of those events is given by:

 E [N] = ( )[ ]
t

tNE
t

,0lim
∞→

1.9 TECHNIQUES USED IN THE ANALYSIS OF 

REDUNDANT SYSTEMS.

This section is a compilation of the techniques used in the analysis 

of redundant repairable systems.

1.9.1 Renewal Theory

Renewal theory forms an important in the study of stochastic 

processes and applied probability models, and is extensively used 

by many to study specific reliability problems. Feller (1968) made 

significant contributions to renewal theory giving the proper lead. 
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Smith (1958) gave an extensive review and highlighted the 

applications of renewal theory to a variety of problems. A lucid 

account of renewal theory is given by Cox (1962).

Definition 1.1

A renewal process is a sequence of independent, non-negative and 

identically distributed random variables { iY , i = 1, 2,...} which are 

not all zero with probability one.

We assume that these random variables are defined on the same 

probability space and have finite mean µ.A renewal process is 

completely determined by means of f (.), the pdf of Xi. Associated 

with a renewal process is a r.v N (t) which represents the number 

of renewals in the time interval (0, t]; N (t) is also known as the 

renewal counting process (Parzen, 1962, Beichelt and Fatti (2002).

If policy 0 is the practical background of a renewal process, then 

iY denotes the time between the ( ) thi −−1 and the thi − renewal. 

If at time 0=t policy 0 has already been in effect for a while, then 

1Y is a residual lifetime in the sense of section 1.2.3. However, the 

age of the 

system working at time 0=t need not to be known. But if at time 

0=t a new system started working, then all the random variables 

,..., 21 YY are identically distributed.

Let the random variables ,..., 32 YY be identically distributed as 

Y with distribution function ( ) ( )tYPtF ≤= , whereas 1Y has 

distribution function ( ) ( )tYPtF ≤= 11 .

Definition 1.2 (see Beichelt and Fatti, 2002)
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A renewal process is called delayed if ( )tF1 ≢ ( )tF and ordinary if  
( )tF1 ( )tF≡ .

Since, by assumption, the renewal occur in negligible time, nT

defined by

∑
=

=
n

i
in YT

1

; n = 1,2,…;

is the time point at which the nth failure ( renewal ) takes place. 

Hence, nT is called a renewal time. The time intervals between two 

neighbouring renewals are called renewal cycles.

Let the renewal counting process ( ){ }0, ≥ttN be defined by

( ) =tN
( )





<
≤

10
;max

Ttfor
tTn n

( )tN is the random number of renewals occurring in ( ]t,0 .Since 

( ) ntN ≥ if and only if tTn ≤ ,

( ) ( ) ( )( ),ntNPtTPtF nTn
≥=≤=

where, because of the independence of the iY , ( )tF
nT is the 

convolution of 1F with the ( ) thn −−1 convolution power of F .

( ) 1FtF
nT =  ( )( )tF n 1− , ( ) ( )tF 0 ,...2,1;0,1 =≥≡ nt
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If the densities ( ) ( )tFtf 11 ′= and ( ) ( )tFtf ′= exist, then the density of 

nT is

( ) 1ftf
nT =  ( ) ( )tf n 1− , ( ) ( ) 10 ≡tf , ,...2,1;0 =≥ nt

1Y 2Y 3Y

0 1T 2T 3T

Figure: illustration of a renewal process

Definition 1.3

The expected value of N (t) is called the renewal function and is 

denoted by ( )tH . The derivative of ( )tH , if it exists, is denoted by 

( )th and is called the renewal density. The quantity ( )dtth is the 

probability that a renewal occurs in ( )dttt +, .

The renewal density satisfies the following famous integral equation, 

known as the functional equation of renewal theory.

( ) ( ) ( ) ( )duuthuftfth
t

−+= ∫
0

The solution of the above equation is:
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( ) ( )( )tfth
n

n∑
∞

=

=
1

where ( )( )tf n is the n-fold convolution of f(t).

We now briefly indicate how renewal theory has been used in the 

solution of reliability problems. Srinivasan et al (1971) used renewal 

theory to obtain some operating characteristics of a one unit system. 

The integral equation of renewal theory was used by Gnedenko et al 

(1969) to obtain MTSF of a two-unit standby system. Osaki (1970b) 

applied the integral equation to study several redundant systems. 

Buzacott (1971) used renewal theoretic arguments to study some 

priority redundant systems.

1.9.2 SEMI-MARKOV AND MARKOV RENEWAL PROCESS

Now we consider a stochastic process which makes transitions from 

one state to another in accordance with a Markov chain but the 

amount of time spent in each state before a transition is probabilistic. 

Denoting the state space by the set of non-negative integers {0,1, 

2….}. Let the transition probabilities be given by ijp , i,j = 

0,1,2,…..Let )(tFij , t> 0 be 

the conditional distribution function of the sojourn time in state i, 

given that the next transition will be into state j. 

Let

( ) )(tFptQ ijijij = , i, j = 0,1,2,…..
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Then )(tQij denotes the probability that the process makes a transition 

into state j in an amount of time less than or equal to t given that it 

just entered state i at t = 0.The functions )(tQij satisfy the following 

conditions:

 ,0)0( =ijQ  ijij pQ =∞)( ;

 0)( ≥tQij ,                                  i,j = 0,1,2,…

  1)(
0

=∑
∞

=

tQ
j

ij

Let 0J denote the initial state of the process and nJ (n = 1, 2…) the state 

of the process after the n-th transition has occurred. Then the process 

{ nJ , n = 0, 1, 2…} is a Markov Chain with transition 

probabilities ijP .This is called the embedded Markov Chain. Let 

)(tN i denote the number of transitions into state i in (0, t] and define

  N (t) = )(
0

tN
i

i∑
∞

=

Now define a stochastic process {Z (t), t≥0} where Z (t) = i, denotes that 

the process is in state i at time t. Then it is clear that Z (t) = )(tJ n

Definition 1.4

The stochastic process {Z (t), t ≥ 0} is called a Semi-Markov process 

(SMP).
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Definition 1.5

The vector stochastic process { ),(),( 21 tNtN … ,t≥0} is called a Markov 

Renewal Process (MRP).

Thus the SMP records the state of the process at each time point, while the 

MRP is a counting process which keeps track of the number of visits to 

each state. Denote by iX the random variable denoting the time interval 

between two successive visits to state i of the process  { Z (t ), t ≥ 0 

}.Then we observe that { ix } is a renewal process for i = 0,1,2,…. 

Detailed treatments of SMP and MRP can be found in Pyke (1961 a, b), 

Cinlar (1975 a) and Ross (1970).

The survey by of Cinlar (1975 b) demonstrates the usefulness of the theory 

of MRP and SMP in applications. Barlow et al (1965) used these 

processes to determine the MTSF of a two unit system. Srinivasan (1968), 

Cinlar (1975 b), Osaki (1970 a, 1972). Arora (1976 a, b), Nakagawa and 

Osaki (1974, 1976), and Nakagawa (1974) have used the theory of SMP to 

discuss some reliability problems.

1.9.3 STOCHASTIC POINT PROCESSES

Stochastic point processes are more general than those considered in the 

earlier sections. Since point processes have been studied by many with 

varying backgrounds, there have been several definitions of the point 

processes each appearing quite natural from the view point of the 

particular problem under study. [See for example Bartlett (1966), Bhaba 

(1950), Harris (1963) and Khinchine (1955)]. A comprehensive definition 

of point process is due to Moyal (1962) who deals with such processes in a 

general space which is not necessarily Euclidean.
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Roughly speaking a stochastic point process can be defined as 

continuous time parameter discrete state space stochastic process.

1.9.4 PRODUCT DENSITIES

One of the ways of characterizing a general stochastic point process is  

through product densities (Ramakrishnan (1950, 1958), Srinivasan 

(1974)).These densities are analogous of the renewal density in the case of 

non-renewal processes. 

Let N (x, t) denote the random variable representing the number of events 

in the interval (t, t + x ), xd N(x , t ) the events in the interval ( t + x, t + x 

+dx) and p(n , x , t) = Pr[N (x , t ) = n].

The product density of order n is defined as:

  nh ( nxxx ,...,2,1 )  = lim
0.,.,., 21 →∆∆∆ n

( )

n

n

i
ixNE

∆∆∆









∆∏

=

...21

1
1 ,

 ....21 nxxx ≠≠

A process is said to be regular if the probability of occurrence of more 

than one event in an interval of length is o (∆). For such process we have:

( )[ ]
n

n

ii
nn xxxnixNxxxh ≠≠≠

∆∆∆
=≥∆

= ...,
...

,...,2,1,1,Pr
lim),...,,( 21

21
21
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These densities represent the probability of an event in each of the 

intervals ( 11,1 ∆+xx ), ( 222 , ∆+xx ),…, ( )nnn xx ∆+, .

Even though the functions nh (.,.,.,..) are called densities, it is important to 

note that their integration will not give probabilities but will yield the 

factorial

moments. The ordinary moments can be obtained by relaxing the 

condition that all ix are distinct.

1.9.5 REGENERATIVE STOCHASTIC PROCESSES

The idea of regeneration point was first introduced by Bellman and Harris 

(1948) while studying population point processes. Feller (1949), in the 

theory of recurrent events, dealt with a special case of regeneration points. 

Later on, Smith (1955) generalized Feller’s results and dealt with more 

general stochastic point processes possessing such regeneration points, 

familiarity known as regenerative processes. A formal theory of such 

processes has been developed by Kingman (1964).

A regenerative event R of a stochastic process {X (t)} is an event that is 

characterized by the property that if it is known that R happens at 1tt = , 

then the knowledge of the history of the process prior to 1t loses its 

predictive value. In some special cases, the event R is the only 

characteristic, so that the process regenerates itself with each occurrence 

of R.  

In more general cases, in addition to the occurrence of R, knowledge of 

X (t) is necessary for the prediction of the process. The renewal process 

can be thought of as a general point process in which each point at which 

the event R occurs is a regeneration point. The occurrence of an event at 
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1tt = uniquely determines the distribution of events from any collection of 

segments of points 1tt ≥ .If we further specialize to the case when the 

intervals between successive events are exponentially distributed, we 

notice that any point (not necessarily a point where an event occurs) on the 

time axis is a regeneration point. Gnedenko (1964), Srinivasan and 

Gopalan (1973 a, b), Birolini (1974, 75), Srinivasan and Subramanian 

(1977), Hines (1987), Hargreaves (2002), 

Botha (2001), Muller (2005) have used such regenerative events to study 

some reliability problems.

1.9.6 CONCLUDING REMARKS AND SCOPE OF 

WORK

Reliability theory is a very important branch of systems engineering and 

operations and deals with general method of evaluating the various 

measures of performance of a system that may be subject to gradual 

deterioration. Several models of redundant systems have been studied in 

the literature and the following are some of the typical assumptions made 

in analyzing such systems:

(i) the repair times are assumed to be exponential

(ii) the   estimated study of the system measures has not been 

made.

(iii) the system is available continuously

(iv) Environmental factors not affecting the system

(v) The failures take place  in one mode

(vi) The switching device is perfect

(vii) System reliability evaluated for given chance constraints
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(viii) The switchover time required to transfer a unit from the 

standby state to online stage is negligible.

(ix) the failures and repairs are assumed to be independent.

However, we frequently come across systems in which one or more of 

these assumptions have to be dropped and hence there is an increasing 

need for studying models in which at least some of these assumptions 

could be relaxed. That is the motivation for the detailed study of the 

models presented in this thesis. This thesis is a study of some redundant 

repairable systems with ‘rest period’ for the operator, non-instantaneous 

switchover, imperfect switch, intermittent use and optimization study.
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CHAPTER 2

A STUDY OF A TWO UNIT PARALLEL SYSTEM WITH 

ERLANGIAN REPAIR TIME

A modified version of this chapter has been published in Bul.Al.Math.soc, vol.19, 2005
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2.1 INTRODUCTION

In order to improve the reliability, availability, quality and safety 

operational systems the well known tools to be used are redundancy, 

repair and preventive maintenance, etc. (Birollini et al, (1994)). Most of 

the past studies of reliability systems are confined to obtaining expressions 

for various measures of system performance and do not consider the 

associated inference problems. Chandrasekhar and Natarajan (1994), 

Yadavalli et al (2001), (2002) have considered a two unit parallel system 

and obtained exact confidence limits for the steady state availability of the 

system, when the failure rate of an operative unit is constant and the repair 

time of the failed unit is a two stage Erlang distribution. The Bayesian 

methods for these problems were subsequently studied by Yadavalli et al 

(2003).

In general, the failure- free time and repair time are independent random 

variables. Thus there is need to study a model by relaxing this imposed 

condition. An attempt is made in this paper to study a two-unit parallel 

system, wherein the failure rate of a unit is constant and the repair time 

distribution is a two Erlangian distribution under the assumption that an 

operative unit has a zero failure rate if a failed unit is in the second stage 

of repair. Apart from expressions for the system reliability, MTBF, 

availability and steady state availability, we obtain a CAN estimator and 

an asymptotic confidence interval for the steady state availability of the 

system and the MLE of the system reliability.
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2.2 MODEL AND ASSUMPTIONS

The system under consideration is a two unit parallel system with a single 

repair facility, subjected to the following assumptions:

(i) The units are similar and statistically independent. Each unit has a 

constant failure rate λ.

(ii) There is only one repair facility and the repair time distribution is a 

two stage Erlangian distribution with probability density function 

(p.d.f) given by

( ) ( ) 0,2 22 yeyg yµµ −= < y < ∞ , µ > 0 (2.1)

(iii) Each unit is new after repair.

(iv) Switch is perfect and the switchover is instantaneous.

(v) An operative unit has a zero failure rate if a failed unit is in the 

second stage of repair.

2.3 ANALYSIS OF THE SYSTEM

To analyze the behaviour of the system, we note that at any time t, the 
system may be in any one of the mutually exclusive and exhaustive states

So: Both units are operating

S1: One unit is operating and the other is in the first stage of repair.
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.

Since an Erlang distribution is the distribution of the sum of two 

independent and identically distributed exponential random variables, the 

stochastic 

process describing the behaviour of the system is a Markov process. Let 

( )tpi , i = 0, 1, 2, 3, 4 be the probability that the system is in state at S i

time t. Clearly, the infinitesimal generator of the Markov process is given

by: 

Q  =  

4

3

2

1

0

S
S
S
S
S

( )























−
−

−
+−

−

µµ
µµ

µµ
λµµλ

λλ

20020
22000
00202
0220
00022

(2.2)

It should be noted that states S 0 , S 1 and S 2 are up-states, whereas S 3 and 

S 4 are down states. We assume that initially, both the units are operative.

2.3.1. Reliability

The system reliability R (t) is the probability of failure free operation of the 

system in (0, t]. To derive an expression for the reliability of the system, we 

restrict the transitions of the Markov process to the system, we restrict the 

transitions of the Markov process to the system up-states namely 10 , SS and 

S2: One unit is operating and the other is in the second stage of repair.

S3: One unit is in the first stage  of repair and the other is waiting for repair

S4: One unit is in the second stage of repair and the other is waiting for repair.
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2S .Using the infinitesimal generator given in (2.2) pertaining to these up-

states and standard probabilities arguments, we obtain the following system 

of differential-difference equations

( ) ( ) ( )tptptp o 20 22 µλ +−=′

( ) ( ) ( ) ( )tptptp 101 22 µλλ +−=′

( ) ( ) ( )tptptp 212 22 µµ −=′ .

With the condition ( ) 100 =p and ( ) 00 =ip for  2,1=i . Thus, 

( ) 1
2

0

=∑
=

tp
i

i .

Let L i (s) be the Laplace transform of p i (t), i = 0, 1, 2. Taking Laplace 

transforms for ( )tpi , we get

( ) ( ) ( ) 122 20 =−+ ∗∗ spsps µλ

( ) ( ) ( ) 022 01 =−++ ∗∗ spsps λµλ

 ( ) ( ) ( ) 022 12 =−+ ∗∗ spsps µµ

( ) ( )( )[ ]
( )

t

i

j
ji

ii ietR α

αα

λµµλαµα
∑

∏=

=

−

++++
=

3

1
3

1

4232 (2.3)

where α1, α2, and α3 are the roots of the cubic equation:
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( ) ( ) 04410243 22223 =++++++ µλµλµλµλ sss

2.3.2 Mean Time Before Failure (MTBF)

The system mean time before failure is given by

( ) ( ) ( ) 2210 2
25000

λ
µλ +

=++= LLLMTBF

2.3.3 System Availability

The system availability A (t) is the probability that the system operates 

(within the tolerances) at a given instant of time t.

Using the infinitesimal generator given in (2.2), we obtain the following 

system of differential-difference equations:

( ) ( ) ( )tptptp 200 22 µλ +−=′ (2.4)

( ) ( ) ( ) ( ) ( )tptptptp 4101 222 µµλλ ++−=′ (2.5)

( ) ( ) ( )tptptp 212 22 µµ −=′ (2.6)

( ) ( ) ( )tptptp 313 2µλ −=′ (2.7)

( ) ( ) ( )tptptp 434 22 µµ −=′ (2.8)

with the condition ( ) 10 =op and 
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( ) 1
4

0
=∑

=

tp
i

i (2.9)

Taking the Laplace transforms for the equations (2.4) – (2.8), we get

( ) ( ) ( ) 122 20 =−+ ∗∗ spsps µλ (2.10)

( ) ( ) ( ) ( ) 0222 401 =−−++ ∗∗∗ spspsps µλµλ (2.11)

( ) ( ) ( ) 022 12 =−+ ∗∗ spsps µµ (2.12)

( ) ( ) ( ) 02 13 =−+ ∗∗ spsps λµ (2.13)

( ) ( ) ( ) 022 34 =−+ ∗∗ spsps µµ (2.14)

solving the equations (2.10) – (2.14) using the relation (2.9), we get 

( )spi
∗ , 4.,..,2,1,0=i .

Inverting ( )spi
∗ , we get

( )
( )

( )

( ) ( )
t

i

j
i

jiii

i ietp α

ααλαα

µα
λµ

µλ
µ −

=

≈
=

∑
∏ −+

+
+

+
=

3

1
3

1
1

2
2

2

0

2

28 (2.15)

( )
( )

( )

( )
t

i

j
i

jii

i ietp α

ααα

µα
λ

µλ
λµ −

=

≈
=

∑
∏ −

+
+

+
=

3

1
3

1
1

2

21
2

2 (2.16)
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( )
( )

( )

( )
t

j
i

i

i

i i

ie
j

tp α

αα

µα
α

λµ
µλ

λµ −

≈
=

= ∏
∑

−

+
+

+
= 3

1
1

3

1
22

214 (2.17)

( )
( )

( )
( )

t

j
i

ji

i

i i

ietp α

αα

µα
α

λ
µλ

λ −

≈
=

= ∏
∑

−

+
+

+
= 3

1
1

3

1

2
2

2

3
212

2
(2.18)

( )
( ) ( )

tt

i

j
i

jii

etp α

ααα
µλ

µλ
λ −

=

≈
=

∑
∏ −

+
+

=
3

1
3

1
1

2
2

2

4
14

2
(2.19)

where α1, α2 and α3 are the roots of the cubic equation.

( ) ( ) ( ) 0868223 22223 =+++++++ µλµµλµλµλ sss (2.20)

Since S0, S1 and S2 are the up-states, the availability of the system is given 

by:

( ) ( ) ( ) ( )tptptptA 210 ++= (2.21)
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2.3.4 Steady State Availability

The system steady state availability is given by:
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( ) ( )
( )2

2lim
µλ

µλµ
+

+
==

∞→∞ tAA
t

(2.22)

which is in  agreement with Mohammed Abu-Salih et al. (1990).

In the following sections, we obtain a CAN estimator, a 100(1- α) % 

asymptotic confidence interval for steady state availability of the system 

and the MLE of the system reliability.

2.4 CONFIDENCE INTERVAL FOR STEADY-STATE  

 AVAILABILITY OF THE SYSTEM

Let X1, X2,…,Xn be a random sample of failure free-times of a unit with 

probability density function (p.d.f) given by

( ) 0;xexf λλ −= < x < ∞ , λ > 0 (2.23)

Let Y1, Y2, . . ., Yn be a random sample of the repair times with the p.d.f 

given by ( ) yeyg µµ −= .It is clear that ( )
λ
1

=XE and
µ
1

2
=







 YE , where X

and Y are respectively the sample means of the failure-free times and the

repair times of s unit. It can be shown that  X and 
2
Y are respectively 

the maximum likehood estimators (MLE’s) of  
λ
1 and

µ
1 .
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Let  
λ

θ 1
1 = and

µ
θ

1
2 = . Clearly, the steady state availability, given by 

(2.16), reduces to

( )
( )2

21

211 2
θθ

θθθ
+

+
=∞A

Hence, the MLE of  ∞A is given by 

( )
( )2
2

4

YX

YXXA
+

+
=∞ (2.24)

It should be noted that ∞A is real valued differential function in X and Y. 

Now consider the following application of the multiplicative central limit 

theorem (Rao, 1974).

Suppose that '
1T , '

2T , '
3T , . . . are independent and identically distributed k-

dimensional random variables such that:

( )knnnn TTTT .,..,, 21=′

has first and second order moments

( ) µ=nTE and ( ) ∑=nTD .

Define the sequence of random variables ( )knnnn TTTT .,..,, 21= , 

2,1=n where:
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njandkiT
n

T
n

j
ijin .,...,2,1.,..,2,1,1

1

=== ∑
=

Then, ( ) ( )Σ→− ,0NTn d
n µ as n → ∞. Hence, the applying the 

Multivariate Central Limit theorem, it follows that:

( ) ( ) ∞→Σ→











−








nasNYXn d ,0,

2
, 21 θθ

where the dispersion matrix ( )( )
22xij∑= σ is given by 

22

2
22

1 2
,

x

diag∑ 







=

θ
θ

Again from Rao (1974), we have:

( ) ( )( ) ,,0ˆ 2 ∞→→− ∞∞ nasNAAn d θσ

where ( )21 , θθθ = and

( )
( )∑

=

∞

+
=








∂
∂

=
2

1
6

21

4
2

2
1

2
2 6

i
ii

i

A
θθ
θθ

σ
θ

θσ

Consequently ∞Â is a CAN estimator of A ∞ :

Let ( )θσ ˆ2 be the estimator of ( )θσ 2 obtained by replacing θ by a 

consistent estimator θ̂ namely:
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=

2
,ˆ YXθ . 

Moreover, let ( )θσθ ˆˆ 22 = . Since ( )θσ 2 is a continuous function of  θ , 

2
2σ̂ is a consistent estimator of ( )θσ 2 , i.e. 2

2σ̂ ( )θσ 2→p as n→∞.

By Slutskey’s theorem

( ) ( )1,0
ˆ

ˆ
NAAn d→

− ∞∞

σ

That is, 

P
( ) ( ),1

ˆ

ˆ

22
α

σ
αα −=














<

−
<− ∞∞ k

AAn
k

where k
2
α is obtainable from normal tables. Hence, a 100 (1 – α) % 

asymptotic confidence interval for A ∞ is given by  
n

kA σ
α .ˆ
2

±∞

2.5 MLE OF SYSTEM RELIABILITY

Since X and 
2
Y are the MLE’s of 

λ
1 and 

µ
1 respectively, we obtain by 

applying a method given in Zacks (1972), the MLE of system reliability as 
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( ) ( )[ ]
( )

∑
∏=

=
−

+++
=

3

1

ˆ
3

1

2
,

ˆˆ

834ˆˆ
i

i

j
i

i te
jYX

YYXYtR α

αα

α

where 32,1 ˆˆˆ ααα and are the roots of the cubic equation

( ) ( ) ( ) .082201638 22232
=++++++ YsYYXXsYXYXsYX

2.6 NUMERICAL ILLUSTRATION

For ( )
( )2

2
µλ

µλµ
+

+
=∞A

When λ = 0.01, 0.015, 0.02, 0.025 and µ = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 

0.35.
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µ

Figure 2.1

The λ and µ values are chosen from an exponential data available (Yadavalli et 

al, 2005)

From Figure 2.1, it is observed that as repair time increases, the steady state 

availability decreases.

Table 2.1 : CONFIDENCE INTERVALS FOR THE MODEL

For 

=λ
=λ
=λ
=λ
=λ
=λ
=λ

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMaallaaddaa,,  AA    ((22000066))  



15

λ=0.10

n µ 95% CI 99% CI 
100 0.01 (0.8101,0.9991) (0.7811,0.9999)

0.015 (0.7006,0.8192) (0.6933,0.8399)
0.02 (0.5218,0.6368) (0.6066,0.6566)

0.025 (0.5006,0.6019) (0.4888,0.5771)
200 0.01 (0.8332,0.9673) (0.8206,0,9709)

0.015 (0.7161,0.8006) (0.7988,0.8113)
0.02 (0.6314,0.7091) (0.6111,0.7108)

0.025 (0.5822,0.6641) (0.5316,0.5669)
2000 0.01 (0.8608,0.8992) (0.8541,0.9053)

0.015 0.6879,0.7227) (0.6790,0.7306)
0.02 0.6041,0.6330) (0.5991,0.6376)

0.025 (0.5911,0.6130) (0.5444,0.5619)

Table 2.1 presents the 95% and 99% confidence intervals for different 

simulated samples. It can be observed that, as n increases, the steady state 

availability decreases.

CONCLUSION:

A two-unit system with Erlangian repair time is studied in this chapter. The 

system of simultaneously differential equations is developed to obtain the 

availabilities analytically. The asymptotic confidence limits for steady state 

availability are studied at the end of this chapter. A numerical example 

illustrated the results. The results show that, as n increases ∞A decreases.
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CHAPTER 3

AN n UNIT SYSTEM OPERATING IN 

A RANDOM ENVIRONMENT

A modified version of this chapter has been published in OPSEARCH, Vol.42, No.3, 

169-176, 2005.
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3.1 INTRODUCTION

In the probabilistic analysis of multi-unit redundant systems it is 

usually assumed that a constant number of units perform the 

system operation at all times. However, we have situations in 

which this assumption is not true. For example, to increase the 

thermal power plant availability, an additional induced draft fan 

(ID fan) may be installed in 200 MW sets, though two ID fans are 

normally used to handle flue gas and fly ash during full load 

operation of the plant, i.e., the load on a system may change 

randomly (see Das and Acharya, 1988). Again, in a 

telecommunication network, the success of sending a message 

from an origin to a destination depends upon the existence of at 

least one path connecting the origin to a destination depends upon 

the existence of at least one path connecting the origin with the 

destination with all units determining the path in the operable state. 

Therefore, the number of units required for sending the message 

successfully at any time is determined by the availability of units 

in the intermediate stations and the locations of the origin and 

destination. Hence the number of units required for the satisfactory 

performance of the system may depend on the environment in 

which the system is functioning and the environment is also 

changing with time.

Sharafali et al (1988) have considered a two-unit n system with 

similar assumption and obtained expressions for the mean time to 
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the first disappointment and expected number of disappointments 

in an interval. (see Limnios and Cocozza (1992)).

An attempt is made in this chapter to study a system consisting of 

n units with the assumption that the number of units required for 

the satisfactory performance of the system at any time t is 

prescribed by 

the state of a randomly changing environment described by a 

Markov process {Y (t): t ≥ 0}. The model is discussed in detail in 

the following section.

3.2 THE MODEL AND ASSUMPTIONS

The system under consideration is an n unit system with a single 

repair facility. Precisely; the assumptions of the model are as 

follows:

(i) There are n identical units in the system, which are 

statistically independent. The failure rate of an operable 

unit during the need period is a constant.

(ii) The environment determining the number of units required 

for the satisfactory performance of the system at any time t 

is a Markov process {Y(t): t ≥ 0} with the state space 

{0,1,2,…,n}.It may be noted that the environment process 

is independent of the system behaviour.

(iii) The infinitesimal generator of the environment process { Y 

( t ) : t ≥ 0 } is given by:
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(iv) If any time t, Y (t ) =  i, then  i ( i = 0,1,….,n) of the n 

identical units are online (if operable) and the remaining 

operable units will be kept as warm standbys. These i units 

which online behave like a series system.

(v) Whenever an online unit fails a standby unit if operable is 

switched online instantaneously.

(vi) A unit in standby can also fail and its failure rate is a 

constant.

(vii) The failed units are taken up for repair in FIFO order.

However, a repair for a failed unit cannot commence, when 

the environment process is in state zero. Repair is perfect 

and the repair rate is a constant ‘μ’.

(viii) Whenever the number of units in the operable state is less 

than the number of units required at that instant of time for 

the satisfactory performance of the system, the system 

enters the down state.

(ix) When the system is in the down state, an operable unit 

cannot fail.
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3.3 THE NOTATION

n number of units in the system

a constant failure rate of an operable unit 

during the need period

b constant failure rate of a standby unit ( b < a 

)

μ constant repair rate of a failed unit

{Y (t): t ≥ 0} state of the environment process that 

determines the number of units required for 

the satisfactory performance of the system

Matrix A the infinitesimal generator of {Y (t): t ≥ 0}

( )tX number of failed units in the system at time t

E and Q respectively the state space and infinitesimal 

generator of the Markov Process 

{(X (t), Y (t)): t ≥ 0}

3.4 STATE OF THE SYSTEM

Let X (t) represent the number of failed units at time t and Y(t), the 

number of units required for the satisfactory performance of the 
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system at time t. Clearly {(X (t), Y (t)): t≥0} is a Markov Process 

on the state space:

E = nEEEE UUUU ...210

where

iE = {(i , 0),( i , 1),…,( i , n)}, i = 0, 1, 2,. . ., n.

Let ( )je∆ be diagonal matrix of order (n + 1) with the first leading

(j + 1) diagonal elements being the integers 0, 1, 2,…, j and the 

remaining elements zero. That is:

( ) =∆ je diag (0, 1, 2, j -1, j, … , 0, 0, 0), j = 1,2,…,n

Also, let ( )
i

f∆ be a diagonal matrix of order (n + 1) with the first 

leading ( n-i+1) diagonal elements being the integers 

(n – i) , (n – i – 1), (n – i – 2), . . ., 2, 1, 0 and the remaining 

elements

( n-i). that is:

( )
i

f∆ = diag (n – i, n – i – 1, n – i – 2, . . ., 2, 1, 0)

Then, the infinitesimal generator of this process is easily seen to 

be:

 njo EEEEE ......21
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  (3.1)  

where the partitioned matrices ijQ~ are given by:

00
~Q = A – a ( )ne∆ –b ∆ ( )

0
f , 

nnQ~ = A – μI

iiQ ,
~ = μI  for i = 1, 2, . . ., n,

iiQ ,
~ = A – μI – a ( )ine −∆ – b ( ),

i
f∆

( ) ( )
iinii fbeaQ ∆+∆= −+1,

~

and

jiQ ,
~ = 0, for other values of i and j.

It may be noted that Q is a square matrix of order (n + 1)2 × ( n + 

1)2. Let
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( ) ( ) ( ){ } njijtYitXtp ij .,..,2,1,0,;;Pr ====

represent the probability that the system is in state (i, j) at time t. 

Also let:

.

 

To derive an expression for ( )tp , we note that ( )tp satisfies the 

Kolmogorov equation which leads to:

( )
( ).Qtp

dt
tpd

=

Solving this differential equation, we obtain:

( ) ( ) Qt.e0ptp = (3.2)

where

( )0p is the vector of initial state probabilities.

3.5 STATIONARY DISTRIBUTION

Let ( )nππππ ...,,,, 210=π where ( )knkk πππ ...,,1,0=kπ for

k = 0, 1, 2, n is the stationary distribution corresponding to the 

Markov process {(X (t), Y (t)): t ≥ 0}. This is the solution of the 

equation:

( ) ( ) ( ) ( )( )tptptp nm,, 0100=tp
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0Qπ = (3.3)

with

1
0

=∑
=

e
n

k
kπ (3.4)

where

( ) .1,1,1 T=e

Equation (3.3) gives:

( ) ( )( ) 0100 =+∆−∆− πµπ fbeaA n  

(3.5)

( ) ( )( ) ( ) ( )( ) 0211100 =+∆−∆−−+∆+∆ − πµµππ fbeaIAfbea nn  

(3.6)

( ) ( )( ) ( ) ( )( ) 03222111 =+∆−∆−−+∆+∆ −− πµµππ fbeaIAfbea nn

(3.7)

…

 

( ) ( )( ) ( ) ( )( ) 0
111222 =+∆−∆−−+∆+∆

−−−− nnnnn fbeaIAfbea πµµππ (3.8)

( ) ( )( ) ( ) 0
111 =−+∆+∆

−− IAfbea nnn µππ  

(3.9)
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Addition of all these equations in (3.5) – (3.9) yields 

( nπππ +++ ...10 ) A = 0. These, together with equation (3.4) 

implies that ( nπππ +++ ...10 ) must be the invariant measure of 

the Markov process {( X(t),Y(t)):t ≥ 0} with the generator A. 

Assume that a possess the invariant measure and let it be η. Hence:

ηπππ =+++ n...10 (3.10)

We can express nπππ .,..,, 10 in terms of 0π by solving 

(3.5) – (3.9). Using equation (3.10), we can get explicit expression 

for ( nπππ .,..,, 10 ).

3.6 TIME TO THE FIRST DISAPPOINTMENT

The system is said to be in a state of disappointment if the number 

of operable units at any time is less than the number of units 

required for the satisfactory performance of the system at that 

instant of time. i.e., 

n – X (t) < Y (t). In other words, X (t) + Y (t) > n.

Clearly, the set of states of disappointment is:

D ={(1,n), (2,n-1), (2,n), (3,n-2), (3,n-1), (3,n), (n,1), (n,2), (n,n-1), (n,n)}

Let U be the set of upstates, which is the complement of D. By 

suitably altering the rows and coloumns, we can partition the 

matrix Q as:
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 DU

Q = 








DU

DU

QB
BQ

D
U

(3.11)

Let TD represent the time to the first disappointment. To obtain the 

distribution of the random variable TD, we lump together the states 

of disappointment of the Markov Process {(X (t), Y (t)): t ≥ 0} into 

a single absorbing state D. We obtain the absorbing Markov 

Process with generator:

Q ′  =  







00

eBQ DU (3.12)

Let us assume that the process starts in a state in U and so let 

( )0~
UP be the row vector of the initial state probabilities 

corresponding to this situation. Now the time to the first 

disappointment is the same as the time to absorption in the Markov 

process with the generator Q′ given in (3.12). If GD(t) is the 

distribution function of the random variables TD, then:

GD(t) = 1- ( ) TQ
U

UeP 0~ e ,t>0 (3.13)

It may be noted that the distribution function GD(t) given in (3.13) 

corresponds to the distribution function of a continuous PH-

distribution with representation ( ( ) UU QP ,0~ ) (See Neuts, 1981).

 The raw moments are given by:
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( ) ( ) ( ) 2,1,0,0~!1 =−= − keQPkTE k
UU

K
D (3.14)

3.7 MEAN NUMBER OF DISAPPOINTMENTS

To derive an expression for the mean number of disappointments 

in an arbitrary interval (0, t], we consider the point process 

generated by the events corresponding to the occurrence of a 

disappointment. Let hD(.) be the first order product density of a 

disappointment (See Srinivasan, 1974). Then hD(t)dt is the 

probability that a disappointment occurs in 

( t, t + dt). By considering the various possibilities of entering into 

the states of disappointment, we have:

( ) ( ) ( ) ( )tPtipath ji

n

j

jn

i

j

k
kjni

n

i
iinD ∑∑∑∑

=

−

= =
+−

=
− +=

1 0 1
,

1
, λ (3.15)

 where ( )tPij can be obtained from (3.2).

The above result is in agreement with Chandrasekhar and 

Natarajan (1999). It may be noted that )(thD given in (3.15) is 

independent of the constant failure rate b of the standby unit.

The expected value of N (D, t), the number of disappointments in 

(0, t] is given by :

( )[ ] ( )duuhtDNE
t

D∫=
0

, (3.16)

3.8 MEAN STATIONARY RATE OF DISAPPOINTMENTS
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 The mean stationary rate of disappointments is given by:

( )[ ] ( )thtDNE Dt ∞→
= lim,

 and can be easily obtained from (15) by replacing pki(t) by π ki.

3.9 CONCLUSIONS

This chapter is a study of a more general system in the sense that

the results corresponding to several systems can be deduced as 

special cases as shown below.

3.9.1 Two unit system

 For n = 2, we have:

( ) ( ) ( ) ( ) ( ) ( )tptpatptapthD 200111210022 λλλ ++++=

 This result is in agreement with Sharafali et al. (1988).

3.9.2 Intermittently used n unit standby redundant system

( Yadavalli,1982)

 

We observe that the results corresponding to an intermittently used 

n unit standby redundant system can be obtained as a particular 

case of the model discussed in this paper by taking the state space 

of the stochastic process{Y(t): t ≥ 0} to be consisting of only two 
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states 0 and 1 representing the ‘need’ and ‘no need’ states 

respectively.
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CHAPTER 4

BUSY PERIOD ANALYSIS OF A TWO UNIT 

SYSTEM WITH PREVENTITIVE 

MAINTENANCE AND IMPERFECT SWITCH

4.1 INTRODUCTION

To increase the effectiveness of a system, a unit that has failed is 

renewed. The renewal can assume various forms. Several authors 

carried analyses of systems with two or three modes under the 

assumption that whenever the operative unit fails, it goes to repair 

immediately and after the completion of repair the server goes off. 

Srinivasan and Gopalan (1973) studied a two-unit system with 

warm standby and a single repair facility. Murari and Goyal (1984) 

made a comparison of two-unit cold standby reliability models; in 
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“Model 1” the repairman always remains with the system after the 

failure of the unit. Goel and Sharma (1989) analysed a two-unit 

standby system with two failure modes and slow switching. 

Makaddis (1999) considered a system with three modes and an 

administrative delay in repair. However, in practice, there may be 

occasions when the repairman appears in and disappears from the 

system randomly with some probabilities. In this Chapter, two 

models have been studied. In both the models, a single-unit 

repairable system with three possible modes of the unit- normal ( 

N ), partial failure ( P ) and total failure ( F ) – is  examined.

In “Model 1”, if the repairman finds the unit in P-mode, then he 

takes the unit under repair while the unit is operating, whereas in 

“Model 2”, the partially failed unit does not go under repair but 

repair is started only when the unit fails completely. Using the 

regeneration point technique, the various measures of system 

performance such as MTSF, steady state availability ( )∞A , busy 

period analysis of the repair facility, expected number of visits by a 

repairman, and the profit analysis, are studied, for each model. 

Numerical example illustrated some of the results obtained. Two 

models have been compared on the basis of 

numerical results by carrying out MTSF and profit analysis for a 

particular case when repair time distributions are exponential.

4.2 SYSTEM DESCRIPTION

1. The system consists of a single unit. Initially, we assume that 

the unit is operating. The unit fails through a partial failure.
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2. There is a single repair facility which appears in and disappears 

from the system randomly.

3. The life time of a unit and time of appearance and 

disappearance of the repairman are negative exponential, 

whereas the repair times are arbitrarily distributed.

4. The repairman cannot leave the system while repairing the unit.

5. Switch is perfect and the switchover is instantaneous.

4.3 NOTATION

0E state of the system at 0=t

E set of regeneration states 

( )50 SS − for each model

E set of non-regenerative states 

for each model

ba, The rates of appearance and  

disappearance of repairman

( ) ( )tGtg ii , pdf and cdf of the repair time 

in  phase 2,1=i .

( ) ( )tQtq ijij , pdf and cdf of time for one-

step transition from 

regenerative states iS to jS .
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( )tiΦ cdf of time to system failure 

where starting state 

ESE i ∈=0

( )tAi P [ system is up at t  iS at t 

= 0]

( )tBi P [ repairman is busy in 

repair at

t  iS at t = 0 ]

( )tN i Expected number of visits by 

the repairman to state i in 

( ]t,0

NAA, repair facility is available/not 

available.

1λ failure rate from N -mode to 

P -mode

( )tM i  P [system is up at t without

passing through any  

regenerative state or 

returning to itself  iS

at 0=t ]

iµ mean sojourn time in state iS

L.S.T Laplace-Stieltjes transform
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L.T Laplace transforms

( )sQij
~ ( )tdQe ij

st∫
∞

−=
0

( ) ( )dttqesq ij
st

ij ∫
∞

−=∗
0

( ) ( ) ( )00 ∑∑∑ ′−=−== ∗′

j
ij

j
ij

i
iji QqtQdtµ

 ∑=
j

ijm ...,2,1=i

( ) ( )00~ ∗′−=−=

=

ijijj

iij

qQS

totransitionthewhenSstateintimesojournmeantooncontributim

Ⓢ   Laplace-Stieltjes convolution

 Laplace convolution

4.4 SYMBOLS FOR STATES OF THE SYSTEM

0N : Unit in N-mode, and operative

P : Unit in partial failure mode

rP : Unit in partial failure mode and under repair

rF : Unit in complete failure and under repair

F : Unit in failure mode

NAA, : repairman is available / not available
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rW : Unit waiting for repair

Using the above symbols the system may be in one of the 

following states:

),( ,00 NANS =  )( ,01 ANS = , ),(2 NAPS = .

),,(3 APS r= ).,(4 NAWS r=

),(5 AFS r= for “Model 1”.

),( 00 NANS = , 

),( 01 ANS = ,

),(2 NAPS = ,

),(3 APS = ,

),(4 NAWS r= ,
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),(5 AFS r= (for “Model 2”)

4.5 RELIABILITY ANALYSIS (MODEL 1 )

Here the repairman repairs the unit only when it is P-mode

(Figure 4.1).Meantime to system failure analysis gives:

( ) ( )tQt 010 =Φ Ⓢ ( )t1Φ + ( )tQ02 Ⓢ ( )t2Φ

)()( 101 tQt =Φ Ⓢ )()( 130 tQt +Φ Ⓢ )(3 tΦ

)()( 232 tQt =Φ Ⓢ )()( 243 tQt +Φ

3Φ )()( 31 tQt = Ⓢ )()( 351 tQt +Φ (4.1)

d dteaetQ tat 1)(01
λ−−= ; 

d dtetQ t
1

102 )( λλ −= .

;)( 1
10 dtebetdQ tbt λ−−=
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dtetdQ t2
223 )( λλ −= .

;)( 2
224 dteetdQ att −−= λλ

.)()( 2
235 dttGetdQ tλλ −=

;)()( 2
131 dtetgtdQ tλ−=

;)(45 dtaetdQ at−=

dttgtdQ )()( 251 = (4.2)

Letting t →∞, using ijij PQ =∞)( ,

1
01 λ+

=
a

ap ; 
1

1
02 λ

λ
+

=
a

p .

1
10 λ+

=
b

bp ;
1

1
13 λ

λ
+

=
b

p .

2
23 λ+

=
a

ap ;
2

2
24 λ

λ
+

=
a

p

)(1 2
*
135 λgp −= ; )( 2

*
131 λgp = ;

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMaallaaddaa,,  AA    ((22000066))  



5145 1 Pp == (4.3)

∫
∞

=
0

0 (TPµ <
1

1)
λ+

=
a

dtt

1
1

1
λ

µ
+

=
b

Figure 4.1 (Model 1)
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Figure 4.2 ( Model 2)
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2
2

1
λ

µ
+

=
a

,
2

2
3

)(1
λ

λ
µ

∗−
=

g

a
1

4 =µ , dttg )(
0

25 ∫
∞

=µ (4.4)

It can easily be verified that 
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.51453531242310130201 pppppppppp ==+=+=+=+

=0µ .23242131010201 ;; mmmmmm +=+=+ µµ

.;; 51545435313 mmmm ==+= µµµ

Taking Laplace-Stieltjies transform of these relations and solving 

for 

)(~
0 sΦ , we have 

)(
)()(~

1

1
0 sD

sNs =Φ∫ (4.5)

where

( ){ )(~)(~)(~)(~1)(~)(~)(~)(~)(~)( 3523311324023513011 sQsQsQsQsQsQsQsQsQsN +−+=
}.

)(~)(~)(~)(~)(~)(~)(~)(~1)( 02103123100131131 sQsQsQsQsQsQsQsQsD −−−=

The mean time to system failure is found to be ( MTSF )
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=1T
0

lim
→s s

s)(~1 0Φ−
(4.6)

1

1
1 D

NT =

( ) ( ) ( ){ } ( )1301022332313022023123011311301 11 pppppppppppppN ++−+++−= µµµµ

 02103123100131131 1 ppppppppD −−−=  

4.6 AVAILABILITY ANALYSIS

( ) =tAi P [system is up at t iS at t = 0],

then

( ) =tA0 ( ) ( )tqtM 010 +  ( ) ( )tqtA 021 +  ( )tA2

( ) ( ) ( )tqtMtA 1011 +=  ( ) ( )tqtA 130 +  ( )tA3

( ) ( ) ( )tqtMtA 2322 +=  ( ) ( )tqtA 243 +  ( )tA4

( ) ( ) ( )tqtMtA 3133 +=  ( ) ( )tqtA 351 +  ( )tA5

( ) ( )tqtA 454 =  ( )tA5

( ) ( )tqtA 515 =  ( )tA1 (4.7)
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where

( ) ( )taetM 1
0

λ+−=

( ) ( ) tbetM 1
1

λ+−=

( ) ( ) taetM 2
2

λ+−=

( ) ( )tGetM t2
3

λ−=

Using the Laplace-transforms, we obtain

( ) ( )
( )sD
sN

sA
2

2
0 =∗

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]sqsqsqsqsqsMsN *
51

*
35

*
13

*
31

*
13

*
02 1 −−=

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) 












+

+++
+

∗∗∗ sqsqsq

sqsqsqsqsqsqsqsqsqsq
sM

312302

*
01

*
01

*
51

*
45

*
24

*
02

*
51

*
35

*
23

*
02*

1

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }[ ]sqsqsqsqsqsqsM *
51

*
35

*
13

*
31

*
13

*
02

*
2 1 −+

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]sqsqsqsqsqsqsqsqsqsM *
23

*
03

*
13

*
01

*
13

*
51

*
45

*
24

*
02

*
3 +++

and

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( )sqsqsqsqsq
sqsqsqsqsqsq

sqsqsqsqsqsqsqsD

*
24

*
01

*
10

*
51

*
45

*
51

*
35

*
31

*
23

*
02

*
10

*
01

*
10

*
13

*
51

*
35

*
31

*
132 1

−

+

−−−−=
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For ( )sA∗
0 , we can obtain the steady state availability , ∞A

( )
2

2
00

lim
D
N

sAsA
s

== ∗

→∞

where

( ) { }[ ]130123132402311002202 ppppppppN +++++= µµµµ

( ) ( )23021013211002202 ppppppD ++++= µµµµ

( )[ ]31230210351352402104 1 ppppppppp −+++ µµ

4.7 BUSY PERIOD ANALYSIS

( ) =tBi P [the repairman is busy at t  iS at t = 0 ]

( ) ( )tqtB 010 =  ( ) ( )tqtB 021 +  ( )tB2

( ) ( )tqtB 101 =  ( ) ( )tqtB 130 +  ( )tB3

( ) ( )tqtB 232 =  ( ) ( )tqtB 243 +  ( )tB4

( ) ( ) ( )tqtMtB 3133 +=  ( ) ( )tqtA 351 +  ( )tB5

( ) ( )tqtB 454 =  ( )tB5

( ) ( ) ( )tqtMtB 5155 +=  ( )tB1
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where

( ) ( )tGetM t
13

2λ−=

( ) ( )tGtM 25 =

Using the Laplace transforms, we can find

( ) ( )
( )sD
sN

sB
2

3*
0 =

where

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]sqsqsqsqsqsqsMsN *
13

*
45

*
02

*
13

*
01

*
01

*
33 +=

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ){ }[ ]sqsqsqsqsqsqsqsqsqsqsM *
31

*
13

*
45

*
24

*
02

*
23

*
02

*
01

*
13

*
35

*
5 1 −+++

and ( )sD2 is already given earlier. In the long run, the function of 

time for which the system is under repair is

( ) ( )sBstBB
st

∗

→→∞ == 0000
limlim

   =
2

3

D
N

( )[ ] ( ) ( )[ ]311324022302130135513242302130133 1 pppppppppppppppN −++++= +µµ
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4.8 EXPECTED NUMBER OF VISITS BY REPAIR 

FACILITY

The equations for 

( ) ( ) ( ) ( ) ( ) bygivenaretNandtNtNtNtN 43210 ,,,

( ) ( )tQtN 010 = Ⓢ ( )[ ] ( )tQtN 0211 ++ Ⓢ ( )tN 2

( ) ( )tQtN 101 = Ⓢ ( ) ( )tQtN 130 + Ⓢ ( )tN3

( ) ( )tQtN 232 = Ⓢ ( )[ ] ( )tQtN 2431 ++ Ⓢ ( )tN4

( ) ( )tQtN 313 = Ⓢ ( ) ( )tQtN 351 + Ⓢ ( )tN5

( ) ( )tQtN 454 = Ⓢ ( )[ ]tN51+

( ) ( )tQtN 515 = Ⓢ ( )tN1

Taking L.S.T of these equations, and solving for ( )sN0
~ , we get 

( )sN 0
~ ( )

( )sD
sN

2

4= .
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( ) ( ) ( ) ( ) ( ) ( ){ }[ ] ( ) ( ) ( ) ( ) ([ sQsQsQsQsQsQsQsQsQsQsN 351351311345242302014
~~~~~1~~~~~

−−++=

 In steady state the number of visits per unit time is

( )
2

40
~

lim
D
N

t
tNN

t
==

∞→∞

 where .104
~ pN =

4.9 MODEL 2

Here the repairman repairs the unit only when it is in the F-mode

(figure 4.2). The equations for ( ) ( ) ( )tandtt 210 , ΦΦΦ are the 

same as in model 1.

The additional equation is

( ) ( )tt 323 Φ=Φ Ⓢ ( ) ( )tQt 351 +Φ

Transition probabilities 

( ) ( ) ( ) ( ) ( ) ( ) ( )tQandtQtQtQtQtQtQ 45242310130201 ,,,,, are the same as 

in model 1. The additional probabilities are

( ) ( ) dtetdQ tb 2
235

λλ +−=

( ) ( ) dtebtdQ tb 2
32

λ+−=
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( ) ( )dttgtdQ =51

Letting ∞→t and using 

( ) getwepQ ijij ,=∞

2

2
35 λ

λ
+

=
b

p , 
2

32 λ+
=

b
bp

It can be easily verified that 

The mean sojourn times ( )210 ,, µµµ are the same as in model 1. 

The additional times are

( ) .,1

0
5

2
3 dttG

b ∫
∞

=
+

= µ
λ

µ

Now , proceeding in a similar manner as in model 1, we have the 

MTSF as:

D
NMTSF =

where

( )( ) ( ) ( )23021301132130102223320110 1 pppppppppppN ++++−+= µµµµ

51453235242313100201 1 pppppppppp ==+=+=+==+
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 ( )( )23321001 11 ppppD −−=

4.10 AVAILABILITY ANALYSIS (MODEL 2)

The equations for ( ) ( ) ( )tAandtAtA 210 , are the same as in model 

1. The additional equation is

( ) ( ) ( )tqtMtA 3233 +=  ( ) ( )tqtA 352 +  ( )tA5

The steady state availability ∞A for “Model 2” is 

2

2

D
NA =∞ where

( )[ ] ( ) ( )[ ]32230124352302123241335351322 11 pppppppppppppN −++++−−= µµ

 ( )[ ] 13240233513023213012 1 ppppppppp µµ +−++

and

{ }[ ][ ]
[ ][ ] [ ]230210133021032132442

3223100213511002 1
ppppppppp

ppppppD
++++

+−+++=
µµµ

µµµ

4.11 BUSY PERIOD ANALYSIS (MODEL 2)

The equations for ( ) ( ) ( )tBtBtB 210 ,, and )(4 tB are the same as in 

model 1. The additional equations are

( ) ( )tqtB 323 =  ( ) ( )tqtB 352 +  ( ),5 tB
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( ) ( ) ( )tqtMtB 5155 +=  ( )tB1

where   ( ) ( )tGtM =5

In the long run, the function of time of which the system is under 

repair is given by

( )
2

3
0lim

D
N

tBB
t

==
∞→∞

where

( ) ( )24352302243235130153 pppppppppN +−+= µ

4.12 EXPECTED NUMBER OF VISITS BY REPAIR 

FACILITY

(Model 2)

The equations for ( ) ( ) ( ) ( )tNandtNtNtN 4210 ,, are the same as in 

“Model 1”. The additional equation is 

( ) ( )tQtN 323 = Ⓢ ( ) ( )tQtN 352 + Ⓢ ( )tN5 .

In the steady state the number of visits per unit time is given by

( )
2

40lim
D
N

t
tN

N
t

==
∞→∞

where
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( ){ } ( )3513023223103213014 11 pppppppppN −+−−= and 2D is 

already specified.

4.13 PROFIT ANALYSIS

The expected up time and down time of the system and the busy 

period of the repairman in ( ]t,0 are

( ) ( ) µµµ dAt
t

up ∫=
0

0

( ) ( ) ( )duuBttt
t

updn ∫=−=
0

0µµ

so that  ( ) ( ) ( )
s

sB
s

sA
sup

*
0

*
0* ==µ

 ( ) ( )s
s

s updn
*

2
* 1

µµ −=

Now expected profit incurred in ( ]t,0

=   Expected total revenue in ( ]t,0

- Expected total repair in ( ]t,0

- Expected cost of visits by repairman in ( ]t,0 .

For “Model 1” and “Model 2”, we have the profit functions as 

follows:

∞∞∞ −−= NkBkAkp 3211
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∞∞∞ −−= NkBkAkp 3212

=1k revenue per unit up time of the system

=2k cost per unit time for which the repairman is busy

=3k cost per unit visits by the repair facility

 Table 4.1

100,30,400,1.1,7.0,3.0,2.1,1.1,2.1 321212 ========= kkkba µµµλ

MEAN TIME TO SYSTEM FAILURE

Failure rate Model I Model 2

0.16 9.6123 8.6617

0.17 9.4888 8.2501

0.18 8.7677 7.9101

0.19 8.4711 7.5223
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 Table 4.2

1,2.1,20,400,1.1,2.1,1.1,7.0,3.0 212121 ========= λλµµµ kkba

PROFIT

0.20 8.2506 7.2551

0.21 7.7569 6.9915

0.22 7.5116 6.7962

Failure rate Model 1 Model 2

0.16 245.0015 272.5101

0.17 244.1121 269.3112

0.18 239.8162 262.8716
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4.14 NUMERICAL ILLUSTRATION

In these models, iλ , iµ are taken from ( Yadavalli et al, 2005).

From Table 4.1, we conclude that as failure rate increases the mean 

time to system failure decreases. For both models as the failure rate 

increases the MTSF of the system decreases.

From Table 4.2 we conclude that for both models as the failure rate 

increases the profit of the system decreases. It is clear that “Model 

2” is more beneficial than “Model 1”.

0.19 236.6617 259.9867

0.20 233.3351 256.6226

0.21 230.6318 254.1512

0.22 226.8813 251.8664

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMaallaaddaa,,  AA    ((22000066))  



Chapter 5

RELIABILITY STOCHASTIC OPTIMIZATION 

WITH BRANCH AND BOUND TECHNIQUE

An Application of Stochastic Programming with 

Branch and Bound technique - n stage series system 

with m chance constraints.

A modified version of this chapter is submitted to South African Journal of 

Science.

5.1 INTRODUCTION
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In the past three decades, numerous reliability optimization 

techniques have been proposed (Tillman et al 1977, 1980, Kuo et 

al. 1987, Chen 1992). Stochastic programming models for general 

redundancy-optimization problems have been studied by (Zhao et 

al 2003). Stochastic programming models arise as reformulations 

or extensions of reliability optimization problems with random 

parameters. Moreover, the resource elements vary and it is 

reasonable to regard them as stochastic variables. Problems in this 

area are not easy to solve. Most researchers in this area 

concentrated on developing approximate solution methods as 

optimal solutions. However, efficiency in the complex theoretical 

aspect is usually not considered. Quality statements mostly remain 

restricted to convergence to an optimal solution without 

accompanying implications on the running time of the algorithms 

for attaining most accurate solutions. Very recently the complexity 

of stochastic programming problems has been addressed, 

confirming these problems are harder than most combinatorial 

optimization problems.

This chapter addresses chance constrained reliability stochastic 

optimization (CCRSO) problem. Chance constraint programming 

technique has been first proposed by (Charnes and Cooper, 1954).

The objective is to maximize system reliability for the given 

chance constraints. A methodology is illustrated to determine 

optimal solutions to n stage series system with m chance 

constraints of the redundancy allocation problem. Various cases of 

randomness have been discussed with known distributions like 

Uniform, Normal, and Log-normal distributions, when the resource 

variables are random. Once the real number solution is obtained 

using the technique of chance constraint, the B&B technique is 

used to obtain the integer 
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solution. In this chapter, a 4-stage series system with two chance 

constraints is numerically illustrated for the redundancy allocation 

problem.

This chapter has been organized as follows, stochastic integer 

programming problem for n stage series system with m chance 

constraint discussed and then the required algorithm to get integer 

solution is provided along with numerical example, which 

illustrate the model effectively. 

1.1 Stochastic Integer Programming (SIP): n Stage Series 

System

 with m Chance Constraints

The chance constraint optimization problem for n stage series 

system with m chance constraint can be formulated as

Max Rs(X) = ( )
1

1 1 j
j

n

j

xr
=

 − −∏   
 (5.1)      

Subject to,  ( ) 1 iiiP g x b α  ≤ ≥ − ,   i = 1, 2, …, m;  1jx ≥ , j =1, 2, …, 

n, where resource vector b is random in nature,

Rs - reliability of the system

,j jqr - reliability, unreliability of components j; 1j jqr + ≡

jx - number of components used at stage j

( )ig x -chance constraint i

ib - amount of resource i available (random

iα - level of significance. 
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5.1.1 Case 1:  b follows uniform distribution

Let ib ∼U ( )ii ul , , the constraint in system (1) is equivalent 

to ( ) iig x τ≤ , where 1 iiβ α= − ,

i

ui

i
i i

dx
u l

τ

β
 

= 
− ∫

i i i iiu lβτ α= + .

Hence, the deterministic equivalent of system (5.1) is:

MaxRs(X)= ( )
1

1 1 j
j

n

j

xr
=

 − −∏   
 

(5.2)

subject to

( ) i i iiig x u lβα≤ + ,   i = 1, 2, …, m;  1jx ≥ , j =1, 2, …, n.

5.1.2 Case 2:  b follows normal distribution
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Let ib ∼ ( )2, biibN σ  , where 2, bb ii
µ σ are mean and variance of the 

normal random variable ib . Using the ith chance constraint of the 

system (5.1), restate the chance constraint as ( ) 1 ii iP g xb α ≥  ≥ − ,   

i = 1, 2,…, m, this expression can be further stated as 

/( )/ 1( ( ) )
ii bb i ibb i ii gP xb µµ σσ α 

 −− ≥ ≥ − ,  i =1, 2, …, m. 

Using the cumulative density function of the standard normal 

random variable, it can be simplified as:

/1 [ ] 1( ( ) ) bi ibi ig x µ σ α−− ≥ −Φ ,   i=1,2,…, m, 

where

21( ) exp .
2 2

z tz dt
π −∞

 
= ∫  

 
Φ

This can be further simplified as 

/[ ]( ( ) ) ( )bi ib ii
g x K αµ σ− ≤Φ Φ − , i =1, 2, …, m.

The chance constraint can be transformed into deterministic 

constraint as 

( )i iii bbg x Kαµ σ≤ − , i =1,2, …, m.

Hence, the deterministic equivalent of system (1) is:

MaxRs(X)= ( )
1

1 1 j
j

n

j

xr
=

 − −∏   
 (5.3)
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subject to

( ) bbi iii
g x Kαµ σ≤ − , i = 1, 2, …, m;  1jx ≥ ,  j =1, 2, …, n.

5.1.3 Case 3:  b follows log-normal distribution

Let ib ∼ ( )2, IILN σµ , where 2, iiµ σ are the mean and variance of 

the log normal random variable ib . Using the ith chance constraint 

of the system (5.1), we restate the chance constraint as

( ) 1ln lni iiP gb x α ≥ ≥ −  ,   i = 1, 2, …, m.

This expression can be further stated as 

( )/ 1/ln ln( ( ) ) iiii ii iP b g xµ µσ ασ − ≥ ≥ −−  ,  i =1, 2, …, m. The 

following deterministic ith constraint is obtained by similar 

arguments made in case 2.

( ) exp( )iiiig x Kαµ σ≤ − , i =1, 2, …, m. 

Hence, the deterministic equivalent of system (1) is:

MaxRs(X)= ( )
1

1 1 j
j

n

j

xr
=

 − −∏   
 (5.4)

subject to
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( ) exp( )iiiig x Kαµ σ≤ − , i = 1, 2, …, m;  1jx ≥ ,  j =1, 2, …, 

n.

5.2 General Algorithm

1. Convert the deterministic form of chance constraint into a linear 

constraint, adopting the technique of sequential linear 

programming (Rao 2000, Jeeva et al 2002,2004 , Charles and 

Dutta, 2003).

2. Code any one of the system (5.2) – (5.4) along with respective 

linearized constraint in MATLAB or LINGO and generate optimal 

solutions by inputting initial values using random function (in later 

stages one can use the existing real solution to generate integer 

solution using the step below given).

3.  Apply the branch and bound algorithm given below to get 

integer solutions.

5.3 Branch-and-bound (B&B) technique

The B&B technique for CCRSO for stochastic optimization is 

given below:
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1. Solve the problem as if all the variables were real numbers i.e. 

not integers, using the general algorithm given above. This 

solution is the upper bound (for maximization problem) of the 

CCRSO problem.

2. Choose one variable at a time that has a non-integer value, say xj

and branch that variable to the next higher integer value for one 

problem and to the next lower integer value for the other. The real 

valued solution of the variable j can be expressed as xj = [xj] + xj
*, 

where [xj] is the integer part of xj and xj
* is the fractional part of xj, 

0< xj
*<1. The lower bound and upper bound constraints of the two 

mutually exclusive problems are xj = [xj] and xj = [xj] + 1, 

respectively. Add these two constraints to both branched problems.

3. Now the variable xj is an integer in either branch. Fix the integer 

of xj for the following steps of branch-and-bound. Select the 

branch that yields the maximum objective function with all 

constraints satisfied. Then repeat step 2 on another variable xk ≠ xj 

for each of the new sub problems until all variables become 

integers.

4. Stop the particular branch if the solution is not satisfying the 

constraints of the original problem else stop the branch when all 

the desired integer values are obtained.

5.4 NUMERICAL EXAMPLE

Example 1
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A four-stage system with chance constraints is formulated as a 

pure stochastic integer programming problem using the data given 

in table 5.1. The decision variables, X = (x1,…,x4), are the number 

of redundancies at each stage. The problem is formulated as in 

Case 1.   

Table 5.1: Data for Example 1

Stage, 

j

1 2 3 4

rj 0.75 0.80 0.75 0.85

Available

Resource

li ui iα

c1j 1.5 3.3 3.2 4.4 b1 50 60 0.10

c2j 4.0 5.0 7.0 9.0 b2 110 140 0.15
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Table 5.2: Solutions for Example 1

With the data given in table 1, the real solutions are obtained using 

the general algorithm, which is exhibited in table 2. This paper 

suggests that the real solution be further elaborated by the B&B 

technique. Let us take one solution X = (11.3697, 7.6831, 1.3097, 

1.0000) from Table 5. 2. Now the integer solution is obtained using 

B&B technique. The following figure 1 gives clear picture about 

B&B network.

 

Initial guess (obtained using 

rand())

S.

No.

x1 x1 x2 x3

x1 x2 x3 x4 Rs(X)

1 1.9501 1.2311 1.6068 1.4860 7.7656 9.5884 1.0344 1 1

2 1.8913 1.7621 1.4565 1.0185 10.857 8.2167 1 1 1

3 1.8214 1.4447 1.6154 1.7919 8.4843 8.6375 1 1.4931 1

4 1.9218 1.7382 1.1763 1.4057 7.7650 6.2088 1 1 0.9999

5 1.9355 1.9169 1.4103 1.8936 10.226 7.5664 1 1.7028 1

6 1.0579 1.3529 1.8132 1.0099 11.370 7.6831 1.3097 1 1

7 1.1389 1.2028 1.1987 1.6038 10.706 8.0460 1 1.1794 1

8 1.2722 1.1988 1.0153 1.7468 10.125 7.9687 1 1.4356 1

9 1.4451 1.9318 1.4660 1.4186 12.011 6.5778 1 1 1

10 1.8462 1.5252 1.2026 1.6721 9.3136 8.5091 1.0046 1.3034 1
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Figure 5. 1: A B&B Network Representation for Example 1

P1 : x1 =11.3697; x2 =7.6831; x3 =1.3097; x4 =1.0000; R=1.0000

P11 : Fathomed

P12 : x1 =11.1175; x2 =7.1284; x3 =2.0000; x4 =1.0000; R=1.0000

P121 : x1 =11.1175; x2 =7.0000; x3 =2.0000; x4 =1.0000; R=1.0000

P122 : x1 =9.2000; x2 =8.0000; x3 =2.0000; x4 =1.0000; R=1.0000

P1211 : x1 =11.0000; x2 =7.0000; x3 =2.0000; x4 =1.0000; R=1.0000

P1212 : Fathomed

P1221 : x1 =9.0000; x2 =8.0000; x3 =2.0000; x4 =1.0000; R=1.0000

P1222 : Fathomed
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Alternative optimal integer is obtained from the B&B process, X = 

(11, 7, 2, 1) and X = (9, 8, 2, 1). 

5.5 CONCLUSION

The combination of the chance constraint technique and the B&B 

technique takes advantage of an exact method and enumerative 

method. In this paper the chance constraint technique, using 

MATLAB program, quickly reaches real solutions that is close to 

optimum. In addition, the B&B technique generates many sets of 

integer solutions. The competitive alternatives provide the 

management with several options and flexibility. Since a good 

approximation is obtained by the chance constraint technique, it 

does not take many branches for the B&B technique to reach the 

integer solution. The B&B algorithm given in this paper can be 

directly applied to the mixed integer stochastic programming 

problem (MISPP). For MISPP, only the integer variables need to 

be enumerated by the B&B procedure. The real variables are free 

of restriction after each step of the B&B technique.  
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 CHAPTER 6

A two unit cold standby system with non-

instantaneous switchover

6.1 INTRODUCTION
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Gopalan et al (1984) have analysed a single-server two-unit cold 

standby system subject to a slow switch and have obtained 

expressions for the expected switchover time of unit from standby 

to operative state in (0,t] and the expected repair time of a unit in 

(0,t]. Sharma et al (1986) modified that model by taking a two-unit 

warm standby system and obtained several reliability 

characteristics. They did not take into account the partial failure 

mode. The purpose of the present chapter is to study a two-unit 

cold standby system with three modes of the system subject to 

slow switch. The system fails totally only through the partial 

failure mode. When a unit fails partially, its repair starts 

immediately and the installation of a new unit in place of a 

partially failed unit remains operative. Regenerative point 

technique is used for the analysis.

6.2 MODEL ASSUMPTION

The system compromises two identical units. Initially one is 

operative and the other is a cold standby.

(1) Each unit is has three possible modes: normal (N), partial 

failure 

( P) and total failure (F).

(2) The system fails totally only through the partial failure mode.

(3)  The failure and switchover times are distributed negative

exponentially whereas the repair times of units are distributed

arbitrarily.

(4) When a unit fails partially, repair of the partially failed unit 

starts

instantaneously and installation of the standby for operation is 

not

 permitted.
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(5)  When a unit fails completely from the partially failed state, 

repair

 of the failed unit and installation of the standby for operation 

start

 simultaneously and independently.

(6) The repaired system is as good as new.

6.3 NOTATION

βα , Constant failure rates from N to P and P to F modes

η Constant rate of switchover time of a unit from 

standby state to operative state

)(),( tFtf pdf and cdf of repair time of a unit from P state

)(),( tGtg pdf and cdf of repair time of a unit from F state

Symbols for states of the system

50 , NN system operative in N mode

orP unit operative in P mode and under repair mode

rF unit in F mode and under repair

RF unit in F mode and its repair continued from earlier 

state

wF system in F mode and waiting for repair

bso standby being switched over

Thus the following states are possible: 

).,();,(
);,();,();,(
);,();,();,(

706

5043

251500

wrr

orwRs

ror

FFSNFS
PFSNFSbsoNS

bsoFSNPSNNS

==
===
===

Up states- ;, 641,0 SSSS − down states- ., 73,2 SSS
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The underlined states are non-regenerative. Possible states and 

transitions are shown 

in Figure 6.1.

6.4. TRANSITION PROBABILITIES AND SOJOURN 

TIMES

Let ,...),0( 10 TT = denote the epochs at which the system enters any 

state ES i ∈ and nX be the state visited at time +nT , i.e. just after 

the transition at nT . Then { }nn TX , is a Markov renewal process 

with state space. Let

[ ];,)( 1 iXTTjXPtQ ntnTnnij === ≤++

then the transition probability matrix of embedded Markov Chain 

is

( ) ( )( )( ) ( )∞=∞== QQPP ijij ,

with non-zero elements

( )βFPPPPP ~1,1 1210723001 =−==== ,

( )ηGPP ~1 2423 =−= ,    ( ) ( ) ( )








−
−

=
αη

ηαη GGP
~~

4
20 ,
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( ) ( ) ( )[ ]
( )αη

ηααη
−
−

−=
GGP
~~

14
25 ,

( )βFPP ~1 5756 =−= ,   ( )αGPP ~1 6560 =−= .

Evidently,
( ) ( ) 1,1,1 25

4
20

4
2324231210 =++=+=+ PPPPPPP ,

1,1 65605756 =+=+ PPPP .

Mean sojourn times iµ in state iS are

( )[ ]
β

β
µµ

α
µ

F~1,1
510

−
=== ,

( )[ ] ,1,
~1

32 η
µ

η
ηµ =

−
=

G

( )[ ],
~1

6 α
α

µ
G−

=

( )dttG∫
∞

=
0

7µ
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Figure 6.1
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6.5 TIME TO SYSTEM FAILURE

Time to system failure can be regarded as the first passage to the 

failed state. To obtain it we consider down states as absorbing. We 

obtain the following recursive relations for ( )tiπ , the cdf of time 

to system failure when the system starts from state iS

( ) ( )tQt 010 =π Ⓢ ( )t1π (6.1)

( ) ( )tQt 101 =π Ⓢ ( ) ( )tQt 120 +π (6.2)

( ) ( )tQt 565 =π Ⓢ ( ) ( )tQt 576 +π (6.3)

( ) ( )tQt 606 =π Ⓢ ( ) ( )tQt 650 +π  ( )t5π (6.4)

Taking Laplace-Stieltjies transforms of equations (1)-(4) and 

solving for ( )s0
~π , we have 

( ) ( )
( )( )65561001

65561201
0 ~~1~~1

~~1~~
~

QQQQ
QQQQ

s
−−

−
=π

 = ( )1001

1201
~~1

~~

QQ
QQ

−
, (6.5)

where, for brevity, the argument ‘s’ is omitted.
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The mean time to system failure (MTSF), when the system starts 

from 0S , is

( ) ( ) ( )[ ]
( )

( )
.

0
00

12

10

PD
NDTEMTSF

r

rr µµ +
=

′−′
== (6.6)

6.6 AVAILABILITY ANALYSIS

Let )(tM i be the probability that the system which started from 

state iS has reached time t without making any transition into any 

other regenerative state belonging to E. By probabilistic 

arguments, we have  

( ) =tM 0
te α− ,

( ) ( ) ( )tFetMtM tβ−== 51 ,

( ) ( )tGetM tα−=6 .

From then theory of regenerative process, the pointwise 

availabilities ( )tAi of a system which has started from a given 

regenerative point are seen to satisfy the following recursive 

relations:

( ) ( ) ( )tqtMtA 0100 +=  ( )tA1 (6.7)
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( ) ( ) ( )tqtMtA 1011 +=  ( ) ( )tqtA 120 +  ( )tA2 (6.8)

( ) ( )( )tqtA 4
202 =  ( ) ( )tqtA 230 +  ( ) ( ) ( )tqtA 4

253 +  ( )tA5 (6.9)

( ) ( )tqtA 303 =  ( )tA0 (6.10)

( ) ( ) ( )tqtMtA 5655 +=  ( ) ( )tqtA 576 +  ( )tA7 (6.11)

( ) ( ) ( )tqtMtA 6066 +=  ( ) ( )tqtA 650 +  ( )tA5 (6.12)

( ) ( )tqtA 727 =  ( )tA2 . (6.13)

Taking Laplace-transforms of equations (6.7)-(6.12) and solving 

for ( )sA ∗
0 we have

( )
( )sD
sNA

1

1
0 =∗ (6.14)

( ) =tM 0
te α− ,

( ) ( ) ( )tFetMtM tβ−== 51 ,

( ) ( )tGetM tα−=6 .

Where
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( ) ( )( ) ( )
( ) ( )∗∗∗∗∗∗

∗∗∗∗∗∗∗∗

+×+

+×−−=

6565
4

251201

10107257
4

2565561 1

MqMqqq

MqMqqqqqsN

( ) ( )( ) ( )
( ) ( )( )[ ]∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗

++×−−

−×−−=

6056253023
4

2065561201

10017257
4

2565561

1

11

qqqqqqqqqq

qqqqqqqsD

The steady-state availability of the system is

( )
1

1
000 lim

D
N

sAsA
s ′

== ∗

→
. (6.15)

( )( )( ) ( ) ( )6561
4

251201101057
4

2565561 1 µµµµ PPPPPPPPPN +++−−=

( )( ) ( ) ( )
( ) ( )7

11

576561
4

2512

323
26

65561257
4

256556101

µµµ

µ
αη
αµηµ

µµ

PPPP

PPPPPPPPD

++

+







+

−
−

−+−−+=′

6.7 BUSY PERIOD ANALYSIS

As defined earlier, ( )tBi is the probability that the system is under 

repair at time t given that the system entered regenerative state is

at .0=t By probabilistic arguments we have

( ) ( )tqtB 010 =  ( )tB1 (6.16)
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( ) ( ) ( )tqtWtB 1011 +=  ( ) ( )tqtB 120 +  ( )tB2 (6.17)

( ) ( ) ( )4
2022 qtWtB +=  ( ) ( )tqtB 230 +  ( )tB3 (6.18)

( ) ( )tBq 5
4

25 +

( ) ( )tqtB 303 =  ( )tB0 (6.19)

( ) ( ) ( )tqtWtB 5655 +=  ( ) ( )tqtB 576 +  ( )tB7 (6.20)

( ) ( ) ( )tqtWtB 6066 +=  ( ) ( )tqtB 650 +  ( )tB5 (6.21)

( ) ( ) ( )tqtWtB 7277 +=  ( )tB2 (6.22)

where

( ) ( ) ( )tFetWtW tβ−== 51 ,

( ) ( )tGetW tα−=6 ,

( ) )(7 tGtW = ,

( ) ( ) ( )
( )αη

αη ηα

−
−= −− tGeetW tt

2 .

Taking Laplace-transforms of relations (6.16)-(6.22) we have
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( ) ( )
( )sD
sNsB

1

2
0 = (6.23)

where

( ) ( )
( ) ( ) ( )[ ]∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗

+++−

+×−−=

7576565
4

2526556

120117257256556012

1

1

WqWqWqWqq
qqWqqqqqqsN

In the long run, the fraction of time for which the system is under 

repair is given by

( ) ( )
1

2
0000 limlim

D
N

sBstBB
st ′

=== ∗

→∞→
(6.24)

where, in terms of

( ) ( ) 151 00 µ== ∗∗ WW

( ) 66 0 µ=∗W ,

( ) ,77 0 µ=∗W

( ) ( )
( )αη

αµηµ
−
−

=∗ 26
2 0W ,

we have
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( )( )
( ) ( ) ( )( )( )[ ] .122665567576561
4

25

157
4

2565562

1

1

PPPPPP

PPPPN

αµηµµµµ

µ

−−++++

−−=

6.8 EXPECTED NUMBER OF VISITS BY THE 

REPAIRFACILITY

We define ( )tVi as the expected number of visits by the repairman 

in ( ]t,0 given that the system initially starts from regenerative 

states iS . By probabilistic arguments, we have the following 

recursive relations:

( ) ( )tQtV 010 =  ( )[ ]tV11+ (6.25)

( ) ( )tQtV 101 =  ( ) ( )tQtV 120 +  ( )tV2 (6.26)

( )tV2 =

( )4
20Q  ( ) ( )tQtV 230 +  ( ) ( ) ( )tQtV 25

4
3 +  ( )tV5 (6.27)

( ) ( )tQtV 303 =  ( )tV0 (6.28)

( ) ( )tQtV 565 =  ( ) ( )tQtV 576 +  ( )tV5 (6.29)

( ) ( )tQtV 606 =  ( ) ( )tQtV 650 +  ( )tV5 (6.30)

( ) ( )tQtV 727 =  ( )tV2 (6.31)
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Taking the Laplace-Stieltjes transforms of the above equations and 

solving for ( )sV0
~ , we have 

( )sV0
~ = ( )

( )sD
sN

2

3 (6.32)

where

( ) ( )( )7257
4

256556013
~~~~~1~ QQQQQQsN −−=

( ) ( )( )( )
( ) ( )( ) ( )[ ]605625

4
3023

4
2065561201

10017257
4

2565562
~~~~~~~1~~

~~1~~~~1

QQQQQQQQQQ

QQQQQQQsD

++−−

−−−=

In the steady state, the number of visits per unit time is given by

( ) ( )
1

3
0

2

0

0
0

~limlim
D
N

sVs
t

tV
V

st ′
===

→∞→
, (6.33)

where

( )( )57
4

2565563 1 PPPPN −−= .

6.9 SWITCHOVER ANALYSIS

We define ( )tI i as the probability that the standby unit being 

switched is under switching device in ( ]t,0 , given that the system 

entered regenerative state iS at 0=t . By probabilistic arguments, 

we have

( ) ( )tqtI 010 =  ( )tI1 (6.34)
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( ) ( )tqtI 101 =  ( )tI 0 ( )tq12+  ( )tI 2 (6.35)

( ) ( ) ( )( )tqtHtI 4
2022 +=  ( )tI 0 + ( )tq23  ( )tI 3

( ) ( )tq 4
25+  ( )tI5 (6.36)

( ) ( ) ( )tqtHtI 3033 +=  ( )tI 0 (6.37)

( ) ( )tqtI 565 =  ( ) ( )tqtI 576 +  ( )tI 7 (6.38)

( ) ( )tqtI 606 =  ( ) ( )tqtI 650 +  ( )tI5 (6.39)

( ) ( )tqtI 727 =  ( )tI 2 (6.40)

where 

( ) ( )tGetH tη−=2 ,

( ) tetH η−=3 .

Taking the Laplace-transforms of relations (6.34) – (6.40), we have 

( ) ( )
( )sD
sNsI

1

4
0 =∗ , (6.41)

( )sN 4 = ( )( )∗∗∗∗∗∗∗ +− 323265561201 1 HqHqqqq
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In the steady-state, the fraction of time for which the system is 

under switch activation is given by

( ) ( )
1

4
0

000 limlim
D
NssItII

st ′
=== ∗

→∞→
(6.42)

where, in terms of

( ) 22 0 µ=∗H ,

( ) 33 0 µ=∗H ,

we have

( )( )32326556124 1 µµ PPPPN +−= .

6.10 COST ANALYSIS

(1) The expected uptime of the system in ( ]t,0 is

( )duuA
t

up ∫=∗

0
0µ
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so that

( ) ( )
s

sAsup
0

∗
∗ =µ (6.43)

(2) The expected duration of the repairman’s busy time in ( ]t,0 is

( ) ( )duuBt
t

b ∫=
0

0µ

 so that

( ) ( )
s

sBsb
0

∗
∗ =µ (6.44)

(3) The expected switchover time of the standby unit in ( ]t,0 is

( ) ( )duIt
t

µµ ∫=
0

01 ,

 so that

( ) ( )
s

sIsI
0

∗
∗ =µ (6.45)

The expected total cost (gain) incurred in ( ]t,0 is

( ) ( ) ( ) ( ) ( )tCtVCtCtCtG bup 140321 µµµ −−−= (6.46)
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where 1C is the revenue per unit up time, 2C is the cost per unit for 

which the system is under 

repair, 3C is the cost per visit by the repairman and 4C is the cost 

per unit time for which the 

system is under switch activation device.

The expected profit per unit time in the steady state is

( ) ( )sGs
t
tG

t
G

s

∗

→
=

∞→
= 2

0
limlim

 = 04030201 ICVCBCAC −−− (6.47)
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CHAPTER 7

A COMPLEX SYSTEM WITH CORRELATED 

FAILURES

7.1 INTRODUCTION
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Most reliability models assume the continuous operation of the 

unit ( or system) until a failure occurs. However, situations may 

arise where the unit (or system) needs rest after its operation for 

some time [Muller, 2005]. Very few attempts have been made in 

this direction. Murari and Muruthachalan (1981), Sarma (1982), 

Botha (2002), Hargreaves (2003) considered a two-unit system 

with a provision for rest for the system. The working and the rest 

are assumed to be random variables with negative exponential 

distributions. However, the idea of preparation time for the system 

may prove expensive as no output is obtained from the system 

during rest. This situation can be avoided in a two-unit cold 

standby system by providing rest to each unit alternately and 

operating the other unit when one requires rest. Further, in 

repairable systems, the dependence of repair time on the failure 

time of unit is a common experience of systems engineers, but this 

fact has also been ignored so far by reliability researchers. Keeping 

these factors in view, we analyse in this chapter a two-unit cold 

standby system with independent failure and repair times, with 

provision for the rest of the operative unit.

7.2 SYSTEM DESCRIPTION 

1. The system consists of two identical units; initially, one is 

operative and the other is kept as a cold standby.

2. After operating for a random amount of time, the operating unit 

may require rest and again become fit for operation. The 

operating time and rest periods are independent random 

variables which are distributed exponentially.

3. As soon as the operative unit goes to rest, the standby unit 

starts operation.
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4. There is a single repair facility

5. The repair facility is available instantaneously to repair the 

failed unit. The failure and repair are distributed according to 

bivariate exponential law.

6. Both units cannot go for rest simultaneously.

7. If the operative unit fails (after operating for time xX = ) while 

the other unit is under repair. The unit failed later is repaired 

first and its repair time Y follows the bivariate exponential 

density jointly with X . The repair time already spent in the 

repair of the earlier failed unit is wasted and the further repair 

time Y ′ of this unit need not depend on x . It is assumed to 

have an independent negative exponential distribution with 

parameterθ .

7.3 NOTATION

Let rcr FFRSO ,,,, and wrF , denote respectively the operative, 

standby, under rest, under repair, under repair from previous state, 

and waiting for repair states of the unit. With these notation, the 

possible states of the system are:

Up states Down states

( )SOS ,0 ( )rFRS ,3

( )ROS ,1 ( )RFS rc ,4

( )OFS r ,2

( )rwr FFS ,6

( )OS ,Frc5

( )rFOS ,7
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The possible transitions together with the corresponding transition 

probability density functions are shown in Figure 7.1

YX , :random variables representing respectively 

the failure and repair times of a unit.

( )yxf , :joint pdf of ( )YX ,

( ) ( ) ( ) 1;0,,,;21, 0 <>−= −− ryxyxIeryxf yx µλµλµλ µλ

(7.1)

with

( ) ( )
( )∑

∞

=

=
0

20
!

2
k

k

k
yxryxrI µλ

µλ
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FIGURE 7.1
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( ) ( )xGxg , :pdf and cdf of X

( ) ( ) ( ) λλλ xrerxg −−−= 11 ; x > 0

( ) ( ) xrexG −−−= 11 λ ; .1<r

( ) ( ) ( ) yreryh −−−= 11 µµ ; y > 0

( ) ( ) yreyH −−−= 11 µ ; .1<r

( ) ( )xykxyk /,/ : :conditional pdf and cdf of y given x

( ) ( )yxrIexyk xry µλµ λµ 2/ 0
−−=

( ) ( ) .1,0,,,;//
0

<>= ∫ ryxdtxtkxyk
y

µλ

( ) ( )yUyu ′′ , : pdf and cdf of Y ′ , the random variable

 representing the repair time of a unit whose

 repair was interrupted.

( ) 0,; >′=′ ′− yeyu y θθ θ

( ) yeyU ′−−=′ θ1

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMaallaaddaa,,  AA    ((22000066))  



( ) ( )uu Φ,φ :pdf and cdf of the working period of a unit

( ) 0,; >= − ueu ααφ µα

( ) uev α−−=Φ 1

( ) ( )vv ψϕ , : pdf and cdf of the rest period of a unit.

( ) 0,; >= − rev v ββϕ β

( ) vev βψ −−=1

( ),...., lkqij :pdf of transition time from state ji StoS

 (both regenerative) passing through 

.....,, lk SS

( ),....,lk
ijQ :cdf of transition time from state ji StoS

 passing through ,...., lk SS

( ),...,
/

lk
xijp :steady state probability of transformation 

from

 state ji StoS (or first return to state 

ijifS i = )

 through states ,...., lk SS given that the 

system

 entered iS after a sojourn for time x in the

  preceeding state.
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( ),...,lk
ijp :steady state probability of transition from 

state ji StoS (both regenerative) passing 

through ,...., lk SS

ijp : steady-state probability of direct transition

 from state ji StoS given that the system

 entered states iS after a sojourn time x in 

the

  preceeding state.

( )tvi : cdf of sojourn time in state iS

7.4 TRANSITION PROBABILITIES AND SOJOURN 

TIMES

We know that 167 =p .

We first obtain the steady-state conditional probabilities as 

follows:

xp /20 ( ) ( )[ ] dyeyxrIe yrxry αλλµ µλµ +−−−−∫= 1
0 2

 















′

−−
′

=
µ
µ

λ
µ
µ 1exp xr

where

λαµµ ++=′ ( )r−1
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 xp /50=

( )[ ] ( )dzyxrIedyep
y

xryr
x µλµα λµαλ 21

/24 ∫∫
∞

−ℑ−+−−=

 ( ) 



























′

−−
′

−
+−

=
µ
µ

λ
µ
µ

αλ
α 1exp1

1
xr

r

  xp /54=

( ) ( )[ ] ( ) 









ℑ−= ∫∫

∞
−−+−− drxrIedyerp

y

xrrxr
x µλµλ λµαλ 21 0

1
/26

 ( )
( ) 



























′

−−
′

−
+−

−
=

µ
µ

λ
µ
µ

αλ
λ 1exp1
1

1 xr
r

r

 xp /56=

( )dyyxrIeep xryy
x µλµ λµβ 20/34

−−−∫=

  








+

′
−−

+
=

β
µ
µ

λ

βµ
µ 1xr

e

 xp /41=

( )dzzxrIedyep
y

xrzy
x µλµβ λµβ 20/35 ∫∫

∞
−−−=

 = ∫ − Ke yββ (y x)









+

′
−−

+
−=

β
µ
µ

λ

βµ
µ 1

1
xr

e

xp45=
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( )dyyxrIep xry
x

µλµ λµ 2067 ∫ −−=

Using these conditional probabilities we obtain the following 

unconditional probabilities:

( )dxxgpp x∫= 2020

  ( ) ( )[ ]dxerxr xr−−−















 ′
−−








′

= ∫ 111exp
µ
µ

λ
µ
µ

  ( )
( )( ) αµλ

µ
+−+

−
=

r
r

1
1

  ),(50 sayAp ==

( ) ( ){ }[ ] ( ) ( )[ ]dxxrrxr
r

p −−−′−−′−
+−

= −−∫ 1exp11exp1
1

11
24 λλµµλµµ

αλ
α

 ( )( ) αµλ
α

+−+
=

r1

 ),( 454 sayAp ==

Similarly,

( )( )
( )( ) ( )sayA

r
rpp ,

1
1

35626 =
+−+

−+
==

αµλ
µλ

( )
( ) ( )say

r
rpp ,

1
1

4131 B=
+−

−
==

βµ
µ
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( ) ( )BB
r

pp −=
+−

== 1
14535 βµ

β

167 =p

The other unconditional transition probabilities are 

( ) ( )sayc
r

p ;;
1 170 =

−++
=

λαθ
θ

( ) ( )sayc
r

p ,;
1 274 =

−++
=

λαθ
α

( )
( ) ( )sayc

r
rp ,;
1

1
376 =

−++
−

=
λαθ

λ

( ) ( )sayD
r

p ,,
101 =

+−
=

αλ
α

( )
( ) ( )sayDD

r
rp ,1,

1
1

02 −==
+−

−
=

αλ
λ

( ) ( )sayE
r

p ,,
110 =

+−
=

βλ
β

( )
( ) ( )sayEE

r
rp ,1,

1
1

13 −==
+−

−
=

βλ
λ

Hence the non-zero elements of the transition probability matrix

( )[ ] ( ) ( )[ ]∞== ,...,,..., lk
ij

lk
ij Qpp
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are

( ) BADpDp 2
4,2

0101 , ==

( )
22

4,5,4,2
01 ABADp =

( )
1

2
00 ADp =

( )
12

5,4,2
00 ABADp =

( ) ( )
3

2
04

6,2
07 ADpp ==

( ) ( )
32

5,4,2
04

6,5,4,2
07 ABADpp ==

( )
1

5,3
1010 ; ABEpEp ==

( ) ( )
32

4,5,3
11

3
11 ;. ABABEpBEp ==

( ) ( )
12

5,4,5,3
16

6,5,4,5,3
10 ABABEpp ==

( )
22

4,5,4,5,3
11 ABABEp =

( )
12

5,4
70170 , ABCpCp ==

( ) ( )
22

4,5,4
712

4
71 , ABCpBCp ==

( ) ( )
32

6,5,4
773

6
77 , ABCpCp ==
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These transition probabilities are seen to satisfy the following relations.

( ) ( ) ( ) ( ) ( ) ( ) 16,5,4,2
07

6,2
07

5,4,2
00

2
00

4,5,4,3
01

4,2
0101 =++++++ ppppppp (7.2)

( ) ( ) ( ) ( ) ( )

( ) ( ) 16,5,4,5,3
17

6,5,3
17

4,5,4,5,3
11

4,5,3
11

3
11

5,4,5,3
10

5,3
1010

=++

+++++

pp

pppppp
(7.3)

( ) ( ) ( ) ( ) ( ) 16,5,4
77

6
77

4,5,4
71

4
71

5,4
7070 =+++++ pppppp (7.4)

The sojourn times in various regenerative states are

( )[ ] 1
0 1 −−+= rλαµ (7.5)

( )[ ] 1
1 1 −−+= rλβµ (7.6)

( )[ ] 1
2 1 −−++= rλθαµ (7.7)

7.5 MEANTIME TO SYSTEM FAILURE

Time to system failure can be regarded as the first passage time to 

the failed states iS ( )6,4,3=i . Considering the states as absorbing 

we have, by simple probabilistic reasoning

( ) ( )tQdt 2
00=π Ⓢ ( ) ( )tQt 010 +π Ⓢ ( ) ( ) ( )tQtQt )2(

06
)2(

041 ++π (7.8)
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( ) ( )tQt 011 =π Ⓢ ( ) ( )tQt 130 +π (7.9)

Taking Laplace-Stieltjes transform and solve for ( )s0
~π , we get

[ ]
1001

)2(
00

1301
)2(

06
)2(

04
0 ~~~1

~~~~
~

QQQ
QQQQ

−−

++
=π (7.10)

which gives

1001
)2(

00

1010

1 ppp
mpm

MTSF
−−

+
=

where
)2(

06
)2(

04
)2(

00010 mmmmm +++=

13101 mmm +=

and

( )....,, jk
ijm have their usual meaning.

7.6 AVAILABILITY ANALYSIS

Let ( )tAi = P [the system is up at any time t iS at t = 0]

From the arguments used in the theory of regenerative processes,
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( ) ( ) ( ) ( ) ( ){ }tqtqtA 5,4,2
00

2
000 +=  ( )tA0

( ) ( ) ( ) ( ) ( ){ }tqtqtq 4,5,4,2
01

4,2
0101 +++  ( )tA1

( ) ( ) ( ) ( ){ }tqtq 6,5,4,2
07

6,2
07 ++  ( )tA7

( ){ } ( )tQe tr
02

1 ++ +−− αλ 
( )( ){ }tre αµλ +−+− 1 (7.11)

( ) ( ) ( ) ( ) ( ) ( ){ }tqtqtqtA 5,4,5,3
10

5,3
10101 ++=  ( )tA0

( ) ( ) ( ) ( ) ( ) ( ){ }tqtqtq 4,5,4,5,3
11

4,5,3
11

3
11 +++  ( )tA1

( ) ( ) ( ) ( ){ }tqtq 6,5,4,5,3
17

6,5,3
17 ++  ( ) ( ){ }tretA βλ +−−+ 1

7 (7.12)

( ) ( ) ( ) ( ){ }tqtqtA 5,4
70707 +=  ( )tA0

( ) ( ) ( ){ }tqtq 4,5,4
71

)4(
71 ++  ( )tA1

( ) ( ){ }6,5,4
77

)6(
77 qtq ++  ( ) ( ){ }tretA −++−+ 1

7
λαθ (7.13)

Taking Laplace transforms for (7.11) – (7.13) and solving for 

( )sA*
0 , we get

( )sA*
0

( )
( )sD
sN

1

1=

where

( )sN1

( )[ ]
( ) ( ) ( )( )

( ) ( )( ) ( ) (





+×+−−−×

−−−

++−
=

∗∗

∗∗∗

*)6,5,3(
71

*)6,5,4,5,3(
17

*)4,5,4(
71

*)4(
7177

4,5,4
77

6

11
4,5,4,5,3

11
4,5,3

11
3

1
1

1
1

qqqqqq
qqq

sr αλ

( )
( )( ) ( ) ( )( )[ ]∗∗∗ −−×+

++−
+ 6,5,4

77
6

77
4,2

01
*
01 1

1
1 qqqq

sr βλ
 ( )*4,5,4,2

01q+

( ) ( )( ) ( ) ( )( )∗∗∗∗ +++ 4,5,4
71

4
71

6,5,4,2
07

6,2
07 qqqq
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( )
( )( ) ( ) (

( ) ( ) ( )( )





−−−×

+++×++

+−++
+

∗∗∗

∗

4,5,4,5,3
11

4,5,3
11

3
11

,2(
07

*)6,2(
07

*)6,5,4,5,3(
17

*)6,5,3(
17

4,5,4,2
01

)4,2(
01

*
01

11
1

qqq
qqqqqqq

srλαθ

and

 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( )( ) 











−−−

+++++
+−













++

+−−++
++

−












++−

−−−−−
−−=

∗∗∗

∗∗∗∗
∗∗

∗∗∗

∗∗∗∗
∗∗

∗∗∗∗

∗∗∗∗∗
∗

4,5,4,5,3
11

4,5,3
11

3
11

5,4
70

*
70

4,5,4
71

)4(
71

6,4,5,3
10

5,3
10

*
106,5,4,2

07
6,2

07

6,5,4,5,3
17

6,5,3
17

5,4
70

*
70

6,5,4
77

6
77

5,4,5,3
10

5,3
10

*
104,5,4,2

01
4,2

01
*
01

6,5,3
17

6,5,4,5,3
17

4,5,4
71

4
71

6,5,4
77

6
77

4,5,4,5,3
11

4,5,3
11

3
115,4,2

00
2

001

1

1

11
1

qqq
qqqqqqq

qq

qqqq
qqqqq

qqq

qqqq
qqqqq

qqsD

The steady state availability of the system is

( ) ( ) ( )
372110

321 .
1

1.
1

1.
1

1

UnUnUn

U
r

U
r

U
rA

++
−++

+
+−

+
+−

=∞
λαθβλαλ

where

( )( ) ( )
( ) 












+

+−−−−−−
=

)4,5,4(
71

)4(
71

)6,5,4,5,3(
17

)6,5,3(
17

)6,5,4(
77

)6(
77

)4,5,4,5,3(
11

)4,5,3(
11

)3(
11

1

11

pp

ppppppp
U

 

( )( ) ( )( )[ ])5,4(
7070

)6,5,4,2(
07

)6,2(
07

)6,5,4(
77

)6(
77

)5,4,2(
00

)2(
002 11 ppppppppU ++−−−−−=
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( )( )
( )( )









++++−

−−−−−
=

)5,4,5,3(
10

)5,3(
1010

)4,5,4,2(
01

)4,2(
0101

)4,5,4,5,3(
11

)4,5,3(
11

)3(
11

)5,4,2(
00

)2(
00

3

11
pppppp

ppppp
U

( )∑=
j

lk
jmn ,....,

00

( )∑=
j

lk
jmn ,....,

01

( )∑=
j

lk
jmn ,....,

77 ; .6,5,4,3,2, =lk

Therefore the interval availability (Sarma, 1982), for the interval 

( )t,0 is

( ) ( )duuA
t

tA
t

∫=
0

00
1 (7.14)

so that

( ) ( )
du

u
uA

sA ∫
∞ ∗

∗ =
0

0
0 (7.15)

The inherent (limiting interval) availability of the system is 

( ) ( ) ( ) 







==∞ ∫→∞→

t

st
duuALstAA

0
0

2

000 limlim

 ( ) ∞
∗

→
== AsAs

s 00
lim
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7.6  BUSY PERIOD ANALYSIS

By probabilistic arguments, we obtain the following equations for 

( )tiβ .

( ) [Pti =β the repairman is busy at t iS at t = 0]

( ) ( ) ( ){ }tqtqt )5,4,2(
00

)2(
000 +=β  ( )t0β

( ) ( ) ( ){ }tqtqtq )4,5,4,2(
00

)4,2(
0101 +++  ( )t1β

( ) ( ){ }tqtq )4,5,4,2(
07

)6,2(
07 ++  ( )t7β (7.16)

( ) ( ) ( ) ( ){ }tqtqtqt )5,4,5,3(
10

)5,3(
10101 ++=β  ( )t0β

( ) ( ) ( ){ }tqtqtq )4,5,4,5,3(
11

)4,5,3(
11

)3(
11 +++  ( )t1β

( ) ( ) ( ) ( ){ }tqtq 56,4,5,3
17

6,5,3
17 ++  ( )t7β (7.17)

( ) ( ) ( ){ }5,4
70707 qtqt +=β  ( )t0β

( ) ( ) ( ) ( ){ }tqtq 4,5,4
71

4
71 ++  ( )t1β

( ) ( ) ( ) ( ){ }tqtq 6,5,4
77

6
77 ++  ( ) tet θβ −+7 (7.18)

Taking the Laplace transforms for (4.16) – (4.18) and solve for 

( ) getwes ,*
0β

( ) ( )
( )sD
sN

s
2

3
0 =β (7.19

where
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( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )([ ∗∗∗∗∗ −−−++++
+

= *4,5,3
11

3
11

6,5,4,5,3
17

6,5,3
17
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and ( )sD2 is same as ( )sD1 .

Then the steady state probability that the repairman will be busy is

( ) ( ) ( )
( )sD
sN

sst
sot *

2

*
2

00
limlim === ∗

→∞→∞ βββ

( )
θ

3*
3 0

U
N =

The expected busy period of the repairman in ( ]t,0 is

( ) ( )duut
t

b ∫=
0

0βµ (7.20)

so that

( ) ( )
s

s
sU b

*
0* β

= (7.21)

and the expected idle period of the repairman in ( ]t,0 is

( ) ( )ttt bI µµ −= (7.22)

so that
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( ) ( )s
s

s bI
*

2
* 1

µµ −= (7.23)

As *
0β ( )s is known explicitly, these quantities can easily be 

calculated.

7.7 PROFIT ANALYSIS

The expected up-time of the system in ( ]t,0 can be calculated from 

the pointwise availability as 

( ) ( )dvvAt
t

u ∫=
0

0µ

so that  

( ) ( )
s

sA
su

∗
∗ = 0µ (7.24)

Let 0k represent the expected revenue per unit up-time 

and 1k , the expected repair cost per unit time, then the 

expected profit in ( ]t,0 is

( ) ( ) ( )tktktG bu µµ 10 −= (7.25)

The expected net profit per unit time in the long run is
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7.8 SPECIAL CASES

1. When the failure and repair times are independent; i.e. 

0=r

( )10012002

2021010

1 pppp
ppMTSF

+−
++

=
µµµ (7.26)

1

1

D
NA =∞ ;

2

2

D
N

=∞β

; 21 DD =

( ) ( )[ ]
( )( ) ( )[ ]32013102233101261

32232601

1
1

pppppppp
pppN

−++−+
−−=

µ
µ

( )[ ]3102320113022 pppppp −++ µ

( )[ ] ( )[ ]
( )[ ]3213013113022

32232601132231031132001

1
11

pppppp
ppppppppppD

+−+
−−+−−=

µ
µµ

 

( )[ ] ( )[ ]1001311326620021326133 11 pppppppppp −−+−−+ µµ

( ) ( )[ ] ( )[ ]2302261301331130232130162622 11 ppppppppppppN −−+−++= µµµ

2. When ( ) ( ) 0== vu ψφ and then the states 5431 ,, SandSSS do 

not exist. Then
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1

2
2λ

λµ (7.27)

( )
( )

12

2
121

−

∞ 







+

−+
=

λµθ
λ rA (7.28)

( ) ( )r−++
=∞ 122 2

2

λλµθ
λβ (7.29)

3. When there is no provision for rest and failure and repair times 

are independent

2

2
λ

λµ +
=MTSF (7.30)

( )
( ) 222

2
λµλµ

µλµ
++

+
=∞A (7.31)

( ) 2

2

2 λµλµ
λβ

++
=∞ (7.32)
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7.10 NUMERICAL ILLUSTRATION

When 10==θµ ; 0== βα .

Table 7.1
Profit

λ r =-0.5 r=0 r=0.5

0 100.0010 100.0911 100.1101

2 92.9110 93.1525 94.6616

4 79.1502 81.5612 85.0315

6 66.8816 73.6116 80.1506

8 54.1606 61.4441 69.7012

10 43.2806 53.3315 62.1111

12 40.0015 47.6106 56.0152

14 36.1585 42.6150 49.1566

16 32.6617 39.9915 45.8106
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Table 7.2

Profit

λ 3,4 == βα 0== βα

0 100.0911 100.0911

2 90.9106 93.1525

4 77.5505 81.5612

6 67.8819 73.6116

8 62.5531 61.4441

10 53.3316 53.3315

12 49.1606 47.6106

14 44.1629 42.6150

16 42.8718 39.4915

Table 7.2

CONCLUSIONS:
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From Table 7.1 we conclude that as failure rate increases the mean time to 

system failure (MTSF) decreases. For both models as the failure rate 

increases the MTSF of the system decreases but as the failure rate 

continues increasing MTSF goes on decreasing.

From Table 7.2 we conclude that for both models as the failure rate 

increases the profit of the system decreases but comparatively less when 

the failure rate increases less; model 2 is more beneficial than model 1 and 

as the failure rate continues increase the profit difference goes on 

decreasing. As cost per visit of the repairman increases, the profit of the 

system decreases.

To observe the effect of correlation and rest on the profit (in the steady 

state), we plot the profit function against λ ,

setting .20100,10 10 ==== kandkθµ The curves so obtained are 

shown in Table 7.1 and 7.2 respectively. In Table 7.1, in addition, we set 

0== βα and obtain three different curves for profit function vs 

λ .Taking r=-0.5, 0.0 and 0.5 respectively. In table 7.2, we put r=0 in 

addition to the values of 10 ,,, kkθµ and obtain two different values of 

profit function against λ ,one 

with ,4=α 3=β (i.e. when there is provision for rest) and the other with 

0== βα (i.e. when there is no provision for rest).

These values reveal two important facts:

1. The profit/unit time (in steady state) decreases with respect to the 

increase in λ . However, for the same λ the profit increases with 

increases in r. Thus a high positive correlation between failure and 

repair times tends to increase the profit earned by the system in steady 

state.
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The effect of providing rest for the operative unit depends on the 

proportion of values ofλ and µ. Although in both cases (i.e. when 

0== βα or when 3,4 == βα ) the profit decreases with increase in

failure rate, a favourable effect of providing rest is observed when only 

when λ > µ , i.e. when the failure rate is higher than the repair rate. As 

long as λ < µ, the provision of rest is nothing but a costly burden on the 

systems manager, and when λ = µ, the profit with or without rest is the 

same, so there is no advantage in providing rest. Thus, one must avoid 

providing rest as long as ≤λ µ . But since, in practice, most of the time, 

the failure rate is much higher than the repair rate, a considerable increase 

in profit can be obtained by providing rest to the operative unit and taking 

output from the standby unit during the rest time of the operating unit.  
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