PROBABILISTIC ANALYSIS OF REPAIRABLE REDUNDANT SYSTEMS

M. A. E. Muller
PROBABILITY ANALYSIS OF REPAIRABLE REDUNDANT SYSTEMS

by

MARIA ANNA ELIZABETH MULLER

submitted in accordance with the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Systems Engineering,

Faculty of Engineering, Built Environment and Information Technology,

UNIVERSITY OF PRETORIA

PRETORIA

PROMOTER: PROF. V. S. S. YADAVALLI

July 2005
ACKNOWLEDGEMENTS

My sincere gratitude goes to my promoter, Professor Yadavalli, for his excellent guidance and patience.

My gratitude also to all the members of the Department of Industrial and Systems Engineering who gave their support, guidance and friendship in abundance.

A word of thanks to the Department of Statistics, University of Namibia, who granted me leave to complete the degree.

Without the help of friends, like Dr. Mauritz van Schalkwyk, Anna and Emil Boshoff, this thesis would not have been possible. I particularly thank them.

I also appreciate the interest and support of my children and my family.

My sincere gratitude goes especially to my husband, Gert, who granted me leave of absence from home for such a long period to complete the final product.

Soli Deo Gloria
CONTENTS

SUMMARY

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION 2
1.2 FAILURE 6
1.3 REPAIRABLE SYSTEMS 6
1.4 REDUNDANCY AND DIFFERENT TYPES OF REDUNDANT SYSTEMS 8
 1.4.1 Parallel systems 9
 1.4.2 k-out-of-n: F system 9
 1.4.3 k-out-of-n: G-system 9
 1.4.4 n-out-of-n: G system 10
 1.4.5 Standby redundancy 10
 1.4.6 Priority redundant systems 11
 1.4.6.1 Pre-emptive priority 11
 1.4.6.2 Non-pre-emptive priority 12
1.5 INTERMITTENTLY USED SYSTEMS 12
1.6 MEASURES OF SYSTEM PERFORMANCE 13
 1.6.1 Reliability 13
 1.6.1.1 The reliability function 14
 1.6.1.2 Interval reliability 14
 1.6.1.3 Limiting interval reliability 15
1.6.1.4 Mean time to system failure 15

1.6.2 Availability 15

1.6.2.1 Instantaneous or pointwise availability 16

1.6.2.2 Interval availability 16

1.6.2.3 Average availability 16

1.6.2.4 Asymptotic or steady-state or limiting availability 17

1.6.3 Time to first disappointment 17

1.6.4 Mean number of events in \((0, t]\) 17

1.6.5 Confidence limits for the steady state availability 18

1.7 STOCHASTIC PROCESSES USED IN THE ANALYSIS OF REDUNDANT SYSTEMS 18

1.7.1 Renewal theory 18

1.7.1.1 Ordinary renewal process: instantaneous renewal 20

1.7.1.2 Random renewal time 21

1.7.1.3 Alternating renewal processes 22

1.7.1.4 The age and remaining lifetime of a unit 23

1.7.2 Semi-Markov and Markov renewal processes 24

1.7.3 Regenerative processes 27

1.7.4 Stochastic point processes 28

1.7.4.1 Multivariate point processes 29

1.7.4.2 Product densities 30

1.8 SCOPE OF THE WORK 31

1.9 GENERAL NOTATION 33
CHAPTER 2: CONFIDENCE LIMITS FOR THE STEADY-STATE AVAILABILITY OF A STOCHASTIC MODEL OF UREA DECOMPOSITION SYSTEM IN THE FERTILIZER INDUSTRY

2.1 INTRODUCTION 36

2.2 SYSTEM DESCRIPTION AND NOTATION 41

2.3 AVAILABILITY ANALYSIS OF THE SYSTEM 44

2.4 INTERVAL ESTIMATION FOR A_x 45

2.5 NUMERICAL ILLUSTRATION 47

2.6 CONCLUSION 53

CHAPTER 3: TWO-UNIT PRIORITY REDUNDANT SYSTEM WITH ‘DEADTIME’ FOR THE OPERATOR

3.1 INTRODUCTION 55

3.2. SYSTEM DESCRIPTION AND NOTATION 56

3.3 AUXILLIARY FUNCTIONS (TRANSITION PROBABILITIES AND SOJOURN TIMES) 61

3.4 RELIABILITY ANALYSIS 62

3.5 SYSTEM MEASURES 64

3.5.1 Mean up time in $(0, t]$ 64

3.5.2. Mean down time during $(0, t]$ 66

3.5.3 Busy period analysis 67
3.5.4 Expected number of visits by the repairman in (0, t]

3.6 COST BENEFIT ANALYSIS

3.7 SPECIAL CASES

3.8 NUMERICAL ANALYSIS

3.9 CONCLUSION

CHAPTER 4: CONFIDENCE LIMITS FOR A TWO-UNIT COLD STANDBY PRIORITY SYSTEM WITH VARYING PHYSICAL CONDITIONS OF THE REPAIR FACILITY

4.1 INTRODUCTION

4.2 NOTATION

4.3 AUXILIARY FUNCTIONS

4.4 RELIABILITY ANALYSIS

4.5 AVAILABILITY ANALYSIS

4.6 BUSY PERIOD ANALYSIS

4.7 COST ANALYSIS

4.8 CONFIDENCE LIMITS

4.8.1 Confidence limits for A_{∞}

4.8.2 Confidence limits for B_{∞}

4.9 NUMERICAL ILLUSTRATION

4.10 CONCLUSION
CHAPTER 5: GENERAL MEASURES OF A THREE-UNIT COLD STANDBY REDUNDANT SYSTEM

5.1 INTRODUCTION 101

5.2 ASSUMPTIONS AND NOTATION 102

5.2.1 Assumptions 102

5.2.2 Notation 103

5.3 ANALYSIS 104

5.3.1 Auxilliary functions 104

5.3.2 Reliability analysis 106

5.3.3 Availability analysis 106

5.3.4 Measures of system performance 107

5.3.4.1 Expected number of transitions from state 0 to state 1 in (0, t] 107

5.3.4.2 Expected number of repairs commenced in (0, t] 108

5.3.4.3 Expected number of repairs completed in (0, t] 108

5.3.4.4 Expected number of system breakdowns in (0, t] 109

5.3.4.5 Expected number of system recoveries in (0, t] 109

5.4 SPECIAL CASES 110

5.4.1 Model 1 110

5.4.2 Model 2 112

5.5 COST ANALYSIS 113

5.6 NUMERICAL RESULTS 113
CHAPTER 6: A STOCHASTIC MODEL OF A RELIABILITY SYSTEM

WITH A HUMAN OPERATOR

6.1 INTRODUCTION
6.2 SYSTEM DESCRIPTION AND NOTATION
6.3 TRANSITION PROBABILITIES AND SOJOURN TIMES
6.4 RELIABILITY ANALYSIS
6.5 AVAILABILITY ANALYSIS
6.6 EXPECTED NUMBER OF VISITS TO A STATE AND EXPECTED PROFIT
6.7 NUMERICAL ILLUSTRATION
6.8 CONCLUSION

BIBLIOGRAPHY
SUMMARY

Two well-known methods of improving the reliability of a system are

(i) provision of redundant units, and

(ii) repair maintenance.

In a redundant system more units are made available for performing the system function when fewer are actually required. There are two major types of redundancy – parallel and standby.

Some of the typical assumptions made in the study of standby redundant systems are:

(a) the repair facility can take up a failed unit for repair at any time, if no other unit is undergoing repair

(b) the state of the standby unit is either cold or warm throughout

(c) the random variables like failure times and repair times are independent

(d) the failures can be in one mode

(e) estimation of operating characteristics.

In this testis, an attempt is made to study a few complex and novel models of standby redundant repairable systems by relaxing one or more of these assumptions.

A number of interesting and important characteristics useful for reliability practitioners and system designers are obtained for several models. Further, emphasis is also laid on the construction of comprehensive cost functions and their numerical optimization. We give below the conclusions and the possible extensions for future work. These conclusions are drawn from a limited but reasonably exhaustive numerical work carried out.
The thesis contains six chapters. Chapter 1 is introductory in nature and contains a brief description of various types of systems and the mathematical techniques used in the analysis of redundant systems.

In Chapter 2, a stochastic model of an urea decomposition system in the fertilizer industry is studied. A set of difference-differential equations for the state probabilities are formulated under suitable conditions. The state probabilities are obtained explicitly and the steady state availability of the system is obtained analytically as well as illustrated numerically. Confidence limits for the steady state availability are also obtained.

A two dissimilar unit system with different modes of failure is studied in Chapter 3. The system is a priority system in which one of the units is a priority unit and the one other unit is an ordinary unit. The concept of ‘dead time’ is introduced with the assumption that the ‘dead time’ is an arbitrarily distributed random variable. The operating characteristics like MTSF, Expected up time, Expected down time, and the busy period analysis, as well as the cost benefit analysis is studied. These characteristics have been demonstrated numerically.

Chapter 4 is a study of a two unit cold standby system with varying physical conditions of the repair facility. The system measures like MTSF, Availability, Busy period of the repairman, etc. are studied. Confidence limits, the steady state availability and the busy period of the repairman in the steady state are also obtained.

In most of the available literature on n-unit standby systems, many of the associated
distributions are taken to be exponential, one of the main reasons for this assumption is the number of built-in difficulties otherwise faced while analysing such systems. In Chapter 5, this exponential nature of the distributions is relaxed and a general model of a three unit cold standby redundant system, where the failure and repair time distributions are arbitrary, is studied.

In Chapter 6, a stochastic model of a reliability system which is operated by a human operator is studied. The system fails due to the failure of the human operator. Once again, it is assumed that the human operator can be in any one of the three states; namely, normal stress, moderate stress or extreme stress. Different operating characteristics like availability, mean number of visits to a particular state and the expected profit are obtained. The results are illustrated numerically.