SUSTAINABLE PROJECT LIFE CYCLE MANAGEMENT: CRITERIA FOR THE SOUTH AFRICAN PROCESS INDUSTRY

by

Carin Labuschagne

Submitted in partial fulfilment of the requirements for the degree of

MASTERS OF ENGINEERING (INDUSTRIAL ENGINEERING)

in the

FACULTY OF ENGINEERING, BUILT ENVIRONMENT AND INFORMATION TECHNOLOGY

UNIVERSITY OF PRETORIA

PRETORIA

OCTOBER 2002
Dissertation Summary

Sustainable project life cycle management: Criteria for the South African process industry

CARIN LABUSCHAGNE

SUPERVISOR: Prof S. J. Coertzen

CO-SUPERVISOR: Mr A. G. Rood

DEPARTMENT: Department of Mechatronic Engineering

UNIVERSITY OF PORT ELIZABETH

VICE-CHANCELLOR: Prof. S. J. Coertzen

"Nature is neutral.

Man has wrested from nature

the power to make the world a desert

or to make deserts bloom.

There is no evil in the atom; only in men's souls."

- Adlai Ewing Stevenson, 1952.
Dissertation Summary

Sustainable project life cycle management: Criteria for the South African process industry

CARIN LABUSCHAGNE

SUPERVISOR: Prof. S.J. Claasen
CO-SUPERVISOR: Mr. A.C. Brent
DEPARTMENT: Department of Industrial & Systems Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria
DEGREE: Masters of Engineering (Industrial Engineering)
KEYWORDS: project management framework, environmental impact, life-cycle approach, corporate decision-making, project evaluation, business sustainability, sustainability indicators, environmental framework, multi criteria decision analysis, management practices

Sustainable development aims to meet present needs without compromising the ability of future generations to meet their own needs. The concept has three definite objectives namely social equity, economic efficiency and environmental efficiency. Sustainability criteria are becoming factors within international trade agreements and governments worldwide are introducing more stringent legislation with regards to environmental issues in order to address sustainability. Business sustainability is thus becoming a prerequisite for global competitiveness and companies worldwide are adapting core competencies, policies, culture, business processes and decision-making processes to incorporate the objectives of sustainable development. Project management, as a core competency, must therefore incorporate planning, execution and implementation procedures within the broader sustainability framework.

The strategic importance of project management drives the integration of environmental and social objectives into a life-cycle project management framework, since economic aspects of sustainability are effectively considered in current project appraisal procedures. The aim of this dissertation is to develop a decision-making framework for projects in the South African process industry that incorporates environmental sustainability. Social aspects are not
considered at first because the incorporation of sustainability into businesses traditionally start by focussing on environmental aspects only.

The necessary environmental management tools and approaches to address environmental sustainability do exist, although all of the tools are not utilized in the current project life cycle management framework. The dissertation therefore proposes the promotion of other environmental management tools within this framework. An Environmental Evaluation Matrix (EEM) tool has been developed as part of the dissertation. The EEM tool is proposed as a strategic tool that can bridge the gap between decision-makers and designers, while simultaneously providing key environmental information for decision-making purposes and prompting designers to consider environmental aspects often ignored. A case study identified strengths and weaknesses of the tool. It is evident that the concept can be effective but the scoring guidelines of the tool will have to be adapted to be company specific.

Environmental information can be incorporated into the decision-making process by either expressing it in financial terms or by expressing it separately and using multi criteria decision analysis techniques to weigh environmental and economic aspects against each other. At each evaluation point within the project life cycle one of the techniques, or a combination thereof, can be used.

The implementation of the proposals to incorporate environmental sustainability criteria into a project life cycle management framework requires a paradigm shift at all levels within the company. However, due support from top management is a necessity to ensure that environmental aspects are adequately supported by management practices.
Table of Contents

Chapter 1: Introduction to Sustainability ... 1
 1.1 International History of Sustainable Development 1
 1.1.1 Environmentalism ... 1
 1.1.2 Sustainable Development Defined 3
 1.2 The concept of "Sustainable Development" 4
 1.2.1 Fundamentals of Sustainable Development 4
 1.2.2 Business Sustainability ... 6
 1.3 Sustainable Development in South Africa 8
 1.3.1 Apartheid era ... 8
 1.3.2 Post-Apartheid Era .. 9
 1.4 Business Sustainability in South Africa 11
 1.4.1 South African Process Industry 11
 1.4.2 State of Business Sustainability in South Africa ... 13
 1.5 Aim of the dissertation .. 14
 1.6 Layout of document .. 14
 1.7 Conclusion .. 15

Chapter 2: Environmental Management Tools 16
 2.1 Introduction to Environmental Management 16
 2.2 ISO 14000 ... 18
 2.3 Incorporating ISO 14000 in existing business practices 19
 2.3.1 Environmental Management System (EMS) 19
 2.3.2 Integrated concepts in environmental management tools 20
 2.4 Environmental Management Tools: Organizational focus 24
 2.4.1 Strategic Environmental Assessment (SEA) 24
 2.4.2 Environmental Accounting ... 25
 2.4.3 Environmental Auditing ... 26
 2.5 Environmental Management Tools: Product/Process Focus 28
 2.5.1 Environmental Labelling ... 28
 2.5.2. Environmental Risk Assessment (ERA) 28
 2.5.3. Environmental Impact Assessment (EIA) 30
 2.5.4. Technology Assessment ... 33
 2.5.5 Life Cycle Engineering ... 34
 2.6 Conclusion .. 40

Chapter 3: Corporate Project Life Cycle Management 42
 3.1 History of Project Management ... 42
 3.2 Project Life Cycle Management .. 44
 3.2.1 Project Life Cycle ... 44
 3.2.2 Project Life Cycle Management Framework 48
 3.2.3 Evaluation of the project life cycle management framework 54
 3.3 Incorporating Environmental Sustainability into Project Life Cycle Management .. 55
 3.3.1 Available Tools ... 55
 3.3.2 Life Cycle Interaction .. 56
 3.3.3 Proposed Changes to the Project Life Cycle Management Framework 60
 3.4 Conclusion .. 61

Chapter 4: Environmental Indicators for the development of a corporate strategic decision tool 62
 4.1 Environmental Concerns ... 62
 4.1.1 Reaction to Environmental Concerns 63
 4.2 Sustainable Development Indicators to address environmental concerns .. 64
 4.2.1 United Nation's Indicators of Sustainable Development 64
 4.2.2 European Union's Indicators for Environmental Sustainability ... 66
 4.2.3 South Africa's Indicators for Environmental Sustainability ... 67
List of Figures

Figure 1.1 Objectives of Sustainable development 5
Figure 1.2 Schematic Presentation of Sustainable Development 5
Figure 1.3 Three-stage journey towards sustainable development 7
Figure 1.4 Sustainable development pyramid 10
Figure 1.5 The process industry as part of the supply chain 12
Figure 1.6 Layout of document 14
Figure 2.1 Focus areas of TC 207 committee 18
Figure 2.2 Focus Areas of different management tools for an EMS 19
Figure 2.3 Private and Societal Environmental costs 20
Figure 2.4 Environmental Costs incurred by companies 21
Figure 2.5 Cause-effect chain of Environmental Impacts 23
Figure 2.6 Relationship between different SEA Models 25
Figure 2.7 Relationship between Risk Assessment and Risk Management 29
Figure 2.8 Interrelationship between EIA, SIA, TA and RA 32
Figure 2.9 Life Cycle Engineering Methodology 34
Figure 2.10 LCA Framework 36
Figure 2.11 Environmental Management Tools applied over a generic System 41
Figure 3.1 Project Life Cycle Models 45
Figure 3.2 Project Life Cycle 47
Figure 3.3 Staged Project Life Cycle Management Framework 49
Figure 3.4 Typical Gate Criteria 52
Figure 3.5 Extent of current environmental considerations during project management in South Africa 54
Figure 3.6 Environmental Management Tools applied over a generic project life cycle 55
Figure 3.7 Product Development Life Cycle 56
Figure 3.8 Product Manufacturing Life Cycle 57
Figure 3.9 Process Life Cycle Model (Gradel) 57
Figure 3.10 Process Life Cycle (Intergraph Process, Power & Offshore) 58
Figure 3.11 Process Life Cycle 58
Figure 3.12 Interaction between product and process life cycles 59
Figure 3.13 Interactions between project, process and product life cycles 60
Figure 4.1 Classification of Environmental Concerns 62
Figure 4.2 United Nation's key themes for Environmental Sustainability Indicators 65
Figure 4.3 European Union's framework for Environmental Sustainability Indicators 66
Figure 4.4 National Environmental Indicators for South Africa 67
Figure 4.5 Framework to classify possible environmental impacts of projects 72
Figure 5.1 Interaction between process- and product life cycle 77
Figure 5.2 Basic Syntax of IDEFØ 78
Figure 5.3 IDEFØ Diagrams for Process Development Phases 79
Figure 5.4 Phases represented as Black Boxes 80
Figure 5.5 Main activities in each phase 80
Figure 5.6 Project Life Cycle 81
Figure 5.7 The “bridge” between designers and decision makers 82
Figure 5.8 Three Dimensional Evaluation Matrix 83
Figure 5.9 Two Dimensional Evaluation Matrix 84
Figure 5.10 Scoring Grid to determine risk factor 85
Figure 5.11 Examples of a completed matrix at each gate 90
Figure 6.1 Project Time Line for Project A 93
Figure 6.2 Environmental Evaluation Matrices for Gate 1 to 3 94
Figure 6.3 Results on a similar scale 95
Figure 7.1 Classification of Methodologies to incorporate environmental aspects 101
Figure 7.2 A simple valuation flowchart 103
Figure 7.3 Phases where TCA can be applied in an overall Project Management Framework 107
Figure 7.4 Balanced Scorecard Approach 109
Figure 7.5 Balanced Scorecard for Project Management 110
Figure 7.6 Project and component-level indicators 112
Figure 7.7 Environmental Matrix for Project Q 114
Figure 7.8 Environmental Baseline for Gate 2 (Example) 115
Figure 8.1 Extent of current environmental considerations in a typical project management framework. 119
Figure 8.2 Gate criteria addressing environmental sustainability 121
Figure 8.3 Environmental Deliverables 122
Figure 8.4 Future Research 124
Figure C.1 Fabrycky and Blanchard LCCA Methodology 137
Figure C.2 Fabrycky and Blanchard Cost Breakdown Structure 138
Figure C.3 Woodward-Kaufmann LCCA Methodology 139
Figure C.4 Cost of Labour Breakdown Structure 141
Figure C.5 The methodological framework for LCECA Model 146
Figure C.6 Cost Breakdown Structure for Eco-Costs 147
Figure D.1 Greenhouse Effect 149
Figure D.2 Ozone Depletion Process 150
Figure J.1 Example of pair-wise comparison matrix 244
List of Tables

Table 1.1 Principles of Sustainable Development 6
Table 1.2 The Three-Stage journey towards sustainable development 7
Table 2.1 Comparison between BS 7750, EMAS and ISO 14000 17
Table 2.2 Environmental Cost Definitions 21
Table 2.3 Different levels of effects caused by greenhouse gas release 22
Table 2.4 Types of Technology 23
Table 2.5 Technology Stages 23
Table 2.6 Differences between LCA and LCC 35
Table 2.7 Proposed Tools for cases where LCA is not applicable 37
Table 2.8 Comparison of Existing LCCA Methodologies 39
Table 3.1 Life-Cycle Phases for Project Management Maturity 43
Table 3.2 Phases in the Project Life Cycle 46
Table 3.3 Alignment of individual project life cycles with generic project life cycle 47
Table 3.4 Mapping of the Project and Process Life Cycles 59
Table 4.1 United Nation's Theme Indicator Framework for Environmental Sustainability 65
Table 4.2 Indicators of sustainable development for industry: a general framework 68
Table 4.3 GRI's Environmental Performance Indicators 69
Table 4.4 Focus Areas of Environmental Checklists 71
Table 4.5 Indicators for Water Resource 73
Table 4.6 Indicators for Air Resource 74
Table 4.7 Indicators for Land 75
Table 4.8 Indicators for Mined Resources 75
Table 5.1 Definitions of main activities 81
Table 5.2 Aspects scoring guidelines should focus on for Construction phase 86
Table 5.3 Questions of concern for Construction Phase 86
Table 5.4 Aspects scoring guidelines should focus on for Operation phase 87
Table 5.5 Questions of concern for Operation Phase 87
Table 5.6 Aspects scoring guidelines should focus on for Decommissioning phase 88
Table 5.7 Questions of concern for Decommissioning Phase 89
Table 6.1 Expressing scores as percentages 95
Table 6.2 Strengths and Weaknesses of Scoring Guidelines 99
Table 6.3 Examples of questions to address environmental performance of suppliers 99
Table 7.1 Valuation Methods 104
Table 7.2 Classification of valuation methods based on applicability 105
Table 7.3 Costs included in TCAM 107
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AICHE</td>
<td>The American Institute of Chemical Engineers</td>
</tr>
<tr>
<td>BSC</td>
<td>Balanced Scorecard</td>
</tr>
<tr>
<td>CORE</td>
<td>Coalition for Environmentally Responsible Economics</td>
</tr>
<tr>
<td>CWRT</td>
<td>Centre for Waste Reduction Technologies</td>
</tr>
<tr>
<td>EEM</td>
<td>Environmental Evaluation Matrix</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>EIO</td>
<td>Economic Input-Output</td>
</tr>
<tr>
<td>EMS</td>
<td>Environmental Management System</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency (United States)</td>
</tr>
<tr>
<td>ERA</td>
<td>Environmental Risk Assessment</td>
</tr>
<tr>
<td>IEED</td>
<td>International Institute for Environment and Development</td>
</tr>
<tr>
<td>IEF</td>
<td>Industrial Environmental Forum</td>
</tr>
<tr>
<td>IEM</td>
<td>Integrated Environmental Management</td>
</tr>
<tr>
<td>IISD</td>
<td>International Institute for Sustainable Development</td>
</tr>
<tr>
<td>ISIC</td>
<td>International Standard Industrial Classification of all Economic Activities</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for the Conservation of Nature/ World Conservation Union</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GRI</td>
<td>Global Reporting Initiative</td>
</tr>
<tr>
<td>LCA</td>
<td>Life Cycle Assessment</td>
</tr>
<tr>
<td>LCC</td>
<td>Life Cycle Cost</td>
</tr>
<tr>
<td>LCCA</td>
<td>Life Cycle Cost Analysis</td>
</tr>
<tr>
<td>LCE</td>
<td>Life Cycle Engineering</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-Operation and Development</td>
</tr>
<tr>
<td>SANF</td>
<td>Southern African Nature Foundation</td>
</tr>
<tr>
<td>SEA</td>
<td>Strategic Environmental Assessment</td>
</tr>
<tr>
<td>SIA</td>
<td>Social Impact Assessment</td>
</tr>
<tr>
<td>SIC</td>
<td>Standard Industrial Classification of all Economic Activities</td>
</tr>
<tr>
<td>TCAM</td>
<td>Total Cost Assessment Methodology</td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Program</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environmental Program</td>
</tr>
<tr>
<td>WBCSD</td>
<td>World Business Council for Sustainable Development</td>
</tr>
<tr>
<td>WCED</td>
<td>World Commission on Environment and Development</td>
</tr>
<tr>
<td>WRI</td>
<td>World Resource Institute</td>
</tr>
<tr>
<td>WSSD</td>
<td>World Summit on Sustainable Development</td>
</tr>
<tr>
<td>WWF</td>
<td>World Wildlife Fund/ Worldwide Fund for Nature</td>
</tr>
</tbody>
</table>