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Chapter 2  Logic developments of three novel improved 

order tracking approaches 

 

 

In this chapter, three novel improved order tracking approaches are developed 

based upon available order tracking methods, namely Vold-Kalman filter order 

tracking and computed order tracking, Intrinsic mode function and Vold-Kalman 

filter order tracking and intrinsic cycle re-sampling.  The logic of the discussions 

on three improved approaches is outlined below to simplify understanding of the 

thesis: 

 

1. The discussions on the Vold-Kalman filter and computed order tracking 

(VKC-OT) method emphasize the benefits that each order tracking method 

(VKF-OT and COT) brings to the subsequent Fourier analysis so that the 

method can provide clearer order spectra.  

 

2. The discussions on the intrinsic mode function and Vold-Kalman filter order 

tracking (IVK-OT) method emphasize the relationship between an intrinsic 

mode function and an order wave so that the sequential use of the two methods 

is developed to distinguish useful information in an IMF in terms of rotational 

speed. 

 

3. The discussions on intrinsic cycle re-sampling (ICR) method emphasize the 

logic of exclusion frequency variation effects in an IMF and the interpretation 

of the resultant reconstructed IMF through empirical re-sampling.  So that the 

rationale of the method to approximate order tracking effects as well as how to 

use ICR spectra results can be clarified. 
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2.1 Vold-Kalman filter and computed order tracking  

 

The first technique is a novel technique that combines the use of Vold-Kalman 

filter order tracking and computed order tracking to improve the subsequent 

Fourier analysis and therefore to achieve a clear and focused order spectrum.  It is 

called Vold-Kalman filter and computed order tracking (VKC-OT).  Combining 

the use of the two order tracking methods to improve the subsequent Fourier 

analysis requires an understanding of the nature of these techniques and how their 

characteristics affect the Fourier analysis.  Therefore, in the following each order 

tracking method will be discussed in terms of its characteristics for the subsequent 

Fourier analysis. 

 

2.1.1 Discussions on Vold-Kalman filter order tracking 

 

Herlufsen et al. (1999) describe order tracking as the art and science of extracting 

the sinusoidal content of measurements, with the sinusoidal content or 

orders/harmonics at frequencies that are multiples of the fundamental rotational 

frequency.  To this end, VKF-OT relies on two equations to complete the filtering, 

namely the data equation and the structural equation.  These equations define 

local constraints, which ensure that the unknown phase assigned orders are smooth 

and that the sum of the orders should approximate the total measured signal.  This 

implies that the order components extracted from the Vold-Kalman filter should be 

harmonic and smooth waves.  To explore the reason that these arguments are 

valid, the analytical form of data and structural equations described by Tůma (2005) 

are considered here for discussion. 

 

Data equation 

 

Assuming a second-generation Vold-Kalman filter for single order filtering, the 

data equation is defined as 
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        nenxny nj    (2.1) 

where  ny  is the measured data,  nx  is a complex envelope of filtered signal, 

 nje   is a complex carrier wave, and  

 
    tin

n

i

 
1

  
(2.2) 

where  i  is the discrete angular frequency, and  n  is the random noise and 

other order components, or error term. 

 

From equation (2.1), it clearly shows that the order component    njenx  is a 

harmonic natured waveform.  The frequency modulation of the signal is 

determined by  nje  .  Further, equation (2.2) indicates that  n  is the sum of 

  ti   from ni ,...,1 , and  i  may vary from time to time, or be 

non-stationary, consequently    njenx   may also be non-stationary.  It follows 

from the above analysis that the order component from a Vold-Kalman filter is a 

harmonic natured wave which may be non-stationary. 

 

Structural equation  

 

The structural equation provides the smoothness of successive digital points of 

filtered data, by fitting a low-order polynomial to the sequence  nx .  This 

condition is enforced through the structural equation with the unknown 

non-homogeneity term  n on the right-hand side of the equation.  The 

polynomial order designates the number of the filter poles.  By way of example, 

the structural equation for a two-pole filter is given by, 

      nnxnxnx  )2(12  (2.3) 

Rearranging   
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      nnxnxnx  )2(12  
(2.4) 

It can be seen that with the two-pole filter, for any three immediately adjacent 

points of the sequence  nx  are constrained through the structural equation.  

This smoothes the filtered order data from the raw data.  To demonstrate this idea, 

the smoothness condition for such a two-pole filter is illustrated in Appendix by 

rearranging equations (2.3) to (2.4). 

 

Considering the data and structural equations presented above, one may conclude 

that the order components extracted from the Vold-Kalman filter are smooth and 

harmonic waves, but they may be non-stationary. 

 

2.1.2 Discussions on computed order tracking 

 

Computed order tracking is a very commonly performed and effective order 

tracking technique.  Although inevitably errors will be introduced during the 

re-sampling process and its artificial assumptions (Fyfe and Munck, 1997), the 

technique still renders very useful results, and effectively transforms 

non-stationary time domain data to stationary angular domain data for rotating 

machinery.  Blough (2003) uses a graphic representation to explain this 

transformation process on a simple sine wave.  This is illustrated in chapter 1 

Figure 1.3.  It clearly demonstrates that the re-sampled data has the same 

properties as a stationary frequency sine wave sampled at uniform time intervals.  

This uniformly spaced re-sampled data or stationary re-sampled data can be 

effectively processed by using traditional Fourier transform to obtain clear 

estimates of the orders of interest.  This implies a clearer analysis of the signal 

using the Fourier transform.  However, COT does not address the quality of the 

raw data.  Imperfections, such as distorted harmonic waves and noise, continue to 

exist.  Besides, COT can only deal with the raw data as a whole and therefore 

loses the ability to separate each different order signal from the raw signal. 
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2.1.3 Development of Vold-Kalman filter and computed order tracking  

 

The main ideas from above discussions about two techniques may be summarized 

as follows: 

 

 Equation (2.1) indicates that the order components from the Vold-Kalman 

filter are clearly harmonic in nature. 

 

 Equations (2.1) and (2.2) show that these order components may be 

harmonic waves of varying frequency due to the possibility of the varying 

fundamental frequency )(i  

 

 Equation (2.3) can be further demonstrated that the filtered order 

components from the Vold-Kalman filter are smooth waves. 

 

 It can be seen from discussion of computed order tracking that the 

re-sampling process can transform varying frequency harmonic waves to 

stationary frequency harmonic waves.  A Fourier analysis is then used to 

transform the re-sampled time domain data to the order domain. 

 

Based upon the discussion of Vold-Kalman filter order tracking above, it is argued 

that the Vold-Kalman filter enforces the smoothness as well as the harmonic nature 

of the filtered data.  The harmonic nature does not, however, ensure a stationary 

harmonic wave, although the re-sampling process can transform data from a 

non-stationary harmonic wave to a stationary harmonic wave in frequency.  This 

suggests the possibility of using a Vold-Kalman filter to obtain smooth but 

possibly varying frequency harmonic waves and then transforming them to 
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become stationary in frequency by using the re-sampling process of computed 

order tracking.   

 

Therefore, if data are obtained from a non-stationary and noisy real machinery 

system and the data are then processed through a Vold-Kalman filter followed by 

the re-sampling process of COT, one may obtain order waves that are smooth, 

stationary frequency harmonic waves.  Under these conditions the stringent 

requirements of Fourier analysis are largely satisfied.  One may therefore expect 

clear and focused order spectra by means of this process.  Based upon the above 

reasoning it follows that if the two order tracking methods are applied in sequence 

(VKF-OT and then COT), the restrictions of Fourier analysis can be largely 

satisfied to render clean order spectra.  This combined use of order tracking 

techniques may be referred to as Vold-Kalman filter and computed order tracking 

(VKC-OT).  Figure 2.1 describes graphically the logic of the combined use of the 

two order tracking techniques in sequence. 

 

 

 

Figure 2.1 Logic of VKC-OT 

 

VKF-OT 

 COT 

Smooth, stationary frequency harmonic 

waves and therefore clean and clear 

order spectrum via Fourier analysis.  

 

 

Possible raw data characteristics:            

1. Imperfections, e.g. noise 

contaminated and distorted harmonic 

waves, etc. 

2. Varying in frequency 
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2.2 Intrinsic mode function and Vold-Kalman filter order tracking  

 

The literature indicates that both IMFs and order tracking techniques are effective 

in diagnosing faults in rotating machinery, e.g. Eggers et al. (2007); Gao et al. 

(2008); Wu et al. (2009).  This suggests investigating the relationship between 

IMFs and order waves.  However, this has not been explored further in the 

literature.  To this end, the following will firstly exploit the relationship between 

an intrinsic mode function (IMF) and an order wave in rotating machinery and then 

develop the Intrinsic mode function and Vold-Kalman filter order tracking 

(IVK-OT) technique of combining abilities of two kinds of methods. 
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2.2.1 Discussions on the relationship between an intrinsic mode function and 

an order waveform in time domain 

 

a. An order waveform 

 

As has been discussed in the literature survey, there are several types of order 

tracking techniques.  Some cannot extract time domain data (e.g. COT) whereas 

some are capable of extracting time waveforms by using additional information, 

usually rotational frequency (e.g. VKF-OT).  In spite of these distinctions, in 

essence an order can generally be described as ‘a time varying phasor that rotates 

with an instantaneous frequency related to the rotational frequency of the reference 

shaft’, as shown in equation (2.5) (Blough, 2003). 

 























 kt

p

k
itkAtx 2sin),()(

 

(2.5) 

where )(tx  is the order time series, t  is time, ).( tkA  is the amplitude of the 

order k  which is being tracked as a function of t , p  is the period of the 

primary order in seconds, and k  is the phase angle of order k .  Equation (2.5) 

defines an order as a time series combining amplitude modulation (AM) and 

frequency modulation (FM).  Both amplitude and frequency modulations are 

functions of the order of interest k  and time t .  It should also be noted that 

equation (2.5) actually enforces an order wave of a sinusoidal nature. 

   

b. An intrinsic mode function from empirical mode decomposition  

 

A discussion about an IMF should start with EMD.  For a given signal )(txg , 

EMD ends up with a representation of the form (Flandrin et al., 2004): 
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



K

k

Kkg tmtdtx
1

)()()(  
(2.6) 

where { Kktdk ,....1),(  } are the modes that are constrained to be zero-mean 

amplitude modulation frequency modulation waveforms and )(tmK  represents a 

residue signal.  These modes are called intrinsic mode functions (IMFs). 

 

This methodology obviously does not give precise mathematical definitions of 

each )(tdk  and )(tmK .  Flandrin et al. further point out that this makes it 

difficult to evaluate the performance of EMD.  However, researchers (Huang et 

al., 2006 and Yang et al., 2008) have developed an empirical AM/FM 

demodulation technique for the purpose of resolving many of the traditional 

difficulties associated with instantaneous frequency calculations, giving a simple 

description of an IMF in terms of a normalized frequency modulation part and an 

amplitude modulation part.  Accordingly, any IMF from { Kktdk ,....1),(  } can 

be written as: 

 )(cos)()( ttAtd e . (2.7) 

The suffix k  omitted means )(td  can be any one of IMFs where )(tA  is the 

amplitude modulation part, )(cos te  is the normalized empirical frequency 

modulation part and t  is time.   

 

In the equation, )(tA  is determined by the empirical envelope obtained through 

the spline fitting of the maxima points of the IMF signal.  Both )(tA  and 

)(cos te  are dependent on the data itself and are functions of time t .  However, 

it should be noted that the term )(cos te  actually enforces the oscillatory nature, 

though at each time instant, the phase angle and frequency of the carrier wave will 

not both be defined. 
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From the basic discussions above regarding an order and an IMF, as well as 

equations (2.5), (2.6) and (2.7), it can now be observed that:  

 

 An order can be extracted from the original signal as a modulated signal in 

both amplitude and frequency, as shown in equation (2.5).  Similarly, 

EMD can also decompose the original signal into IMFs, which are 

amplitude and frequency modulation waveforms plus a residue signal. 

 

 Both an order waveform and an IMF can be treated as two parts, namely 

amplitude parts ),( tkA  and )(tA  as well as phase parts 























kt

p

k
i 2sin  and )(cos te . 

 

 The amplitude part ),( tkA  of the order waveform is a function of time t  

and order of interest k .  The amplitude part )(tA  of an IMF is only a 

function of time t  and is determined by the data itself.  This implies that 

the order waveform amplitude can be part of an IMF amplitude or 

)(),( tAtkA  .  

 

 Similarly, the phase part 












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


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
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k
i 2sin  of the order waveform and 

)(cos te  of an IMF can also have the relationship 

)(cos2sin tt
p
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It can therefore be inferred from these observations that an IMF may include order 

waveforms plus other relevant information.  The combination of order waveforms 
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and other relevant information must satisfy the definition of an IMF.  The 

definition of an IMF was originally stated by Huang et al. (1998) and has been 

referred to in Chapter 1 paragraph 1.2.3.  This definition guarantees that 

amplitude and frequency modulation signals can both be extracted as IMFs. 

 

2.2.2 Discussions on the relationship between an intrinsic mode function and 

an order waveform in order domain  

 

The preceding discussions are based upon equations in the time domain.  

However, the order domain should also be considered so as to explore the 

characteristics of an order and an IMF.  Firstly, equation (2.5) for an order may 

be written as an analytical signal: 

  jk

o ekAx ),()(   (2.8) 

where ),( kAo  is the amplitude component of order k , jke is the unit 

sinusoidal wave of order k , k  is the order of interest and   is the angle. 

 

Similarly, equation (2.7) for an IMF can also be written in the order domain as 

shown in equation (2.9).  In this case, the amplitude and frequency modulations 

are both functions of angle   instead of time t .  Therefore, they may be 

considered as amplitude and order modulations in the order domain.  Order 

domain analysis transforms non-stationary time-domain signals into stationary 

signals in angles for rotating machinery vibrations.  Order signals are therefore 

periodic per revolution and Fourier expansion is suitable for the analysis.  

According to the Fourier expansion theory, a periodic signal can be approximated 

by Fourier expansions.  Therefore any IMF )(d  may also be expanded by 

Fourier expansion as in equation (2.9) in the order domain. 
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(2.9) 

where )(oA  and )(cos o  are the amplitude and order modulations in the order 

domain, )(nC  are Fourier coefficients and )(R  is a non-periodic signals in the 

order domain. 

 

Comparing equations (2.8) and (2.9), one should note the following: 

 

 The amplitude component  ,kAo  in equation (2.8) can be one of the 

amplitude components     ,1, nCn  , in equation (2.9), and 

 

 A unit sinusoidal component jke  in equation (2.8) can be one of the 

components in   ,1, ne jn , in equation (2.9). 

 

Clearly, an order wave can be a particular waveform contained in the IMF. 

However equation (2.9) indicates that an IMF can include signals other than orders.  

This discovery is in line with the previous time domain discussions.   

   

2.2.3 Discussions on the resolution of an IMF 

 

But considering the converse of equation (2.9), it however may not necessarily 

hold, i.e. a signal of the form of equation (2.9) may not necessarily constitute an 

IMF.  This is because only signals that satisfy the definition of Huang et al. 1998, 

qualify as IMFs.  If the composition of signals violates the definition, it will be 

further decomposed into different IMFs.  This actually suggests that EMD as a 

filter bank is selective for each IMF.  It is difficult to develop a general rule for 

this selective characteristic or resolution of each IMF, since in literature there is no 

universal mathematical equation reported for the EMD so far. 
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However, Feldman (2009) analyzed the special and useful case of the 

decomposition of two harmonics, demonstrating some of the important features of 

EMD, such as the nature of the resolution for each IMF.  He describes an 

analytical basis for the EMD, and presents a theoretical limiting frequency 

resolution for EMD to decompose two harmonic tones.  This helps to understand 

the resolution of EMD as filters. 

 

Feldman shows that the frequency and amplitude ratios of two harmonics can be 

separated into three different groups, to evaluate the resolution of EMD for these 

harmonics: 

 

  Harmonics with very close frequencies and a small amplitude, where  

2

2112 )/(/ AA  is unsuitable for EMD decomposition. 

  Close frequency harmonics where 75.1

2112

2

21 )/(4.2/)/(   AA  

requires several sifting iterations for two harmonics to decompose. 

  Distant frequencies and large amplitude harmonics where 

75.1

2112 )/(4.2/ AA  can be well separated for a single iteration. 

 

Based upon these criteria, one knows that if two harmonics have frequency and 

amplitude ratios of 2

2112 )/(/ AA , EMD is incapable of separating them.  

This requirement is visually represented in Figure 2.2. 
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Figure 2.2 Theoretical boundary for the separation of two 

harmonics 2

2112 )/(/ AA  

 

It is clear from Figure 2.2 that two harmonic signals can be decomposed by EMD, 

depending upon the amplitude and frequency ratio.  The limiting boundary 

determines the region to the right where EMD is able to separate harmonics, and 

the region to the left where EMD cannot separate two harmonics (Feldman, 2009).  

This criterion is very useful for determining the decomposition of harmonic 

vibration signals like orders in rotating machines. (This criterion will be used in 

the simulation studies in Chapter 3 therefore some extra arrows and descriptions 

are indicated in the figure for future use). 

 

However, the general case of equation (2.9) is not as simple as two harmonic tones, 

as it is a combination of an order with several other harmonic tones, as well as 

some other signals, and this is a case where Feldman’s theory cannot be applied 

directly.  For rotating machinery, vibrations which are non-synchronous with 

rotational speed are often small.  Therefore if one considers )(R  as being 

negligible over a short period, an order signal and the combination of other 

harmonic tones may be treated as two quasi-stationary harmonics over that period.  

Feldman’s theory may therefore approximate the resolution of an IMF at each 
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instant.  Though this is mathematically not rigorous, it does help to understand 

the behaviour of IMF. 

 

In short, from all above discussion of the relationship between an IMF and an 

order in time and order domain as well as resolution of an IMF, it is clear that 

IMFs from EMD may include both orders and relevant vibrations.  And relevant 

vibrations will modulate order signals so that, in rotating machine vibrations IMFs 

are usually order related oscillating waves.     

 

2.2.4 Combined use of empirical mode decomposition and Vold-Kalman 

filter order tracking 

 

From above studies, although EMD is limited in its ability to separate an order 

signal from other signals, it does have an edge over the traditional order tracking 

method, as it can capture signals that modulate the order waves.  For a rotating 

machine, an order as defined in equation (2.5), only one specific AM and FM 

oscillatory waveform can be extracted.  So, to a large extent, order tracking itself 

loses the capability of capturing signals that modulate the orders.  But these 

signals are also critical for the vibration monitoring of rotating machinery.  

Vibration signals due to faults such as rotor cracks, looseness, worn-out parts, 

broken teeth or bearing problems are all closely related to the rotating speed or 

orders.  These machine fault vibrations will usually modulate dominant order 

waves into modulated oscillating waves, which contain a rich source of machine 

fault information.  As a matter of fact, detecting and separating this information 

from the dominant orders is of great importance.  They are the key signatures of 

machine deterioration and closely related to the orders.   

 

Besides, from the discussion of the relationship between an IMF and an order, it is 

clear that order tracking can solely focus on vibration signals that are strictly 

synchronous with the rotational speed and therefore lacks the ability to deal with 
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speed non-synchronous vibrations.  The information contained in the speed 

non-synchronous signals however may also be valuable in terms of machine 

conditions and deserve to be further utilised.  Vibrations that modulate dominant 

orders, however, may be synchronous or non-synchronous with rotational speed 

and are therefore usually difficult to extract by traditional order tracking methods 

alone.  In this sense, empirical mode decomposition may include these vibrations 

with the orders into different intrinsic mode functions.  Considering the intrinsic 

nature of both traditional order tracking methods and EMD, the IMFs from EMD 

may be further decomposed in terms of rotational speed through order tracking 

methods so that order signals and vibrations that modulate orders in an IMF may 

be distinguished.  Consequently, the sequential use of EMD and Vold-Kalman 

filter order tracking method to further decompose order related IMFs is introduced 

in this research as intrinsic mode function and Vold-Kalman filter order tracking 

(IVK-OT).  Figure 2.3 graphically illustrates the process and as for comparison, 

traditional VKF-OT is also illustrated.  And the logic of IVK-OT is graphically 

summarized in Figure 2.4. 
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Figure 2.3 Symbolic explanation of IVK-OT the process compared with VKF-OT 

 

 

Figure 2.4 Logic of the combined use of EMD and VKT-OT 
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2.3 Intrinsic cycle re-sampling  

 

The intrinsic cycle re-sampling (ICR) method is a novel way of reconstructing 

intrinsic mode function (IMF) from empirical mode decomposition (EMD) to 

approximate the effect of computed order tracking for rotating machine vibration 

signals.  In stead of using traditional speed information to achieve the order 

tracking effects, an empirical re-sampling method is used on the IMF which 

approximates the order tracking effects that exclude frequency variations in an 

IMF.  In the following, the logic of the technique to exclude frequency variation 

effects in an IMF is discussed so that the method can be developed.   

 

2.3.1 Development of intrinsic cycle re-sampling  

 

To begin with the ICR technique, it should repeatedly review the definition of an 

IMF from EMD.  Huang et al. (1998) define an intrinsic mode function as a 

signal that satisfies two conditions: 

 

 In the whole signal segment, the number of extrema and the number of zero 

crossings must be either equal or differ at most by one. 

 At any point, the mean value of the envelope defined by the local maxima 

and the envelope defined by the local minima is zero. 

 

From this original definition of an IMF, it can be concluded that each IMF is a 

symmetric and zero mean oscillation wave.  This excludes two or more peaks 

within two successive zero crossings.  However, the definition does not ensure 

that the frequency content of this symmetric oscillation wave is constant.  Since 

the important purpose of computed order tracking is to exclude frequency variation 

from the rotational speed, it is, therefore, worthwhile to further investigate IMF 

signals with regards to the effects of frequency variation. 
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a. Intrinsic cycle  

 

The intrinsic cycle (IC) is now introduced.  Based upon the idea of an IMF, one 

may consider a symmetric oscillation wave about a zero mean and define the IC as 

follows: 

 

Start from the first zero crossing of an IMF and consider two successive zero 

crossings.  The entire signal within these three zero crossings constitute one 

intrinsic cycle.  In the same way, the signal from the last zero crossing of a 

previous intrinsic cycle and including the following two successive zero crossings, 

constitute another intrinsic cycle, and so on. 

 

The above definition of an IC from an IMF implies that there are one maximum, 

one minimum and three zero crossings within each IC.  Each IC roughly 

resembles one period of a sine wave.  Considering frequency variations in terms 

of the newly introduced ICs in an IMF, frequency variations in these 

approximately sinusoidal natured ICs are not constrained.  Variations may exist 

within and between ICs.  If the frequency variation of a signal is solely due to the 

varying rotational speed, order tracking effects can be achieved by eliminating the 

frequency variations of the ICs.  This is therefore discussed below by considering 

frequency variations within and between ICs in an IMF. 

 

b. Frequency variation within ICs 

 

In computed order tracking (Fyfe and Munck, 1997) the assumption is usually 

made that the rotating shaft angular acceleration is constant or zero over one 

revolution, since large angular accelerations or decelerations are usually 

undesirable in practical machines.  This is typically done in commercial software 

(Vibratools in Matlab, 2005).  When there are several ICs within one revolution, 
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one could also assume angular acceleration within an IC is zero so that frequency 

variations within the ICs may be considered negligible.  If this assumption is 

made and a constant rotational frequency within an IC is therefore implied, the 

focus in dealing with frequency variation effects may then shift to the frequency 

variations between ICs. 

 

c. Frequency variation between ICs 

 

One can now get rid of the frequency variations between ICs by re-sampling with 

an equal number of intervals within every IC.  The frequency variations between 

ICs may therefore be discarded and render re-sampled intrinsic cycle data.  This 

process is illustrated in Figure 2.5 for an arbitrary intrinsic mode function - a 

non-stationary sine wave. 
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a. An Intrinsic Mode Function 

 

b. Intrinsic Cycles 

 

c. Re-sampling 

    

d. Re-sampled Intrinsic Cycles 

 

Figure 2.5 Illustration of re-sampled IC 

 

For this illustration, an arbitrary IMF sine wave is separated into four individual 

ICs based upon the definition presented above.  It can be seen that the periods of 

these ICs are different.  The 1
st
 (IC-1) and 4

th
 (IC-4) ICs have the same period of 

1s but different amplitudes and 2
nd

 (IC-2) and 3
rd

 (IC-3) ICs have the same period 

of 0.5s and the same amplitudes.  This causes the non-stationarity of the signal. 

These signals are re-sampled into 100 equal intervals within each IC. (In order to 
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clearly illustrate the process visually, only 6 lines are drawn in the figure (c) for 

each IC and within each line drawn there are 20 equal intervals.)  Once the 

re-sampling is finished, the final wave is reconstructed and features the re-sampled 

ICs as are shown in (d) which have the same number of equal intervals in each 

re-sampled IC and each re-sampled IC has the same new period of 0.75s. 

 

The re-sampled ICs have the same periods because each IC has been re-sampled 

with same number of intervals and a new sampling frequency can be obtained as, 

 

resample

period

new
S

t
f   

(2.10) 

where newf  is the new sampling frequency, resampleS  is the number of samples of 

the re-sampled IMF and periodt  is the time period of the original data. 

 

Clearly, through this re-sampling process, the frequency variations between the 

ICs are eliminated.  Subsequent to obtaining the re-sampled ICs, it can be seen 

that if frequency variations within ICs are negligible, which follows on the above 

zero angular acceleration assumption, then frequency variations of the overall 

signal are excluded in a way similar to eliminating frequency variations during 

computed order tracking re-sampling.  For computed order tracking, the 

non-stationary time domain data is transformed into stationary angle domain data.  

In this method, a frequency varying IMF is transformed into a frequency stationary 

IMF.  In this way, rotational speed variation effects in an IMF are eliminated. 

Fourier analysis can then be used to transform the re-sampled IMF into the 

frequency domain.  Thus, similar computed order tracking effects are achieved 

through re-sampling the IMF.  More importantly, though the present approach 

may achieve similar effects as to computed order tracking, it however neither 

requires a tacho signal, nor does it rely on interpolation of signals as is done in 

normal order tracking analysis.   

 

 
 
 



K. S. Wang 

  - 68 - 

 

2.3.2 Interpretation on the reconstructed intrinsic mode function result 

 

From the above it is clear that ICR is a development of an IMF.  To understand 

the ICR results it is therefore necessary to trace its analytical form from the basic 

definition of the IMF.  An IMF  td  can be written in terms of a normalized 

amplitude modulation part  tA  and an empirical frequency variation part  te , 

in the time domain as in equation (2.7), here repeat it again, 

   )(cos)( ttAtd e  (2.7) 

The ICR method proposed here transforms the possible frequency varied IMF into 

a frequency stationary IMF (re-sampled IMF).  The empirical frequency 

modulation carrier wave  tecos  in equation (2.7) is therefore transformed into a 

stationary carrier wave as in equation (2.11) 

 )2cos()()( tftAtd ICRICRICR   (2.11) 

where )(tdICR  is the re-sampled IMF through ICR, )(tAICR is the amplitude 

modulation part of the re-sampled IMF and ICRf is the main frequency of the 

re-sampled IMF. 

 

Specifically ICRf , the main frequency of re-sampled IMF can be calculated through 

the ICs as, 

 

ICR

ICR
ICR

T

N
f   

(2.12) 

where ICRN  is the number of intrinsic cycles of the calculated IMF and ICRT is the 

time period of the calculated IMF. 

 

Through the development of equation (2.11) from (2.7), the original empirical IMF 

becomes more specific than its original form.  In equation (2.11) the parameters 
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of the re-sampled IMF now become the fixed frequency carrier wave at ICRf  with 

amplitude modulation )(tAICR .  As a result, the Fourier spectrum for this kind of 

signal is affected by only the two variables ICRf and )(tAICR .  This simplifies the 

interpretation of the ICR result.  Once the calculated time period in equation (2.12) 

is selected, the number of intrinsic cycles will determine the main frequency 

component ICRf .  However )(tAICR can still vary according to the nature of the 

signals but its variations will be reflected in the sidebands of the main frequency 

component at ICRf .  Thus, equations (2.11) and (2.12) lead to the following 

guidelines in examining the ICR results: 

 

a)  Considering a re-sampled IMF time waveform, when signal amplitude 

variations occur in the re-sampled ICs but the number of ICs remains the same, 

equation (2.11) implies that )(tAICR  changed due to the amplitude variations 

and ICRf is invariant due to the unchanged number of ICs.  Thus the final 

spectrum of ICR will exhibit sideband variations and a stationary main 

frequency peak. 

 

b)  When the number of ICs varies and the amplitude of re-sampled ICs in the time 

waveform remains constant, i.e. )(tAICR  is invariant and ICRf changes in 

equation (2.11), the final spectrum will exhibit a shift of main frequency peak 

and stable sideband shapes. 

 

c)  When the signal variations influence both the number of ICs and amplitude of 

re-sampled ICs in the time waveform, according to equation (2.11) both 

)(tAICR and ICRf  are varied.  One may then expect a shift of the main 

frequency component as well as a variation in the sidebands. 
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d)  Further, the more the variations of the amplitude modulation )(tAICR  in the 

re-sampled IMF, the more variations of sidebands will appear in the ICR 

spectrum.  And the larger the number of ICs, the higher the value of the main 

frequency component ICRf  will be. 

 

Firstly, considering rotating machinery faults, incipient machine faults will usually 

not severely influence the vibration signals, therefore in a re-sampled IMF, one 

may typically expect variations in the amplitude of the re-sampled ICs without 

changing the number of ICs.  Introduction of a new IC requires at least one extra 

zero crossing in the signal.  A small signal variation in a dominant vibration 

environment, especially for rotating machine vibrations where rotational speed 

harmonics are predominant, will not easy to introduce extra IC due to small 

variations of the signal.  Thus, it may only change )(tAICR  and the main 

frequency component, ICRf , will remain the same.  In such a case, the sidebands 

of the ICR spectrum relative to the main frequency component amplitude can be 

used for condition monitoring purposes.  This corresponds to case (a). 

 

Secondly, if the measured response on the machine does not contain clear machine 

fault vibrations but only influences from the changes in rotational speed which 

leads to variations of ICs, ICRf will however shift in the ICR spectrum but the 

sidebands will retain its original shape.  This can be used to detect the influence 

of rotational speed on the measured signals.  This corresponds to case (b). 

 

Lastly, when severe changes in the sidebands and a clear shift of ICRf  occur, it 

usually indicates a machine fault occurred and is developing.  This corresponds to 

case (c).  In each condition mentioned in (a), (b) and (c), the severity of signal 

variations will influence the spectrum of ICR results differently in sidebands, main 

frequency component or both.  This is relevant to case (d). 
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2.3.3 Discussions on intrinsic cycle re-sampling in terms of rotating machine 

vibration signals 

 

For rotating machinery the order components will usually dominate the response. 

EMD can empirically decompose these orders into different IMFs.  These 

characteristic orders in different IMFs usually have different physical meanings 

relating to machine conditions.  Thus, each IMF is of great use in condition 

monitoring, and therefore ICR on IMF will also have advantages in this regard.  

Ideally, one IMF should capture one order signal and represent one single order 

component in the order spectrum, as implied by the word ‘intrinsic’.  However, 

the IMF may also include other components due to its empirical nature and it has 

been discussed in the previous IVK-OT technique in paragraph 2.2.2.  And the 

more other components appear in the IMF, the more pronounced the deviations 

from the order signal will become.  As such the final Fourier spectrum of this 

IMF may contain more variations.  This is in fact extremely useful for fault 

diagnosis of rotating machines, since most of the machine fault vibrations would 

modulate the order signals.  And the IMF has the ability to include this 

information together with the order of interest.  However it should also be noticed 

that the IMF from EMD cannot get rid of frequency modulation effects due to the 

rotational speed variation, despite the fact that the rich information related to the 

machine faults has been decomposed into different IMFs, if Fourier analysis is 

applied to the signal. However the smearing effects in the frequency spectrum may 

also occur which could be an impediment for diagnostic decisions.  For this 

reason, the empirical re-sampling intrinsic cycles through which frequency 

variation is excluded between intrinsic cycles, are useful for presenting better 

frequency spectrum and therefore beneficial for machine fault diagnostics.  

 

As mentioned in previous IVK-OT technique, researchers such as Feldman, have 

discussed the resolution of the EMD method.  They proved that one IMF may 
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include more than one harmonic signals and signals with small amplitudes 

compared with the dominant harmonics, may easily be included in an IMF.  

While this is actually a disadvantage of IMF in extracting solely order signals, 

compared to conventional order tracking techniques, it does however provide a 

unique ability for capturing signals that modulate dominant order signals.  Thus, 

ICR developed from IMFs can be used as a tool to reflect changes of vibration 

signals that modulate order signals.  And it could be very useful for condition 

monitoring of rotating machinery.   In the following chapter a simplified gear 

mesh model is used to demonstrate ICR.  The logic of performing ICR is first 

schematically summarized in Figure 2.6. 

 

Figure 2.6 Logic of the ICR technique 

 

2.4 Summary 

 

In this chapter, three improved order tracking techniques are theoretically 

developed.  Firstly, Vold-Kalman filter and computed order tracking (VKC-OT) 

is developed.  The discussions are emphasised on their distinct characteristics for 

subsequent Fourier analysis.  Secondly, intrinsic mode function and Vold-Kalman 

filter order tracking (IVK-OT) is developed.  Time and order domain discussions 

that reveal the relationship between an IMF and an order are presented which fills 

Obtain one mode of possible 

non-stationary and nonlinear 

intrinsic mode function (IMF) 

signal 

Find ICs and resample 

ICs with equal number 

of points in each IC. 

Perform Fourier analysis to approximate computed 

order tracking effects and reflect the signal changes in 

spectral map.  
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the vacant of literature in this regard.  Lastly, intrinsic cycle re-sampling method 

is formed through newly introduced term intrinsic cycle.  Its unique interpretation 

method in terms of reconstructed IMF is also put forward which will bring benefits 

to condition monitoring rotating machines.  In short, theoretical developments for 

three improved order tracking techniques have been made.  In the following, 

these techniques will be further verified and validated in simulation studies.  
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