

THOMPSON, ROGER JOHN

THE DESIGN AND MANAGEMENT OF SURFACE MINE

HAUL ROADS

PhD UP 1996

THE DESIGN AND MANAGEMENT OF SURFACE MINE HAUL ROADS

Roger John Thompson

A thesis submitted in partial fulfilment of the requirements for the degree of PHILOSOPHIAE DOCTOR (ENGINEERING)

.

in the

FACULTY OF ENGINEERING UNIVERSITY OF PRETORIA

December 1996

ABSTRACT

Title: Author: Supervisor: Degree: Department: The design and management of surface mine haul roads Roger John Thompson Professor A T Visser Philosophiae Doctor (Engineering) Civil Engineering

Unpaved mine haul roads provide the principal means of material transport on surface strip coal mines. Design and management of these roads was based primarily on local experience and adopted empirical guidelines. With the trend in increasing truck size, these current pavement design and management systems proved inadequate. Not only would the maintenance costs of existing roads increase, vehicle operating and maintenance costs would also increase prohibitively.

The primary objective of this research was the development of a practical total haul road design and management methodology that encompasses pavement strength, wearing course functionality and road maintenance scheduling and management components. A revised mechanistically derived optimal structural design is presented together with design criteria and recommended effective elastic modulus values for typical construction materials. The placement of those materials as pavement layers was analysed, such as to optimise their performance both as individual layers and over the entire structure.

The development and analysis of suitable material selection guidelines for use in haul road functional design was allied to the development of a qualitative defect assessment and ranking methodology. A revised range of material selection parameters was derived based on road-user acceptability criteria and actual material defect rankings. By analysing the trends evident in the individual defect rankings, the predictive capability of the specification was enhanced by depicting the typical functional defects arising when departures are made from the recommended material parameter limits.

Maintenance design concerns the optimal frequency of wearing course maintenance commensurate with minimum vehicle operating and road maintenance costs. A qualitative road roughness evaluation technique was developed as a precursor to the development of ϵ model for roughness progression. Expressions were developed to enable direct comparisor to be made between qualitatively derived roughness and International Roughness Index (IRI). Models of vehicle operating and road maintenance cost variation with road roughness were combined with roughness progression models to determine the optimal maintenance strategy.

Through an analysis of the current expenditure on mine haul road construction and operation, the adoption of these revised and improved haul road design methodologies have been showr to be associated with potentially significant cost savings and improvements in the structural functional and maintenance management aspects of haul road design.

i

SUMMARY

THE DESIGN AND MANAGEMENT OF SURFACE MINE HAUL ROADS

Roger John Thompson

Supervisor:	Professor A T Visser
Department:	Civil Engineering
University:	University of Pretoria
Degree:	Philosophiae Doctor (Engineering)

Unpaved mine haul roads provide the principal means of material transport on surface strip coal mines. With the expansion of surface mining in South Africa and in particular coal strip mining, the use of ultra-heavy off-highway trucks, currently capable of hauling payloads in excess of 160t, has become commonplace. Design and management of these roads was based primarily on local experience and adopted empirical guidelines. This design method served its purpose in an era when off-highway trucks were lighter and less financial outlay was required, both in terms of initial pavement construction costs, ongoing road maintenance costs and vehicle maintenance costs. As the trend in increasing truck size continues, these current pavement design and management systems proved inadequate. Not only would the maintenance costs of existing roads increase, vehicle operating and maintenance costs would also increase prohibitively.

The primary objective of this research was the development of a portable and practical total haul road design and management methodology that encompasses both pavement strength, wearing course functionality and road maintenance management components. The structural design concerns the ability of a haul road to carry the imposed loads without the need for excessive maintenance. A revised mechanistically derived structural design is presented together with the associated limiting design criteria and recommended target effective elastic modulus values for the construction materials available. The placement of those materials as pavement layers, such as to optimise their performance both as individual layers and over the entire structure is analysed.

ii

Functional design aspects refer to the ability of the haul road to perform its function, i.e to provide an economic, safe and vehicle friendly ride. This is dictated to a large degree through the choice, application and maintenance of wearing course materials. The development and analysis of suitable material selection guidelines for use in haul road functional design was allied to the development of a qualitative defect assessment and ranking methodology in order to assess the utility of established performance related selection guidelines and as a basis for revised functional performance parameter specification. A revised range of parameters was derived based on road-user acceptability criteria. By analysing the trends evident in the individual defect rankings, the predictive capability of the specification was enhanced by depicting the typical functional defects arising when departures are made from the recommended material property limits.

Maintenance design concerns the optimal frequency of wearing course maintenance commensurate with minimum vehicle operating and road maintenance costs. A qualitative road roughness evaluation technique was developed as a precursor to the development of a model for roughness progression. Expressions were developed to enable direct comparison to be made between the qualitative roughness defect score and International Roughness Index (IRI). The second element of a maintenance management system was based on models of the variation of vehicle operating and road maintenance costs with a road roughness model. The combination of these models enabled the optimal maintenance strategies were seen to be associated with unwarranted expenditure on total road-user costs.

This thesis makes a contribution to the state of knowledge through the development and synthesis of structural, functional and maintenance management aspects of haul road design. The adoption of these revised and improved haul road design methodologies are associated with potentially significant cost savings and operational improvements.

Keywords

Surface mine, road, design, structural, mechanistic, functional, maintenance, wearing course, hauling, transport.

iii

SAMEVATTING

DIE ONTWERP EN BESTUUR VAN MYNVERVOERPAAIE

Roger John Thompson

Promoter:	Professor A T Visser
Departement:	Siviele Ingenieurswese
Universiteit:	Universiteit van Pretoria
Graad:	Philosophiae Doctor (Ingenieurswese)

Ongeplaveide mynvervoerpaaie voorsien die primêre vervoer metode van materiaal in steenkoolstrookdagmyne. Met die uitbreiding van dagmynbou in Suid-Afrika en in besonder in die steenkoolstrookmynbou, het die gebruik van swaar vervoertrokke alledaags geword. Ontwerp en bestuur van hierdie paaie was hoofsaaklik gebaseer op plaaslike ondervinding en empiriese riglyne. Hierdie ontwerp metode het sy doel gedien in 'n tydperk waarin die trokke ligter en 'n kleiner finansiële uitleg nodig was, beide in terme van inisiële plaveisel konstruksie kostes en voortdurende padonderhoudskostes en voertuig instanthoudingkostes. Soos wat die tendens van toename in trokgrootte voortduur, sal die huidige plaveisel ontwerp en bestuursstelsels onvoldoende wees. Nie alleen sal die ondershoudskostes van bestaande paaie verhoog nie, maar voertuigbedryf en -instandhoudingkostes sal buitensporig word.

Die primêre doel van die navorsing was die ontwikkeling van 'n oordraagbare en praktiese totale vervoerpadontwerp en bestuursmetodiek wat die plaveiselsterkte, slytlaag funksionele werkverrigting en padonderhoudbestuur komponente insluit. Die strukturele ontwerp behels die vermoë van 'n vervoerpad om die toegepaste las te kan dra sonder die noodsaaklikheid van buitensporige onderhoud. 'n Hersiene meganisties strukturele ontwerp word aangebied geassosieerde ontwerpkriterium aanbevole tesame met die en effektiewe elastisiteitsmoduluswaardes vir die beskikbare konstruksie materiaal. Die plasing van daardie materiale as plaveisellae, om sodanig hulle werkverrigting te optimeer is, as beide individuele lae en oor die hele struktuur, geanaliseer.

iv

verrig, naamlik om 'n ekonomiese, veilige en voertuigvriendelike rit te voorsien. Die ontwikkeling en analise van geskikte materiaal seleksie is gekoppel aan die ontwikkeling van 'n kwalitatiewe defek waardebepaling en ranglys metodiek om die bruikbaarheid van vasgestelde prestasie-verwante seleksie riglyne te kan bepaal en as basis vir hersiene funksionele prestasie parameter spesifikasies. 'n Hersiene reeks parameters is afgelei, gebaseer op padverbruiker aanvaarbaarheids kriterium. Deur analise van die tendens in die individuele defek ranglys, is die voorspelbaarheids vermoë van die spesifikasies verhoog deur die uitwysing van tipiese funksionele defekte wat voorkom wanneer afgewyk word van aanbevole materiaal parameter beperkings.

Die onderhoud aspek van vervoerpad ontwerp kan nie afsonderlik van die strukturele en funksionele ontwerp aspekte oorweeg word nie. Onderhoudontwerp behels die optimale frekwensie van slytlaag onderhoud eweredig aan die minimum voertuigbedryf en padonderhoudskostes. 'n Kwalitatiewe pad ongelykheid evaluasie tegniek is ontwikkel as 'n voorloper tot die ontwikkeling van 'n ongelykheid progressie model. Uitdrukkings is ontwikkel om direkte vergelyking tussen ongelykheid defektelling en Internasionale ongelykheids indeks (IRI) moontlik te maak. Die tweede element van 'n onderhouds bestuurstelsel is gebaseer op modele van die variasie van die voertuigbedryf en instandhoudingkoste en padongelykheid. Die kombinasie van hierdie modelle stel die verbruiker in staat om die optimale onderhoudstrategie te soek. 'n Sub-optimale padonderhouds strategië was geassosieer met buitensporige besteding op totale padverbruikers koste.

Hierdie proefskrif lewer 'n bydrae tot die staat van kennis deur die ontwikkeling en samevoeging van die strukturele, funksionele en onderhoud bestuurs aspekte van mynvervoerpadontwerp. Die ingebruikneming van die hersiene en verbeterde vervoerpad ontwerp en bestuur metodiek het die potensiaal om beduidende koste besparings te verwesenlik.

Sleutelwoorde

Dagmyn, mynvervoerpad, plaveiselontwerp, strukturele, meganisties, funksionele, padonderhoud, sluitlaag, vervoertrok, vervoer.

V

ACKNOWLEDGEMENTS

I wish to express my appreciation to the following organisations and persons who made this thesis possible:

- This thesis is based on a research project of AMCOAL Colliery and Industrial Operations Limited. The opinions expressed are those of the author and do not necessarily represent the policy of AMCOAL Colliery and Industrial Operations Limited.
- AMCOAL Colliery and Industrial Operations Limited for financial support, the provision of data and mine test site facilities.
- The assistance and advice offered during the course of this study by the personnel of Kleinkopje, Kriel, SACE Kromdraai and New Vaal Collieries is gratefully acknowledged.
- The Transportek Division of the CSIR for both the multi-depth deflectometer installation and instrumentation and the high speed profilometer measurements taken at each mine.
- Barlows Equipment Company and Komdresco for the provision of haul truck fleet simulation programs.
- Professor A T Visser, my supervisor, for his guidance and support.
- My wife for her encouragement, support and assistance offered during the study.

vii

TABLE OF CONTENTS

<u>1</u>	INTRODUCTION AND PROJECT DEVELOPMENT	Page
1.1	Introduction	1-1
1.2	Problem Definition	1-3
1.3	Research Objectives1.3.1Objective Statement1.3.2Structural Design1.3.3Functional Design1.3.4Maintenance Design	1-4 1-4 1-5 1-5
1.4	Scope and Structure of Thesis	1-6
1.5	Principal Findings of the Research	1-8
	1.5.1 Structural Design1.5.2 Functional Design1.5.3 Maintenance Design	1-8 1-9 1-10
<u>2</u>	CURRENT STATE OF MINE HAUL ROAD MANAGEMENT	<u>r</u>
2.1	Introduction	2-1
2.2	Current State of Structural Design	2-1
2.3	Current State of Functional Design 2.3.1 Wearing Course Materials 2.3.2 Ideal Wearing Course Requirements	2-3 2-5 2-8
2.4	Current State of Maintenance Management	2-11
2.5	Summary	2-22
<u>3</u>	EXPERIMENTAL DESIGN AND DATA COLLATION	
3.1	Introduction	3- 1

3.2	Experimental Design for Structural Design Research		3-1	
	3.2.1	Measurem	ent of Site Variables	3-2
		3.2.1.1	Applied Load	3-3
		3.2.1.2	Dynamic Cone Penetrometer	3-3

viii

		3.2.1.3	Multi-depth Deflectometer	3-5
	3.2.2	Mine Test Si	te Factor Summary	3-6
		3.2.2.1	Kriel Colliery	3-8
		3.2.2.2	Kromdraai Colliery	3-11
		3.2.2.3	New Vaal Colliery	3-12
3.3	Exper	imental Desig	n for Functional Design Research	3-18
	3.3.1	Measurement	t of Site Variables	3-21
		3.3.1.1	Wearing Course Material	3-21
		3.3.1.2	Functional Performance Evaluation	3-22
		3.3.1.3	Rut Depth and Corrugation Geometry	3-23
	3.3.2	Mine Test Si	te Factor Summary	3-24
		3.3.2.1	Kriel Colliery	3-24
		3.3.2.2	Kromdraai Colliery	3-27
		3.3.2.3	New Vaal Colliery	3-30
		3.3.2.4	Kleinkopje Colliery	3-34
3.4	Data (Collation Req	uirements for Maintenance Management	
	Resear	rch		3-38
	3.4.1	Road Roughr	ness Progression Model	3-41
	3.4.2	Road Mainter	nance Cost Model	3-41
	3.4.3	Vehicle Oper	ating Cost Model	3-42
3.5	Summ	ary of Experi	imental Designs	3-44
	3.5.1	Structural De	sign Research	3-44
	3.5.2	Functional D	esign Research	3-45
	3.5.3	Maintenance	Design Research	3-46
<u>4</u>	<u>EMPI</u>	RICAL ANA	LYSIS AND QUANTIFICATION OF	
	EXIST	FING PAVEN	IENT STRUCTURAL DESIGNS	

4.2	DCP Analysis of Pavements	4-1		
	4.2.1 Discussion of DCP Analysis - Kriel Colliery	4-8		
	4.2.2 Discussion of DCP Analysis - Kromdraai Colliery	4-10		
	4.2.3 Discussion of DCP Analysis - New Vaal Colliery	4-12		
4.3	4.3 DCP Analysis Summary			
4.4	California Bearing Ratio (CBR) Design Procedure	4-16		
	4.4.1 Mathematical Correlation	4-17		
	4.4.2 CBR Cover Curve Design - Kriel Colliery	4-23		
	4.4.3 CBR Cover Curve Design - Kromdraai Colliery	4-25		

ix

	4.4.4 CBR Cover Curve Design - New Vaal Colliery	4-25
4.5	Summary of Results for CBR Cover Curve Design	4-28
<u>5</u>	MECHANISTIC ANALYSIS AND QUANTIFICATION CF EXISTING PAVEMENT STRUCTURAL DESIGNS	
5.1	Introduction	5-1
5.2	Fundamentals of Mechanistic Design 5.2.1 Layered Elastic Systems	5-1 5-3
5.3	Mechanistic-Empirical Design Process	5-5
5.4	Multi-depth-deflectometer Results	5-12
5.5	 Haul Road Structural Performance Classification 5.5.1 Results of Mechanistic Analysis - Kriel Colliery 5.5.2 Results of Mechanistic Analysis - Kromdraai Colliery 5.5.3 Results of Mechanistic Analysis - New Vaal Colliery 	5-14 5-14 5-18 5-20
5.6	Summary and Conclusions	5-22

6 DERIVATION OF MECHANISTIC STRUCTURAL DESIGN CRITERIA

6.1	Introduction	6-1
6.2	Derivation of Limiting Design Criteria	6-1
6.3	Selection of Effective Elastic Modulus Values	6-4
6.4	Summary of Recommended Mechanistic Design Procedure	6-9

7 <u>MECHANISTIC DESIGN OF A MINE HAUL ROAD - A</u> <u>CASE STUDY</u>

7.1	Introduction	7-1
7.2	Roadbuilding Materials	7-1

X

.

7.3	CBR Cover Curve Design	7-4
7.4	Optimal Haul Road Design	7-6
7.5	Cost Implications of Optimal Design	7-8
7.6	Summary	7-11

8 SUMMARY OF STRUCTURAL DESIGN RESEARCH

8.1	DCP Analysis of Pavements	8-1
8.2	California Bearing Ratio (CBR) Design Procedure	8-1
8.3	Derivation of Mechanistic Structural Design Criteria	8-3
8.4	Selection of Effective Elastic Modulus Values	8-4
8.5	Recommended Mechanistic Design Procedure	.8-5

9 <u>QUANTIFICATION OF PAVEMENT FUNCTIONAL</u> <u>PERFORMANCE</u>

9.1	Intro	duction		9-1
9.2	Functional Performance Evaluation Criteria		9-2	
	9.2.1	Defect Des	cription and Rating	9-4
		9.2.1.1	Potholes	9-4
		9.2.1.2	Corrugations	9-4
		9.2.1.3	Rutting	9-5
		9.2.1.4	Loose Material	9-6
		9.2.1.5	Dustiness	9-7
		9.2.1.6	Stoniness - Fixed in Wearing Course	9-7
		9.2.1.7	Stoniness - Loose on Road	9-8
		9.2.1.8	Cracks	9-8
		9.2.1.9	Skid Resistance (Wet and Dry)	9-9
		9.2.1.10	Drainage (on Road and Roadside)	9-11
9.3	Perfo	rmance Mor	hitoring	9-12
	9.3.1	Results of Pe	erformance Monitoring - Kriel Colliery	9-15
	9.3.2	Results of Po	erformance Monitoring - Kromdraai Colliery	9-26
	9.3.3	Results of Pe	erformance Monitoring - New Vaal Colliery	9-38

xi

.

		Page
9.3.4 Results of Performation	nce Monitoring - Kleinkopje Colliery	9-5 1
Summary of Functional	Performance	9-58
STATISTICAL ANALY FUNCTIONAL PERFO	SIS AND MODELLING OF RMANCE	
Introduction		10-1
Prediction of Defect Sco	re Progression	10-2
Effect of Material Prope Score Progression	rties on Individual Defect	10-13
10.3.1 Potholing		10-19
10.3.2 Corrugation	L	10-22
10.3.3 Rutting		10-23
10.3.4 Loose Mate	rial	10-24
10.3.5 Dustiness		10-25
10.3.6 Cracking		10-25
10.3.7 Wet and Dr	y Skid Resistance	10-27
Summary and Conclusio	ns .	10-29
FUNCTIONAL PERFOR	RMANCE ACCEPTABILITY CRITER	<u>IA</u>
Introduction		11-1
Acceptability Criteria fo	r Haul Roads	11-2
11.2.1 Functionali	y Questionnaire	11-2
	 9.3.4 Results of Performa Summary of Functional STATISTICAL ANALYS FUNCTIONAL PERFORM Introduction Prediction of Defect Score Effect of Material Proper Score Progression 10.3.1 Potholing 10.3.2 Corrugation 10.3.3 Rutting 10.3.4 Loose Material 10.3.5 Dustiness 10.3.6 Cracking 10.3.7 Wet and Draw Summary and Conclusion FUNCTIONAL PERFORM Introduction Acceptability Criteria formation 11.2.1 Functionality 	9.3.4 Results of Performance Monitoring - Kleinkopje Colliery Summary of Functional Performance STATISTICAL ANALYSIS AND MODELLING OF FUNCTIONAL PERFORMANCE Introduction Prediction of Defect Score Progression Effect of Material Properties on Individual Defect Score Progression 10.3.1 Potholing 10.3.2 Corrugation 10.3.3 Rutting 10.3.4 Loose Material 10.3.5 Dustiness 10.3.6 Cracking 10.3.7 Wet and Dry Skid Resistance Summary and Conclusions FUNCTIONAL PERFORMANCE ACCEPTABILITY CRITER Introduction Acceptability Criteria for Haul Roads 11.2.1 Functionality Questionnaire

AcceptabilityCriteria for Haul Roads11.2.1Functionality Questionnaire11.2.2Road User Assessment of Functional Performance
Limits11.2.3Road User Assessment of Defect Impact

11.3	Defect Ranking System	11-15
11.4	Summary and Conclusions	11-15

•

11-4

11-9

xii

<u>12</u>	<u>DERIVATIC</u> SPECIFICA	ON OF WEARING COURSE MATERIAL TIONS	
12.1	Introduction		12-1
12.2	Specification 12.2.1	Requirements Performance Ranking	12-1 12-2
12.3	Specification	Development Assessment of Material Property and Performance	12-6
	10.2.0	Relationships	12-6
	12.3.2	to Performance Ranking	12-12
12.4	Wearing Cou	rse Material Selection Guidelines	12-16
12.5	Summary and	1 Conclusions	12-17
<u>13</u>	ROAD ROU	GHNESS PROGRESSION MODEL	
13.1	Introduction		13-1
13.2	Subjective E	valuation of Road Roughness	13-1
13.3	Correlation	of Subjective Evaluations of Roughness with IRI	13-4
13.4	Analysis of I Relationship	Rolling Resistance and Roughness Defect Score	13-7
	13.4.1	Analytical Approach to Rolling Resistance Measurement	13-10
	13.4.2	Correlation of Rolling Resistance with Roughness	12 11
	13.4.3	Limits on the Applicability of the Results	13-11
13.5	Road Rough	ness Progression Model	13-17
13.6	Summary an	nd Conclusions	13-24

xiii

.

			rage
<u>14</u>	<u>VEHICLI</u> COST M	E OPERATING AND ROAD MAINTENANCE ODELS	
14.1	Introduct	ion .	14-1
14.2	Fuel Cons	sumption Model	14-1
	14.2.1	Analytical Approach	14-1
	14.2.2	Vehicle Speed Model	14-3
	14.2.3	Constant Speed Fuel Consumption	14-7
	14.2.4	Verification of Models	14-13
14.3	Tyre Cost	t Model	14-14
14.4	Vehicle M	Iaintenance Cost Models	14-20
	14.4.1	Vehicle Parts Cost	14-22
	14.4.2	Vehicle Labour Cost	14-25
14.5	Road Mai	intenance Cost Model	14-26
14.6	Summary	and Conclusions	14-30

15 <u>A MAINTENANCE MANAGEMENT SYSTEM PROGRAM</u> FOR MINE HAUL ROADS

15.1	Introduct	ion	15-1
15.2	The MMS	S Model	15-1
	15.2.1	MMS Model Data Input	15-2
	15.2.2	Calculation of Total Road-User Costs	15-5
	15.2.3	Selection of Optimal Maintenance Strategy and	
		Reporting	15-7
15.3	Comparis Maintena	on of Program Results with Established ince Practices	15-11
15.4	Sensitivit	y of Maintenance Strategy to Model Parameters	15-16
15.5	Summary	and Conclusions	15-21

Page

xiv

I azc

16 CONCLUSIONS AND RECOMMENDATIONS

16.1	Conclusio	ons	16-1
	16.1.1	Structural Design	16-1
	16.1.2	Functional Design	16-3
	16.1.3	Maintenance Design	16-5
16.2	Recomme	endations	16-8
16.3	Implemen	ntation	16-9

<u>17</u> <u>REFERENCES</u>

APPENDIX A	Selected Wearing Course Material Specifications for Mine Haul Roads	A-1
APPENDIX B	Dynamic Cone Penetrometer Analysis of Pavement Structures	B-1
APPENDIX C	California Bearing Ratio Design Procedure	C-1
APPENDIX D	Results of MDD and Mechanistic Analysis	
D1	Kriel Colliery	D1-1
D2	Kromdraai Colliery	D2-1
D3	New Vaal Colliery	D3-1
D4	·Empirical Relationship Between DCP Penetration	
	Rate and Elastic Modulus	D4-1
APPENDIX E	Kleinkopje Colliery Block 2A Road - Case Study	
	Comparative Cost Data	E-1
APPENDIX F	Results of Functional Performance Monitoring	
F 1	Kriel Colliery	F1-1
F2	Kromdraai Colliery	F2-1
F3	New Vaal Colliery	F3-1
F4	Kleinkopje Colliery	F4-1
APPENDIX G	Statistical Data and Results of Analyses	
G1	Defect Progression Rate Model	G1-1
G2	Material Property Models	G2-1
APPENDIX H	Results of Acceptability Criteria Assessment	H-1

xv

Page

.

APPENDIX I	Performance Ranking of Sites and Critical Defects	I-1
APPENDIX J	Results of Haul Road IRI Roughness Evaluation	
J1	Kriel Colliery	J1-1
J2	Kromdraai Colliery	J2-1
J3	New Vaal Colliery	J3-1
J 4	Kleinkopje Colliery	J4-1
APPENDIX K	Results of Haul Road Subjective Roughness Evaluation	
K1	Kriel Colliery	K1-1
K2	Kromdraai Colliery	K2-1
К3	New Vaal Colliery	K3-1
K4	Kleinkopje Colliery	K4-1
APPENDIX L	Results and Analysis of Rolling Resistance Tests	L-1
APPENDIX M	Applied Road Roughness Defect Progression Models	M-1
APPENDIX N	Specifications of Vehicle Simulation Fleet for Fuel Consumption Modelling	N-1
APPENDIX O	Mine Haul Road Geometry and Production Statisticss	O-1
APPENDIX P	Listing of MMS Model Computer Program and Assessment Data	P-1

xvi

LIST OF TABLES

2.1	Haul Road Wearing Course Material Selection Guidelines	
	(following M ^c Innes, 1982)	2-7
2.2	Relative Importance of Wearing Course Requirements for Public	
·	Roads (after Paige-Green, 1989)	2-10
2.3	Typical Rolling Resistance Factors (after Caterpillar, 1990)	2-13
2.4	Maintenance Categories and Activities for Mine Haul Roads	2-15
2.5	The Impacts of Poor Functional Performance on Road User Costs	• • •
• •	(after Visser, 1981)	2-21
3.1	Sample Matrix for Structural Design Research	3-2
3.2	Summary of Dependant and Independent Variable Measurement Systems	3-3
3.3	Vehicle Specifications and Applied Loads - Kriel Colliery	3-9
3.4	Vehicle Specifications and Typical Applied Loads - Kromdraai Colliery	3-11
3.5	Vehicle Specifications and Applied Loads - New Vaal Colliery	3-14
3.6	Test Site Location Matrix for Structural Design Research	3-17
3.7	Sample Matrix for Functional Design Research	3-20
3.8	Summary of Dependent and Independent Variable Measuring Systems	3-22
3.9	Laboratory Analysis of Wearing Course Material at Kriel Mine	3-26
3.10	Laboratory Analysis of Wearing Course Material at Kromdraai Colliery	3-29
3.11	Laboratory Analysis of Wearing Course Material at New Vaal Colliery	3-33
3.12	Laboratory Analysis of Wearing Course Material at Kleinkopje Colliery	3-36
3.13	Test Site Location Matrix for Functional Design Research	3-38
3.14	Mine Haul Road MMS Model Data Requirements	3-40
3.15	Vehicle Population Data Collation Requirements	3-43
3.16	Vehicle Operation Cost Data Requirements	3-44
4.1	Definition of the Nine Different Pavement Strength-balance Categories	. –
	(after De Beer et al, 1988b)	4-7
4.2	Summary of DCP Results - Pavement Balance	4-15
5.1	Design Criteria Applied to Haul Road Pavement Layers (after	
	De Beer, 1992)	5-8
5.2	Summary of Structural Analysis - Mechanistic Evaluation Results	5-23
6.1	Suggested Moduli Ranges for Granular Materials (After Freeme, 1983	
	and updated by SARB, 1993)	6-6
6.2	Layer Modulus and Classification for Kriel Colliery Sites	6-7
6.3	Layer Modulus and Classification for Kromdraai Colliery Sites	6-7
6.4	Layer Modulus and Classification for New Vaal Colliery Sites	6-7
6.5	Suggested Modulus of Sub-grade Materials (after Jordaan, 1993)	6-8
6.6	Grading Requirements for Haul Road Construction Materials (after CSRA	
	TRH14, 1985)	6-13
6.7	Atterberg Limits for Haul Road Construction Materials (after	
	CSRA TRH14, 1985)	6-14
6.8	CBR and Swell Properties for Haul Road Construction Materials (after	
	CSRA TRH14, 1985)	6-15
6.9	Field Compaction Requirements for Haul Road Construction Materials	
	(after CSRA TRH14, 1985)	6-15

xvii

6.10 7.1	Effective Elastic Modulus Values for In-situ Materials Laboratory Classification Details of Borrow Pit Material	6-16 7-2
72	CBR Structural Design Data	7-5
7.3	Results of Mechanistic Analysis of Proposed CBR Based Design Technique	ie 77
74	Ontimal Structural Design Data	7-8
7.5	Results of Mechanistic Analysis of Proposed Optimal Design	7-9
7.6	Cost Comparison of Design Ontions (Excluding Preliminary	
/.0	and General Costs)	7-10
01	General Description of Degree Classification (following	7 10
7.1	CSRA TMHO 1000b)	0_3
92	General Description of Extent Classification (modified	J-J
1.4	following CSRA TMH0 1000b)	0_3
03	Classification of the Degree of Haul Road Defects	0_10&11
7.5 10 1	Independent Variables Used in the Regression Analysis	<i>J</i> -10011
10.1	of I DDD and I DDI	10-5
10.2	Defect Score Progression Model Statistics	10-7
10.2	Independent Variables Used in the Regression Analysis of Material	10 /
10.5	Property on Individual Defect Score Progression	10-17
10 4	Performance Properties of Natural Gravel Wearing Course	10 17
10.4	Materials (after Mitchell Petzer and van der Walt 1979)	10-18
10 5	Material Properties Affecting Wearing Course Functionality (modified	10 10
10.5	after Paige-Green and Netterberg 1987)	10-18
10.6	Individual Defect Score Progression Model Statistics and	10 10
10.0	Associated Material Parameters	10-20&21
11.1	Impact Ranking Scale (following USBM 1981)	11-4
11.2	Accident Potential (following USBM 1981)	11-5
11.3	Categorisation of Functional Performance Limits	11-6
11.4	Limits of Acceptability for Functional Performance	11-7
11.5	Summary of Mine Haul Road Test Site Performance in Relation	
	to Established Performance Criteria	11-11
11.6	Summary of Defect Impact and Accident Potential	11-12
11.7	Ranking of Haul Road Defects	11-16
12.1	Categorisation of Functional Performance Limits	12-3
12.2	Performance Ranking and Acceptability Limits for Critical	
	Functional Defects	12-3
12.3	Acceptability Limits for Critical Functional Defects	12-5
12.4	Acceptability Limits for Overall Functional Performance	12-6
12.5	Overall Mine Site Functional Performance Classification	12-8
12.6	Material Parameter Relationship to Overall Unweighted Functional	
	Performance Classification	12-9
12.7	Material Parameter Relationship to Overall Weighted Functional	
	Performance Classification	12-10
12.8	Individual Defect Functional Performance Classification	12-11
12.9	Grading Coefficient and Shrinkage Product Limits for Areas of Optimal	12-15
12.10	Recommended Parameter Ranges for Wearing Course Material Selection	12-16

.

xviii

12.11	Recommended Parameter Range for Wearing Course Material Selection	
	in Comparison to TRH20 Specifications	12-18
13.1	Classification of the Extent of Haul Road Roughness Defect	
	Aspects to be Evaluated	13-2
13.2	Classification of the Degree of Haul Road Roughness Defect	
	to be Evaluated	13-3
13.3	IRI and Roughness Defect Score Correlation Statistics	13-8
13.4	Rolling Resistance and Roughness Defect Score Correlation	
	Model Statistics	13-14
13.5	Roughness Defect Score Progression Model Statistics	13-25
14.1	Simulation Vehicle Fleet Specifications	14-2
14.2	Statistics of Fuel Consumption Models	14-13
14.3	Results of Model Verification Exercise	14-15
14.4	Comparative Assessment of Mine Haul Road Section and	
	Overall IRI	14-17
14.5	Summary of Tyre Cost and Consumption Data	14-19
14.6	Standardised Haul Truck Parts Costs	14-23
14.7	Summary of Road Maintenance Costs and Productivities	14-28
15.1	MMS Program Input - Haul Truck Data	15-3
15.2	MMS Program Input - Haul Road Maintenance Fleet	15-3
15.3	MMS Program Input - Haul Road Segments	15-4
15.4	MMS Program Input - Unit Cost Factors	15-4
15.5	MMS Program Input - Haul Truck VOC Model Data	15-5
15.6	Sample Program Report For Feasible Optimal Solution	15-6
15.7	Sample Program Reports for Initially Infeasible Solution	15-10
15.8	Optimum Maintenance Frequency Solution for Kriel Colliery	15-12
15.9	Optimum Maintenance Frequency Solution for Kromdraai Colliery	15-12
15.10	Optimum Maintenance Frequency Solution for Kleinkopje Colliery	15-13
15.11	Segment Cost Reports for Kleinkopje Colliery	15-14
15.12	Optimum Maintenance Frequency Solution for New Vaal Colliery	15-15
15.13	Maintenance Fleet Productivity, New Vaal Colliery	15-16
15.14	Total VOC and Road Maintenance Cost Increases Associated with	
	Sub-optimal Maintenance Intervals - New Vaal Colliery	15-20

xix

LIST OF FIGURES

Page

1.1	Elements of a Total Haul Road Design Strategy	1-3
2.1	Wearing Course Gravel Material Selection Guidelines (after CSRA, 1990)	2-8
2.2	Minimisation of road maintenance and vehicle operating costs	2-16
2.3	Flow Chart of the World Bank Model for Transport Cost (after	
	Butler et al, 1979)	2-17
2.4	Simplified Flow Chart of the MDS (after Visser, 1981)	2-18
2.5	Priceable Factors of Road-user Cost Benefits (after Winfrey, 1971)	2-20
3.1	The Dynamic Cone Penetrometer (after CICTRAN, 1992)	3-4
3.2	Components of a Multi-depth deflectometer (MDD) module (after	
	De Beer et al, 1989)	3-6
3.3	Multi-depth deflectometer in the pavement structure (after	
	De Beer et al, 1989)	3-7
3.4	Test site locations for structural analysis - Kriel Colliery	3-10
3.5	Test site locations for structural analysis - Kromdraai Colliery	3-13
3.6	Test site locations for structural analysis - New Vaal Colliery	3-16
3.7	Location of Mine Test Sites in Relation to Weinert's N-values	3-20
3.8	Test site locations for functional analysis - Kriel Colliery	3-28
3.9	Test site locations for functional analysis - Kromdraai Colliery	3-31
3.10	Test site locations for functional analysis - New Vaal Colliery	3-34
3.11	Test site locations for functional analysis - Kleinkopje Colliery	3-37
3.12	Flow Chart of Proposed MMS for Mine Haul Roads (for a single	
	maintenance strategy iteration)	3-39
4.1	DCP Curves, New Vaal Colliery Site 3	4-3
4.2	Layer Strength Diagram, New Vaal Site 3	4-4
4.3	Pavement SPBC and Actual Balance Curve for New Vaal Colliery Site 3	4-5
4.4	Examples of Different Structural Balance Categories (after	
	De Beer et al, 1988b)	4-6
4.5	Kriel Colliery Pavement Profiles as Determined by DCP Analysis	4-9
4.6	Kromdraai Colliery Pavement Profiles as Determined by DCP Analysis	4-11
4.7	Particularly Well Balanced Shallow Structure at Kromdraai Mine Site 2	4-12
4.8	New Vaal Colliery Pavement Profiles	4-13
4.9	Load Repetition Factor (after Ahlvin et al, 1971)	4-19
4.10	Deflection Factors for ESWL Determination (after Foster	
	and Ahlvin, 1954)	4-21
4.11 ((a & b) Vertical Sub-grade Stress generated under a Group of 4	
	Wheels and (b) the Corresponding Critical Point Locations in	
	Terms of Contact Radius (r)	4-22
4.12	Horizontal Radii for Combined Front and Rear Wheel Groups,	
	Cat 772 Truck	4-24
4.13	CBR Cover Curves for Kriel Colliery Sites 1, 2 and 3	4-26
4.14	CBR Cover Curves for SACE Kromdraai Colliery Sites 1, 2 and 3	4-27
4.15	CBR Cover Curves for New Vaal Colliery Sites 1, 2 and 3	4-29
5.1	Load Distribution Characteristics of a Strong versus Weak Pavement	5-2
5.2	Typical Depth-deflection Profile Generated From a MDD Array	5-4

.

XX

	· ·	Page
5.3	Layered Elastic Pavement Model	5-5
5.4	Tentative Empirical Relationship Between Effective Elastic Modulus	
	(E_{eff}) and DCP Penetration Rate (DN) for a 40kN Dual Wheel Load	
	(after De Beer, 1991)	5-7
5.5	Manual Iteration Procedure used with ELSYMDA Program	5 0
E ((after Lytton, 1989)	J-8 5 12
5.0 57	Structural Classification of Mine Have Boad Test Sites	5 15
J./	Structural Classification of Mine Haul Road Test Siles	J-1J
62	Maximum Vertical Compressive Strain Variation with Traffic and	0-3
0.2	Structural Derformance Index	6_4
6.3	Range of Elastic Modulus Values Encountered for Various Material	0-4
V .2	Classifications	6-8
6.4	Empirical Relationship Between Effective Elastic Modulus and DCP	
	Penetration Rate for Various Ultra-heavy Axle Loads	6-14
6.5	Relationship Between Effective Elastic Modulus and CBR for Various	
	Ultra-heavy Axle Loads	6-17
6.6	Relationship Between Shrinkage Product, Grading Coefficient	
	and Performance of Haul Road Wearing Course Gravels (after CSRA,	
	draft TRH20, 1990)	6-11
6.5	Optimal Structural Design Recommendations for Surface Mine Haul Roads	6-16
7.1	Soil Profile From Borrow Pit A, Kleinkopje Colliery	
	(after Loma Lab, 1992)	7-3
7.2	Haul Road Structural Design Options Investigated	7-4
7.3	CBR Cover Curve For Kleinkopje Colliery Comparative Analysis	7-5
9.1	Functional Performance Assessment Recording Form	9-13
9.2	Long Term rainfail trends for Stations in the Vicinity of Mine Test Sites	9-14
9.3 0.4	Functional Performance Assessment, Kriel Colliery Site 1	9-10
9.4 0.5	Long Term Performance Assessment, Kriel Colliery Sites 1, 2 and 3 Effort of Maintenance on Defort Scores, Kriel Colliery Sites 1, 2 and 3	9-1/
9.5	Effect of time since last maintenance on defect scores. Kriel Colliery Site 1.	9-10 0_10
9.0	General View of Kriel Colliery Site 1 showing rutting and damage to	7-17
<i>J</i> ./	wearing course	9-20
9.8	Crocodile cracking and large stones in wearing course. Kriel Colliery site 1	9-20
9.9	Functional Performance Assessment, Kriel Colliery Site 2	9-22
9.10	Effect of time since last maintenance on defect scores, Kriel Colliery site 2	9-23
9.11	General View of Kriel Colliery Site 2	9-23
9.12	Damage to wearing course, laden side of road, Kriel Colliery Site 2	9-24
9.13	Functional Performance Assessment - Kriel Colliery Site 3	9 -25
9.14	General View of Kriel Colliery Site 3	9-26
9.15	Functional Performance Assessment - Kromdraai Mine Site 1	9-28
9.16	Long Term Performance Assessment of Sites 1, 2 and 3, Kromdraai	
	Colliery	9-28
9.17	Effect of Maintenance on Defect Score - Kromdraai Colliery Sites	-
	1,2 and 3	9-29
9.18	Effect of time since last maintenance on defect scores, Kromdraai Colliery	

xxi

.

	aita 1	Page
0 10	Sile I Conserved View of SACE Knowdrassi Colligny Site 1	9-29
9.19	Cracking and pushing out of wearing course in centre of road. Kromdraai	9-30
7.40	Colliery Site 1	9_31
9.21	View across haul road at Kromdraai Colliery site 1 showing location of	7 51
/.	defect in centre of road	9-31
9.22	Functional Performance Assessment - SACE Kromdraai Colliery site 2	9-33
9.23	General View of SACE Kromdraai Site 2 (laden side of road on LHS)	9-33
9.24	Typical crocodile cracking defect at SACE Kromdraai Colliery site 2	9-34
9.25	Erosion of edge of road coincident with road valley and locally excessive	
	crossfall, SACE Kromdraai Colliery site 2	9-34
9.26	Functional Performance Assessment, SACE Kromdraai Mine site 3	9-35
9.27	Effect of time since last maintenance on defect scores, Kromdraai Colliery	
	site 3	9-36
9.28	Potholing as a result of localised soft spot in newly constructed and	
	trafficked site 3 road at SACE Kromdraai Colliery	9-37
9.29	Churning of wearing course after recent rain, Kromdraai Colliery site 3	
	(laden side of road LHS)	9-38
9.30	Functional Performance Assessment, New Vaal Colliery Site 1	9-40
9.31	Long Term Performance Assessment of Sites 1, 2 and 3, New Vaal	0.40
0.22	Colliery Effect of Maintenance on Defect Score New Yeal Colliers Sites	9-40
9.32	1. 2 and 3	0 / 1
0 22	1, 2 and 5 Effect of time since last maintenance on defect scores. New Vaal Colliery	9-41
7.33	site 1	9_42
9 34	Haul Road Dust Defect (Dry Road) New Vaal Colliery Site 1	9_42
9.35	Dust Defect Conditions (wet road) New Vaal Colliery Site 1	9-43
9.36	Pock Marks in Wearing Course as a Precursor to Larger Potholing	2 10
	(Figure 9.37). New Vaal Colliery Site 1	9-44
9.37	Pothole Formation, New Vaal Colliery Site 1	9-45
9.38	Functional Performance Assessment, New Vaal Colliery Site 2	9-46
9.39	Stones fixed in wearing course, New Vaal Colliery site 2	9-47
9.40	Typical damage to wearing course on bends, showing exposed stones,	
	New Vaal Colliery Site 2	9-47
9.41	Slip cracks and deformation of sub-base, New Vaal Site 2	9-48
9.42	Functional Performance Assessment, New Vaal Colliery Site 3	9-49
9.43	Effect of time since last maintenance on defect scores, New Vaal	
~	Colliery site 3	9-49
9.44	General view of New Vaal Colliery Site 3	9-50
9.45	Dust defect (dry road) at New Vaal Colliery Site 3	9-51
9.40	Functional Performance Assessment, Kleinkopje Colliery Site I	9-53
9.4 7	Long Term Performance Assessment, Kleinkopje Colliery Sites I and 2 Effect of Maintenance on Defect Sector Kleinkopje Colliery Sites 1 and 2	9-33
7.4ð 0 40	Effect of time since last maintenance on defect scores Kleinkopje Connery Siles I and 2	9 -34
7.47	Colliery site 1	0 55
0 50	Cullury sur I Typical dust defect problem. Kleinkonie Colliem, site 1	9-JJ 0_56
7.30	Typical dust detect proviem, internationale Contery site I	2-20

xxii

.

.

9.51 9.52	Fixed stoniness (after loose material removed), Kleinkopje Colliery Site Uneven riding surface due to plucking of large stones and poor	19-56
	compaction of wearing course. Kleinkopie Colliery Site 1	9-57
9.53	Functional Performance Assessment, Kleinkopie Colliery Site 2	9-57
9.54	Difference in character between laden and unladen carriageways	
	when wet. Kleinkopie Colliery Site 2	9-59
9.55	Condition of wearing course after blading. Kleinkopie Colliery Site 2	9-59
10.1	Schematic illustration of the development of defect score on a haul road	10-3
10.2	Selection of model and dependent variables for defect score progression	10-4
10.3	Goodness of fit for model (2) for DSMIN	10-8
10.0	Goodness of fit for model (2) for LDDI	10-0
10.4	Estimation Characteristics of Prediction Model for Rate of Increase	10 7
10.5	in Defect Score as Applied at Kromdraaj Mine Site 2	10-12
10.6	Effect of Increasing Traffic Volume on Defect Score Progression	10-12
10.0	Date of change of corrugation defect score with days since last	10-12
10.7	Mate of change of corrugation defect score with days since last	10 14
10.0	Date of change of loose meterial defect score with days since last	10-14
10.0	Rate of change of loose material defect score with days since last	10 15
10.0	manuchance	10-15
10.9	Rate of change of wet skid resistance defect score with days since last	10.15
10 10	maintenance	10-15
10.10	Comparison of predicted and actual pothole defect scores for all mine sites	10-22
10.11	Comparison of predicted and actual dust defect scores for all mine	10.00
	sites (assuming decreasing defect scores with time)	10-26
10.12	Rate of change of wet skid resistance defect score with days since last	
	maintenance	10-28
10.13	Rate of change of dry skid resistance defect score with days since last	
	maintenance	10-28
11.1	Limits of Acceptability for Defect Degree and Extent	11-8
11.2	Limits of Defect Functional Performance	11-9
11.3	Range and Annual Average Values for Mine Test Site Functional	
	Performance in Relation to Established Performance Limits	11-10
11.4	Haul Road Functional Defect on Operation, Truck and Tyre	11-13
11.5	Accident Potential of Haul Road Functional Defects	11-14
11.6	Ranking of Haul Road Defects	11-17
12.1	Graphical Representation of Defect and Overall Road Functional	
	Performance Classification	12-4
12.2	Location of mines sites in terms of TRH20 selection guidelines	12-13
12.3	Overall mine site functional performance classification in relation	
	to TRH20 specifications	12-14
12.4	Optimum Material Selection Ranges and General Trends of Increasing	
	Defect Scores	12-15
13.1	Recording form for subjective haul road roughness evaluation	13-2
13.2	Typical IRI roughness profiles for laden and unladen carriageways	17 4
4	inner and outer wheel naths	13_5
12 2	Comparison of maximum avarage and minimum IDI roughness with	12-2
19.9	Comparison of maximum, average and minimum INI fouginess with	

xxiii

	roughness defect score	13-6
13.4	Correlation between IRI and RDS data and model	13-8
13.5	Typical results from rolling resistance tests in up- and down-grade	
	directions from two test sections	13-11
13.6	Illustration of correlation between actual and model predicted	
	rolling resistance at 20, 30 and 40km/h	13-13
13.7	Comparison between models of coefficient of rolling resistance	
	increase with IRI roughness	13-15
13.8	Schematic illustration of roughness defect score model	13-18
13.9	Typical individual roughness defect component score progressions	13-19
13.10	Selection of model and dependant variables for roughness defect	
	score progression	13-20
13.11	Goodness of fit for model of LDRDI	13-22
13.12	Effect of increasing daily tonnage on roughness defect score	
	progression	13-23
13.13	Estimation characteristics of prediction model for roughness	
	progression as applied at New Vaal Colliery site 1	13-24
14.1	Haul truck speed variation for laden simulation fleet	14-5
14.2	Haul truck speed variation for unladen simulation fleet	14-6
14.3	Combined speed models for laden and unladen trucks	14-8
14.4	Haul truck fuel consumption variation with speed for $TR=0\%$	14-9
14.5	Haul truck fuel consumption variation with speed for $TR=6\%$	14-9
14.6	Haul truck fuel consumption variation with speed and favourable total	
	resistance	14-10
14.7	Haul truck simulation fleet fuel consumption variation with favourable	
	total resistance	14-11
14.8	Assumed haul truck tyre consumption model in comparison to established	44.00
	models	14-20
14.9	Proposed parts cost model for mine haul trucks showing effect of	14.04
14 10	increasing road roughness	14-24
14.10	Haul truck age effects on parts cost	14-24
14.11	Proposed labour cost model variation with standardised parts cost	14-27
14.12	Productivity of a motor-grader during routine haul road maintenance	14 20
15 1	operations	14-29
15.1	Segment vehicle Operating Cost Component variation with Maintenance	15 6
15 0	Interval Total Vahiala Operating Cost and Doad Maintenance Segment Cost	13-0
15.4	Variation with Maintenance Interval	15 9
15 2	Total Segment Cost Variation with Maintenance Interval	15 9
15.5 15 A	Total Daily Haulage Cost Variation with Maintenance Interval	15-0
13.4	rondraai Colliery	15-17
15 5	Rivingiaal Collicity Effect of Traffic Volumes on Segment Daily Cost	15 10
15.5	Total Daily Haulage Cost Variation with Maintenance Interval	17-10
13.0	Kriel Colliery	15-19
157	Total Daily Haulage Cost Variation with Maintenance Interval -	12-10
10.1	rour bany frances cost variation with mannehamed filler var -	

xxiv

	Kleinkopje Colliery	15-19
15.8	Total Daily Haulage Cost Variation with Maintenance Interval -	
	New Vaal Colliery	15-19