THE EFFECT OF VISUAL SCANNING EXERCISES INTEGRATED INTO TASK-SPECIFIC ACTIVITIES ON THE FUNCTIONAL ABILITY IN PATIENTS WITH VISUAL PERCEPTUAL DISORDERS POST STROKE

By

ANDORET VAN WYK

Submitted as requirement for the degree MPHYST

In the

FACULTY OF HEALTH SCIENCES
UNIVERSITY OF PRETORIA
PRETORIA

2013

Supervisor: DR C.A. EKSTEEN
STATEMENT

I Andoret van Wyk, declare that the dissertation which I hereby submit for the degree M PhysT at the University of Pretoria, is my own work and has not been previously submitted by me for a degree at another tertiary institution.

Where secondary material has been used, this has been carefully acknowledged and referenced in accordance with the university requirements. I am aware of university policies and implications regarding plagiarism.

Andoret van Wyk

Date

2013
TO WHOM IT MAY CONCERN

Andoret van Wyk’s MPHYST dissertation has been proofread by me. Changes were made to a hard-copy version of the dissertation and the student herself applied the changes to the version of the dissertation intended for submission to the University of Pretoria.

Barbara English

7 May 2012
EXPRESSION OF THANKS

I would like to sincerely thank Dr Eksteen for her dedication and continued support throughout the study. I have learned so much during the whole process and am incredibly thankful for her dedication and sharing of her knowledge.

A very special thank you to Wessel and my whole family for their continued motivation throughout the study.

I would like to thank the Medical Research Council of South Africa for the grant received to conduct the study.

Thank you to Professor Paul Rheeder for the detailed analysis of my statistics for this study.

I would like to thank Mrs Barbara English for the language editing of the dissertation.

Last, but not the least, thank you to all the research assistants that assisted me throughout the study. Without you, the study would not have been possible.
ABSTRACT

Stroke is the first cause of disability and second most frequent cause of mortality after ischemic heart disease in adults worldwide. The influence of visual system impairment on the patient’s functional ability and quality of life are still largely neglected in neurological rehabilitation. Therapists are seldom concerned with the visual status and ability of their patients. Members of the rehabilitation team rarely assess, monitor or treat impairment of visual efficiency processes and visual information processing dysfunction that may be observed in patients after a stroke. In the absence of specific intervention visual deficits stabilise and become permanent due to poor or almost absent spontaneous recovery of the visual system in stroke patients.

A matched-pair randomised controlled trial was conducted. Twenty-four (24) participants were screened based on their functional activity level as measured on the Stroke Activity Scale (SAS). When a participant’s SAS score matched a previously allocated participant’s score, that particular participant was placed in the opposite group from the existing matched participant. If the newly assessed participant’s SAS did not match another participant’s SAS, the participant was randomly allocated to either the experimental or the control group. The process was repeated until (24) patients had been allocated into two groups consisting of twelve (12) participants per group as they were admitted to Tshwane Rehabilitation Centre (TRC).

Group 1 (Experimental Group) received saccadic eye movement training with visual scanning exercises integrated with task-specific activities and Group 2 (Control Group) received task-specific activities for four (4) consecutive weeks. Participants’
functional progress on body impairment and functional activity level were assessed and documented on a weekly basis during the intervention period of four (4) weeks. In order to determine whether the integration of visual scanning through saccadic eye movement training had a permanent or long-term effect on the participants’ functional ability and quality of life after rehabilitation had been terminated, functional progress on body impairment-, functional activity and participation levels as well as their perceived quality of life were assessed and documented eight (8), twelve (12), sixteen (16) and twenty (20) weeks after admission to the rehabilitation facility. A large number of participants were lost to follow-up following discharge from the TRC after the intervention period of four (4) weeks. As result of the small sample group at week eight (8), week twelve (12), week sixteen (16) and week twenty (20), these results were not discussed.

Results of the matched-pair randomised controlled trial indicated that the effect of saccadic eye movement training with visual scanning exercises integrated with task specific activities as an intervention for participants that presented with unilateral spatial inattention, visual-spatial disorders and visual-constructive disorders post-stroke resulted in significant improvement in impairment level. This improvement related to oculomotor visual performance, visual attention, depression as well as results on functional activity level with regard to the ability to independently complete ADL after four (4) weeks of rehabilitation.

It may therefore be concluded that saccadic eye movement training with visual scanning exercises integrated with task-specific activities as an intervention tend to
improve functional ability in participants that presented with unilateral spatial inattention, visual-spatial disorders and visual-constructive disorders post-stroke.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>STATEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>LANGUAGE EDITOR’S LETTER</td>
<td>iii</td>
</tr>
<tr>
<td>EXPRESSION OF THANKS</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction and problem identification 1

1.1. Introduction 1
1.2. Limitations in the literature 4
1.3. Practical experience of the researcher 7
1.4. Problem statement 8
1.5. Significance of the research 9
1.6. Research questions 10
1.7. Aims of the study 11
1.8. Objectives of the study 12
1.9. Ethical approval 13
1.10. Course of the study 13

Chapter 2: Literature review 15

2.1. Introduction 15
2.2. Literature search strategy 17
2.2.1. Assessment of the quality of selected literature 19
3.7.3. Sample size 66
3.7.4. Matching of the sample group 67

3.8. Research process 68
3.8.1. Intervention 69
3.8.2. The intervention participants in Group 1 and Group 2 received 69

3.9. Control of bias in the research process 76

3.10. Reliability and validity of the clinical trial 78

3.11. Assessment instruments 78
3.11.1. Body impairment level 79
3.11.2. Functional activity level 80
3.11.3. Participation level 81
3.11.4. Summary of assessments completed during the trial 82

3.12. Retention of participants until study completion, attempting to minimise subjects lost to follow-up 83

3.13. Pilot study 84

3.14. Data analysis 85

3.15. Summary 86

Chapter 4: Results of the study 88

4.1. Introduction 88

4.2. Demographical data of the participants in the clinical trial 89
4.2.1. Matching based on functional activity level 92

4.3. Results from outcome measures over the four-week intervention period 92
4.3.1. Results of the assessment of participants’ oculomotor function 92
4.3.1.1. The King-Devick Test © 92
4.3.2. Results of the assessment of participants’ functional ability 97
4.3.2.1. The Stroke Activity Scale 97

x
4.3.2.2. The Barthel Index
4.3.2.3. The Timed Up and Go Test
4.3.3. Results of the assessment of participants’ perceptual processing
and cognitive function
4.3.3.1. The Star Cancellation Test
4.3.3.2. The Mini-Mental State Examination
4.3.4. Results of the assessment of participants’ level of anxiety
and depression
4.3.4.1. The Hospital Anxiety and Depression Scale
4.4. Results gathered at week eight (8), week twelve (12), week sixteen (16) and
week twenty (20) of participants in Group 1 and Group 2
4.5. Conclusion

Chapter 5: Discussion and conclusion

5.1. Introduction
5.2. Comparison between the demographical data of the participants
in Group 1 and Group 2
5.3. The effect of the intervention(s) on body impairment level, functional
activity and participation levels
5.3.1. The effect of visual scanning exercises integrated with
task-specific activities received by participants from Group 1
versus participants from Group 2 that received task-specific
activities alone on participants that presented with unilateral
spatial inattention, visual-spatial disorders and visual-constructive
disorders post-stroke’s oculomotor function
5.3.2. The effect of visual scanning exercises integrated with
task-specific activities received by participants from
Group 1 versus participants from Group 2 that received task-specific activities alone on participants that presented with unilateral spatial inattention, visual-spatial disorders and visual-constructive disorders post-stroke’s functional ability 116

5.3.3. The effect of visual scanning exercises integrated with task-specific activities received by participants from Group 1 versus participants from Group 2 that received task-specific activities alone on participants that presented with unilateral spatial inattention, visual-spatial disorders and visual-constructive disorders post-stroke’s perceptual processing and cognitive functioning 118

5.3.4. The effect of visual scanning exercises integrated with task-specific activities received by participants from Group 1 versus participants from Group 2 that received task-specific activities alone on participants that presented with unilateral spatial inattention, visual-spatial disorders and visual-constructive disorders post-stroke’s anxiety and depression 122

5.4. Participation level 125

5.5. Discussion on the aims of the study 126

5.6. Limitations of the study 127

5.7. Suggestions for future research 131

5.8. Conclusion 132

BIBLIOGRAPHY 135

ADDENDUMS 158

ADDENDUM 1: Ethical approval by the Ethics Committee of the Faculty of Health Sciences at the University of Pretoria (S33/2009) 158
ADDENDUM 2: Permission granted by the Acting Chief Executive Officer of the Tshwane Rehabilitation Centre. 160
ADDENDUM 3: The Mini-Mental State Examination 162
ADDENDUM 4a: Informed consent to participate in the study 163
ADDENDUM 4b: Participant characteristics 167
ADDENDUM 5: The King-Devick Test © 169
ADDENDUM 6: The Barthel Index 174
ADDENDUM 7: The Timed Up and Go Test 176
ADDENDUM 8: The Star Cancellation Test 177
ADDENDUM 9: The Stroke Impact Scale Version 3.0 179
ADDENDUM 10: The walking ability questionnaire 188
ADDENDUM 11: The Hospital Anxiety and Depression Scale 191
ADDENDUM 12: The Stroke Activity Scale 194
ADDENDUM 13: HART-chart 203
ADDENDUM 14: Results gathered at week eight (8), week twelve (12), week sixteen (16) and week twenty (20) of participants in Group 1 and Group 2 204
LIST OF TABLES

TABLE 2.1: Visual system impairments post-stroke 20
TABLE 2.2: Results of previous studies that assessed the effect of re-training of the visual system on patients’ functional ability post-stroke 26
TABLE 2.3: Results of studies that assessed the effect of re-training of the visual system on patients’ perceptual processing and cognitive function post-stroke 32
TABLE 2.4: The use of the King-Devick Test © to assess the effects and the direct relationship between saccadic eye movement training with visual scanning exercises on patients’ oculomotor function (underlying impairment), functional activity and participation levels 39
TABLE 2.5: Interpretation of the King-Devick Test © – the King-Devick Subtest 1, Subtest 2 and Subtest 3 42
TABLE 2.6: The use of the Barthel Index and Timed Up and Go Test to assess the effects and the direct relationship between saccadic eye movement training with visual scanning exercises on patients’ functional ability functional activity and participation levels 44
TABLE 2.7: Interpretation of the Barthel Index 45
TABLE 2.8: Interpretation of the Timed Up and Go Test 46
TABLE 2.9: Interpretation of TUG and risk of falls 47
TABLE 2.10: Interpretation of walking speed and community ambulation 47
TABLE 2.11: The use of the Star Cancellation Test and Mini-Mental State Examination to assess the effects and the direct relationship between saccadic eye movement training with visual scanning exercises on patients’ perceptual processing and cognitive functioning (underlying impairment), functional activity and participation levels 48
TABLE 2.12: Interpretation of the presence of unilateral spatial neglect

TABLE 2.13: Interpretation of the level of cognitive impairment

TABLE 2.14: Interpretation of the anxiety and depression subscales of the Hospital Anxiety and Depression Scale

TABLE 3.1: The flow of each therapy session of participants from Group 1

TABLE 3.2: Guide of the principles of visual scanning exercises integrated with task-specific activities and the principles of progression of these exercises

TABLE 3.3: Summary of assessments completed during the trial

TABLE 3.4: The demographical data of participants from Group 1 and Group 2

TABLE 4.1: Results of the time taken to complete the King-Devick Test © over the four-week intervention period for Group 1 and Group 2

TABLE 4.2: The average number of errors made during the completion of the King-Devick Test © over the four-week intervention period

TABLE 4.3: Results of the Stroke Activity Scale of participants from Group 1 and Group 2 over the four-week intervention period

TABLE 4.4: Results of the Barthel Index of participants from Group 1 and Group 2 over the four-week intervention period

TABLE 4.5: Results of the TUG of participants in Group 1 and Group 2 over the four-week intervention period

TABLE 4.6: Results of the number of stars “cancelled” during the completion of the Star Cancellation Test over the four-week intervention period

TABLE 4.7: Results of the time taken to complete the Star Cancellation Test over the four-week intervention period

TABLE 4.8: Results of MMSE over the four-week intervention period of Group 1 and Group 2
TABLE 4.10: MMSE scores at baseline level compared to a reference group based on age and educational level of Group 1 and Group 2 at baseline and week four (4) 107

TABLE 4.11: Results of the anxiety and depression subscales of participants from Group 1 and Group 2 over the four-week intervention period 108
LIST OF FIGURES

FIGURE 4.1: The course of the study 88
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADL</td>
<td>Activities of daily living</td>
</tr>
<tr>
<td>aekde1</td>
<td>The average number of errors made during the completion of the King-Devick Subtest 1</td>
</tr>
<tr>
<td>aekde2</td>
<td>The average number of errors made during the completion of the King-Devick Subtest 2</td>
</tr>
<tr>
<td>aekde3</td>
<td>The average number of errors made during the completion of the King-Devick Subtest 3</td>
</tr>
<tr>
<td>AHA / ASA</td>
<td>American Heart Association and American Stroke Association</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>Analysis of Covariance</td>
</tr>
<tr>
<td>AHCPR</td>
<td>United States Agency for Health Care Policy and Research</td>
</tr>
<tr>
<td>BADL</td>
<td>Basic activities of daily living</td>
</tr>
<tr>
<td>BDI</td>
<td>Beck Depression Inventory</td>
</tr>
<tr>
<td>BI</td>
<td>Barthel Index</td>
</tr>
<tr>
<td>BIT</td>
<td>Behavioural Inattention Test</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>CVI</td>
<td>Cerebral vascular incident</td>
</tr>
<tr>
<td>EST</td>
<td>Explorative saccade training</td>
</tr>
<tr>
<td>FARS</td>
<td>Functional Autonomy Rating Scale</td>
</tr>
<tr>
<td>FIM</td>
<td>Functional Independence Measurement</td>
</tr>
<tr>
<td>fMRI</td>
<td>Functional Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>FT</td>
<td>Flicker-stimulation training</td>
</tr>
<tr>
<td>HADS</td>
<td>Hospital Anxiety and Depression Scale</td>
</tr>
<tr>
<td>HADSA</td>
<td>Anxiety subscale</td>
</tr>
<tr>
<td>HADSD</td>
<td>Depression subscale</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HRP</td>
<td>High-resolution perimetry</td>
</tr>
</tbody>
</table>
HVFDs Homonymous visual field defects
IADL Instrumental activities of daily living
ICC Intraclass correlation coefficients
ICF International Classification of Functioning, Disability and Health
kde1 King-Devick Subtest 1
kde2 King-Devick Subtest 2
kde3 King-Devick Subtest 3
MAACL Multiple Affect Adjective Checklist
MADRS Montgomery Asberg Depression Rating Scale
MAT Modified Metropolitan Achievement Test
MMAS Modified Motor Assessment Scale
MMS Mini-Mental Status
MMSE Mini-Mental State Examination
PPC Posterior Parietal Cortex
RCT Randomised controlled trial
SAS Stroke Activity Scale
SC Superior colliculus
SD Standard Deviation
SIS Stroke Impact Scale Version 3.0
starcorrect Results of the correct number of stars “cancelled” during the completion of the Star Cancellation Test
starttime Results of the time taken to complete the Star Cancellation Test
TRC Tshwane Rehabilitation Centre
TUG Timed Up and Go Test
UP University of Pretoria
UNS Unilateral Neglect Syndrome
USI Unilateral Spatial Inattention
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USN</td>
<td>Unilateral Spatial Neglect</td>
</tr>
<tr>
<td>V1</td>
<td>Primary visual cortex</td>
</tr>
<tr>
<td>VCR</td>
<td>Vestibulocollic Reflex</td>
</tr>
<tr>
<td>VOR</td>
<td>Vestibulo-ocular Reflex</td>
</tr>
<tr>
<td>VRT</td>
<td>Vision Restoration Training</td>
</tr>
<tr>
<td>VS</td>
<td>Visual search</td>
</tr>
<tr>
<td>VSR</td>
<td>Vestibulospinal Reflex</td>
</tr>
<tr>
<td>TNR</td>
<td>Tonic Neck Reflex</td>
</tr>
<tr>
<td>WAIS</td>
<td>Wechsler Adult Intelligence Scale</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WRAT</td>
<td>Wide Range Reading Achievement Test</td>
</tr>
</tbody>
</table>