THE STABILITY OF THE CURVE OF SPEE
AND THE OVERBITE
AFTER ORTHODONTIC TREATMENT

JOHANNES HATTINGH
BChD (Pret)

2003
THE STABILITY OF THE CURVE OF SPEE
AND THE OVERBITE
AFTER ORTHODONTIC TREATMENT

by

JOHANNES HATTINGH
BChD (Pret)

Submitted in partial fulfilment of the
requirements for the degree of

MASTER IN DENTISTRY (ORTHODONTICS)

at the
Department of Orthodontics
in the
Faculty of Health Sciences
of the
University of Pretoria

Study leader: Professor S.T. Zietsman

May 2003
“Never regard study as a duty, but as the enviable opportunity to learn to know the liberating influence of beauty in the realm of the spirit for your own personal joy and to the profit of the community to which your later work belongs”

- Albert Einstein -
DEDICATION

This dissertation is dedicated to my wife, Marina,
and my two children, Johné and Ruan.
 Thank you for understanding.
ACKNOWLEDGEMENTS

My sincerest thanks to the following people who contributed to this dissertation:

Prof ST Zietsman, my study leader, for his time and support during this study, but above all, for sharing his wisdom and sense of humour.

Prof AGH McCollum, for his willingness to act as external examiner. His involvement lends credibility to this project.

Dr Piet Becker of the Medical Research Council, for the statistical analysis, advice on the interpretation of the results, and for providing a human touch to statistics.

Drs Birgit Scherman, Pierre Ferreira, and their staff, for allowing me into their practices, and for going out of their way to collect, sort, and supply dental casts and other records for this study.

Dr Dharmesh Mistry, for sacrificing a lot of his time to assist me with the photography of the dental casts, and for expert advice on computer software and the electronic analysis during the project.

My co-registrars, and lecturers in the Department of Orthodontics, for assisting with the re-measurement of the curve of Spee to determine the inter-examiner reliability of the measuring procedure.

Mss Reinette de Wet and Antoinette Wolmarans, for their assistance with the scheduling of patients for the project, and for their involvement with the impression taking and manufacturing of the dental casts.

All the patients that took part in the study, for attending the follow-up appointment, and for giving consent that their records can be used for research purposes.
DECLARATION

I, Johannes Hattingh, declare that the dissertation I am herewith submitting for the degree MChD (Orthodontics) at the University of Pretoria, is my own work and has not previously been submitted for any other degree at any other university.

J. Hattingh

5 May 2003
CHAPTER 1
INTRODUCTION

1.1 BACKGROUND 1
1.2 MOTIVATION 5
1.3 PURPOSE 6
1.4 HYPOTHESES 6
 1.4.1 Null hypothesis (H₀₁) 6
 1.4.2 Null hypothesis (H₀₂) 6
 1.4.3 Null hypothesis (H₀₃) 6
 1.4.4 Null hypothesis (H₀₄) 6

CHAPTER 2
REVIEW OF THE LITERATURE

2.1 THE CURVE OF SPEE 7
2.1 Definitions

2.1.1 Definitions 7
2.1.2 Stability and relapse 10
2.1.3 The role of differential horizontal growth 13
2.1.4 Arch length considerations 14

2.2 THE CONCEPT OF FUNCTIONAL OCCLUSION

2.2.1 Definitions 16
2.2.2 The goals of an ideal functional occlusion 21
2.2.3 The relationship between static and functional occlusion 23

CHAPTER 3

MATERIALS AND METHODS

3.1 SAMPLE 25
3.2 MEASUREMENT OF THE CURVE OF SPEE 29
3.2.1 The photographic setup 31
3.2.2 Computerized analysis of the photographs 42
3.3 MEASUREMENT OF THE OVERBITE 48
3.4 EVALUATION OF THE FUNCTIONAL OCCLUSION 50
3.5 STATISTICAL ANALYSIS 54

CHAPTER 4

RESULTS

4.1 INTRACLASS REPEATABILITY AND INTERCLASS RELIABILITY 55
4.2 ANALYSIS OF THE RESULTS 57
4.2.1 Means, standard deviations and distributions 57
4.2.2 Determination of statistical significance (P values) 68
4.2.3 Determination of correlation coefficients

4.2.4 Relation between both the curve of Spee and overbite, and the presence of anterior guidance at T3

CHAPTER 5
DISCUSSION

CHAPTER 6
CONCLUSIONS

LITERATURE REFERENCES

ADDENDA

ADDENDUM A: EVALUATION OF FUNCTIONAL OCCLUSION
ADDENDUM B: CONSENT
ADDENDUM C: RAW DATA FOR MEASUREMENT OF THE CURVE OF SPEE
ADDENDUM D: RAW DATA FOR DETERMINATION OF INTRA-EXAMINER REPEATABILITY AND INTER-EXAMINER RELIABILITY
SUMMARY

THE STABILITY OF THE CURVE OF SPEE AND THE OVERBITE AFTER ORTHODONTIC TREATMENT

by

Johannes Hattingh
Department of Orthodontics
Faculty of Health Sciences
University of Pretoria

Study leader: Professor S.T. Zietsman
BDS, HdipDENT (Wits); DTVG, MChD (Pret)
Research Consultant
Department of Orthodontics
Faculty of Health Sciences
University of Pretoria

Department: Orthodontics
Degree: MChD (Orthodontics)

The aim of orthodontic treatment is to provide the patient with a good static and functional occlusion. During research that was conducted to complete a seminar on the static and functional aspects of occlusion, the author discovered that there might be a discrepancy between the goals of an ideal static occlusion, and the goals of an ideal functional occlusion. An ideal static occlusion seemed to require a flat mandibular plane and a minimal amount of overbite after active orthodontic treatment, whereas an ideal functional
occlusion required a curved mandibular plane and an overbite of 4 mm to prevent cusp interferences during functional mandibular movements.

The rationale behind the excessively flat mandibular plane and minimal overbite after orthodontic treatment is to compensate for the tendency of the bite to deepen during the period following orthodontic treatment. This tendency to relapse causes uncertainty about the stability of orthodontic treatment. Little research has been dedicated to examining the long-term stability of the leveled curve of Spee. In addition, there seems to be a considerable amount of controversy surrounding the long-term stability of overbite correction after orthodontic treatment.

The aim of this study was to evaluate the stability of the curve of Spee and the overbite following orthodontic treatment. In addition, the relationship between the curve of Spee and the presence of anterior guidance after a period of orthodontic retention, was examined. The relationship between the overbite and the presence of anterior guidance was also examined, and the results were used to predict an ideal value for the overbite to avoid possible dental cusp interferences.

Standardized digital photographs of the dental casts of 40 subjects were taken at three different stages: before treatment (T1), after orthodontic treatment (T2), and three years (mean) post-treatment. Accurate electronic measurement of the curve of Spee, using computer software, was completed for all three stages. The overbite was measured with a dial caliper. Clinical evaluation of the functional occlusion, with special reference to anterior guidance, was performed on all the subjects. Statistical analysis was carried out in search of statistical significant changes between the various stages, and possible correlations between the different variables.

The results indicated that the leveling of the curve of Spee is a stable treatment procedure. The overbite was less stable than the curve of Spee,
and nearly half the amount of overbite correction obtained during treatment, relapsed in the three years (mean) post-treatment. No relationship was found between the curve of Spee and the presence of anterior guidance at T3. A highly significant relationship was found between the overbite and the presence of anterior guidance. Subjects with a small overbite seemed to be predisposed to posterior interferences during mandibular protrusion.

An overbite of not less than 3mm was found to be a desirable feature after orthodontic retention in order to reduce potentially interfering contacts. More research is necessary to clarify the relationship between dental interferences and temporomandibular disorders (TMD).
OPSOMMING

DIE STABILITEIT VAN DIE KURWE VAN SPEE EN DIE OORBYT NA ORTODONTIESE BEHANDELING

deur

Johannes Hattingh
Departement van Ortodonsie
Fakulteit van Gesondheidswetenskappe
Universiteit van Pretoria

Studie leier: Professor S.T. Zietsman
BDS, HdipDENT (Wits); DTVG, MChD (Pret)
Navorsings Konsultant
Departement van Ortodonsie
Fakulteit van Gesondheidswetenskappe
Universiteit van Pretoria

Departement: Ortodonsie
Graad: MChD (Ortodonsie)

Die doel van ortodontiese behandeling is om die pasiënt van 'n goeie statiese en funksionele okklusie te voorsien. Gedurende navorsing wat gedoen is om 'n seminaar oor die statiese en funksionele aspekte van okklusie te voltooi, het die skrywer ontdek dat daar moontlik 'n teenstrydigheid bestaan tussen die doelwitte van 'n ideale statiese okklusie, en die doelwitte van 'n ideale funksionele okklusie. 'n Ideale statiese okklusie vereis 'n plat mandibulêre vlak en 'n minimum oorbyt, terwyl 'n ideale funksionele okklusie 'n gekurfde
mandibulûre vlak en ‘n oorbyt van 4mm vereis om kuspe struikelings tydens funksionele mandibulûre bewegings te voorkom.

Die rasionaal agter die plat mandibulûre vlak en minimale oorbyt na aktiewe ortodontiese behandeling is om te kompenseer vir die neiging van die byt om te verdiep gedurende die periode na ortodontie behandeling. Hierdie neiging tot terugval veroorsaak onsekerheid oor die stabilitêit van ortodontie behandeling. Min navorsing is tot dusver gedoen aangaande die langtermyn stabilitêit van die kurwe van Spee. Boonop bestaan daar baie kontroversie oor die langtermyn stabilitêit van oorbyt korreksie na ortodontiese behandeling.

Die doel van hierdie studie was om die stabilitêit van die kurwe van Spee en die oorbyt na ortodontiese behandeling te evalueer. Die verband tussen die kurwe van Spee en die teenwoordigheid van ‘n anterior gidshelling na ‘n periode van ortodontiese retensie is ook ondersoek. Die verband tussen die oorbyt en die teenwoordigheid van ‘n anterior gidshelling is ondersoek, en die resultate is gebruik om ‘n ideale waarde vir die oorbyt, waarby kuspe struikelinge moontlik verhoed sal kan word, te voorspel.

Gestandaardiseerde digitale fotos is geneem van die studie modelle van 40 pasiënte gedurende drie verskillende stadia: voor behandeling (T1), direk na ortodontiese behandeling (T2), en drie jaar (gemiddeld) na behandeling. Akkurate elektroniese meting van die kurwe van Spee is met behulp van rekenaar sagteware vir al drie stadia van onderzoek gedoen. Die oorbyt is met behulp van ‘n meetpasser bepaal. Kliniese evaluasie van die funksionele okklusie, met spesifieke verwysing na anterior gidshelling, is gedoen op al die pasiënte. Statistiese analise is uitgevoer op soek na moontlike statisties betekenisvolle veranderinge tussen die onderskeie stadia, asook om potensiële korrelasies tussen die veranderlikes te identifiseer.
Die resultate bevestig dat die afplatting van die kurwe van Spee `n stabiele behandelings prosedure is. Die oorbyt was minder stabiel as die kurwe van Spee, en byna die helfde van die oorbyt korreksie wat tydens behandeling verkry is, het teruggeval gedurende die drie jaar (gemiddeld) na behandeling. Geen verwantskap kon gevind word tussen die kurwe van Spee en die teenwoordigheid van `n anterior gidshelling tydens T3 nie. `n Hoogs betekenisvolle verwantskap tussen die oorbyt en die teenwoordigheid van `n anterior gidshelling is gevind. Dit blyk dat `n klein oorbyt aanleiding kan gee tot posterior struikelinge tydens mandibulêre protrusie.

`n Oorbyt van nie minder nie as 3mm is geidentifiseer as `n behandelingsdoelwit om die kans op kuspe struikeling na ortodontiese behandeling te verminder. Meer navorsing moet nog gedoen word om die verwantskap tussen kuspe struikelinge en temperomandibulêre patologie te verifieer.
LIST OF FIGURES

<p>| Figure 1: | Curves generated through (a) anterior border of condyle and occlusal surfaces of molars, and (b) through occlusal surfaces of molars and incisor tips | 8 |
| Figure 2: | Anterior guidance during mandibular movement | 20 |
| Figure 3: | Canine guidance during mandibular movement | 20 |
| Figure 4: | Group function guidance during mandibular movement | 20 |
| Figure 5: | The mandibular occlusal plane trimmed parallel to the base of the mandibular dental cast | 32 |
| Figure 6: | The dental surveyor | 32 |
| Figure 7: | Spirit-levels were used to standardize dental casts in the sagittal and transverse dimensions | 33 |
| Figure 8: | The spirit-level from an occlusal view | 34 |
| Figure 9: | The analysing rod of the dental surveyor was used to standardize the vertical height of the dental casts | 35 |
| Figure 10: | The positions of the dental surveyor and tripod of the camera marked on a black sheet of cardboard | 36 |
| Figure 11: | The dental surveyor (without mounting platform) and tripod with camera in position | 36 |
| Figure 12: | Illustration that the line of incidence of the camera was perpendicular to the midline through the dental surveyor | 37 |
| Figure 13: | Spatial orientation of the dental cast on the base of the dental surveyor (surveyor removed for demonstration purposes) | 38 |
| Figure 14: | An angle finder with millimetre ruler used for calibration of photographs | 38 |
| Figure 15: | The angle finder/ruler as part of the photographic setup | 39 |
| Figure 16: | Dental casts were numbered for easy identification | 39 |
| Figure 17: | Setup of the dental cast and surveyor | 40 |
| Figure 18: | Complete photographic setup (rear view) | 40 |
| Figure 19: | Complete photographic setup (side view) | 41 |</p>
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Complete photographic setup (occlusal view)</td>
<td>41</td>
</tr>
<tr>
<td>21</td>
<td>Measurement of the curve of Spee</td>
<td>43</td>
</tr>
<tr>
<td>22</td>
<td>A standard millimetre ruler (yellow) superimposed upon the image – before calibration</td>
<td>44</td>
</tr>
<tr>
<td>23</td>
<td>A standard millimetre ruler (yellow) superimposed upon the image – after calibration</td>
<td>45</td>
</tr>
<tr>
<td>24</td>
<td>Construction of reference and perpendicular lines in CorelDRAW®10</td>
<td>46</td>
</tr>
<tr>
<td>25</td>
<td>Measurement of the curve of Spee (T1)</td>
<td>47</td>
</tr>
<tr>
<td>26</td>
<td>Measurement of the curve of Spee (T2)</td>
<td>47</td>
</tr>
<tr>
<td>27</td>
<td>Measurement of the curve of Spee (T3)</td>
<td>48</td>
</tr>
<tr>
<td>28</td>
<td>Dial caliper used for measurement of the overbite</td>
<td>49</td>
</tr>
<tr>
<td>29</td>
<td>Measurement of the overbite</td>
<td>50</td>
</tr>
<tr>
<td>30</td>
<td>Graphic representation of the left side curve of Spee at T1, T2 and T3</td>
<td>64</td>
</tr>
<tr>
<td>31</td>
<td>Graphic representation of the right side curve of Spee at T1, T2 and T3</td>
<td>64</td>
</tr>
<tr>
<td>32</td>
<td>Graphic representation of the total curve of Spee at T1, T2 and T3</td>
<td>65</td>
</tr>
<tr>
<td>33</td>
<td>Histogram of the mean overbite at T1, T2 and T3</td>
<td>67</td>
</tr>
<tr>
<td>34</td>
<td>Histogram of relapse of the curve of Spee and overbite (%)</td>
<td>72</td>
</tr>
<tr>
<td>35</td>
<td>Scatter diagram indicating the relative stability of the curve of Spee as a treatment procedure</td>
<td>77</td>
</tr>
<tr>
<td>36</td>
<td>Scatter diagram indicating the relative stability of overbite correction as a treatment procedure</td>
<td>77</td>
</tr>
<tr>
<td>37</td>
<td>Variation in mean values for the curve of Spee between the subgroups at T3</td>
<td>82</td>
</tr>
<tr>
<td>38</td>
<td>Variation in mean values for the overbite between the subgroups at T3</td>
<td>82</td>
</tr>
<tr>
<td>39</td>
<td>Prevalence of anterior guidance for overbite > 3mm</td>
<td>84</td>
</tr>
<tr>
<td>40</td>
<td>Prevalence of anterior guidance for overbite < 3mm</td>
<td>84</td>
</tr>
<tr>
<td>41</td>
<td>Fixed and variable determinants of the occlusion</td>
<td>99</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Table 1:</td>
<td>General information of the study sample</td>
<td>27</td>
</tr>
<tr>
<td>Table 2:</td>
<td>Age distribution of the total sample</td>
<td>28</td>
</tr>
<tr>
<td>Table 3:</td>
<td>Age distribution of the subsample</td>
<td>28</td>
</tr>
<tr>
<td>Table 4:</td>
<td>Intraclass and interclass correlations for re-measurement of the curve of Spee</td>
<td>55</td>
</tr>
<tr>
<td>Table 5:</td>
<td>Intraclass and interclass reliability for measurement of the curve of Spee using actual differences between measurements</td>
<td>57</td>
</tr>
<tr>
<td>Table 6:</td>
<td>Measurement of the curve of Spee (CoS) at T1 (pre-treatment)</td>
<td>58</td>
</tr>
<tr>
<td>Table 7:</td>
<td>Measurement of the curve of Spee (CoS) at T2 (post-treatment)</td>
<td>59</td>
</tr>
<tr>
<td>Table 8:</td>
<td>Measurement of the curve of Spee (CoS) at T3 (follow-up)</td>
<td>60</td>
</tr>
<tr>
<td>Table 9:</td>
<td>Mean values for the curve of Spee at T1, T2 and T3</td>
<td>61</td>
</tr>
<tr>
<td>Table 10:</td>
<td>Means, standard deviations, and distributions for the curve of Spee at T1, T2 and T3</td>
<td>62</td>
</tr>
<tr>
<td>Table 11:</td>
<td>Mean values for individual measurements used to calculate the curve of Spee on the left side only</td>
<td>63</td>
</tr>
<tr>
<td>Table 12:</td>
<td>Mean values for individual measurements used to calculate the curve of Spee on the right side only</td>
<td>63</td>
</tr>
<tr>
<td>Table 13:</td>
<td>Mean values for individual measurements used to describe the total curve of Spee</td>
<td>65</td>
</tr>
<tr>
<td>Table 14:</td>
<td>Mean values for the overbite at T1, T2 and T3</td>
<td>66</td>
</tr>
<tr>
<td>Table 15:</td>
<td>Means, standard deviations, and distributions for the overbite at T1, T2 and T3</td>
<td>67</td>
</tr>
<tr>
<td>Table 16:</td>
<td>Means, standard deviations, and P values for the changes in the curve of Spee between the various stages for the total group</td>
<td>68</td>
</tr>
</tbody>
</table>
Table 17: Means, standard deviations, and P values for the changes in the curve of Spee between the various stages for the two subgroups

Table 18: Means, standard deviations, and P values for the changes in the overbite between the various stages for the total group

Table 19: Correlation coefficients for the different parameters tested

Table 20: Prevalence of anterior guidance at T3

Table 21: Relationship between the presence or absence of anterior guidance, and the curve of Spee at T3

Table 22: Relationship between the presence or absence of anterior guidance, and the overbite at T3

Table 23: Mean values for the curve of Spee and overbite in two comparative studies