FRACTURE IN HIGH PERFORMANCE FIBRE REINFORCED CONCRETE PAVEMENT MATERIALS

ERIK DENNEMAN

A thesis submitted in partial fulfilment of the requirements for the degree of PHILOSOPHIAE DOCTOR (ENGINEERING)

In the

FACULTY OF ENGINEERING

UNIVERSITY OF PRETORIA

May 2011

© University of Pretoria
An innovative pavement system known as Ultra Thin Continuously Reinforced Concrete Pavement (UTCRCP) was recently developed in South Africa. The technology is currently being implemented on some major routes in the country. The system consists of a high performance fibre reinforced concrete pavement slab with a nominal thickness of approximately 50 mm. The material has a significant post crack stress capacity compared to plain concrete. Current design methods for UTCRCP are based on conventional linear elastic concrete pavement design methodology, which does not take into account post crack behaviour. Questions can be raised with regards to the suitability of conventional approaches for the design of this high performance material.

The hypothesis of the study is that the accuracy of design models for UTCRCP can benefit from the adoption of fracture mechanics concepts.

The experimental framework for this study includes fracture experiments under both monotonic and cyclic loading, on specimens of different sizes and geometries and produced from several mix designs. The aim is to quantify size effect in the high performance fibre
reinforced concrete material, to determine fracture mechanics material parameters from monotonic tests, and to investigate the fatigue behaviour of the material.

As part of the study a method is developed to obtain the full work of fracture from three point bending tests by means of extrapolation of the load-displacement tail. This allows the specific fracture energy (G_f) of the material to be determined. An adjusted tensile splitting test method is developed to determine the tensile strength (f_t) of the material.

The values of G_f and f_t are used in the definition of a fracture mechanics based cohesive softening function. The final shape of the softening function combines a crack tip singularity with an exponential tail. The cohesive crack model is implemented in finite element methods to numerically simulate the fracture behaviour observed in the experiments. The numerical simulation provides reliable results for the different mixes, specimen sizes and geometries and predicts the size effect to occur.

Fracture mechanics based models for the prediction of the fatigue performance of the material are proposed. The predictive performance of the models is compared against a model representing the conventional design approach.

It is concluded that the findings of the study support the thesis that design methods for UTCRCP can benefit from the adoption of fracture mechanics concepts. This conclusion is mainly based on the following findings from the study:

- The high performance fibre reinforced concrete material was found to be subject to significant size effect. As a consequence the MOR parameter will not yield reliable predictions of the flexural capacity of full size pavement structures,
- In contrast to the MOR parameter, the fracture mechanics damage models developed as part of this study do provide reliable predictions of the flexural behaviour of the material,
- The fatigue model developed based on fracture mechanics concepts, though not necessarily more precise, is more accurate.
ACKNOWLEDGEMENTS

The author gratefully acknowledges the financial support provided by CSIR and the University of Pretoria (UP), which made this thesis work possible. The author further wishes to thank all those who have contributed to this study, in particular:

- Mr. Derek Mostert of UP for the mix designs and the preparation of specimens tested as part of this study,
- Mr. Derek Mostert, Mr. Herman Booysen and Mr. Johan Scholtz for the production of test fixtures and the execution of the tests on fibre reinforced concrete at UP,
- Dr. Rongzong Wu of the University of California at Davis (UC Davis) for the mentoring provided on the use of the OpenSees finite element software and on the embedded discontinuity method implemented in that software by Dr. Wu,
- Mr. Bill Sluis and Mr. Daret Kehlet, for the support provided during the mix production and testing performed at UC Davis,
- Mr. Benoit Verhaeghe (CSIR), Prof. Wynand Steyn (formerly CSIR) and Prof. John Harvey (UC Davis), for creating a work environment that allowed the author to complete the bulk of the thesis work during office hours,
- Dr. James Maina (CSIR) who acted as a mentor for this study,
- Prof. Elsabe Kearsley and Prof. Alex Visser, for the advice, guidance and valuable input provided to this document and the papers published as part of the study.
TABLE OF CONTENTS

1 INTRODUCTION .. 1
 1.1 Background ... 1
 1.2 Problem statement ... 3
 1.3 Objectives .. 4
 1.4 Thesis statement .. 4
 1.5 Scope of the work .. 5
 1.6 Limitations .. 6
 1.7 Contribution to the state of knowledge ... 6
 1.8 Thesis structure ... 7

2 THEORETICAL FRAMEWORK .. 9
 2.1 Ultra Thin Continuously Reinforced Concrete Pavements (UTCRCP) 9
 2.2 The mechanisms of fatigue in plain and fibre reinforced concrete 12
 2.3 Design for fatigue in concrete pavements ... 14
 2.3.1 Relating pavement stress condition to fatigue life ... 14
 2.3.2 Calculation of stress condition in concrete pavements 16
 2.3.3 Fatigue damage accumulation.. 17
 2.4 Some concerns regarding the conventional concrete pavement design approach ... 18
 2.4.1 Limitations of Miner’s linear cumulative damage hypothesis 18
 2.4.2 Size-effect .. 19
 2.5 Fracture mechanics and its application to concrete ... 21
 2.5.1 Linear elastic fracture mechanics ... 21
 2.5.2 The fracture mechanics size effect explained .. 23
 2.5.3 Size effect equations .. 24
 2.5.4 Cohesive crack model .. 24
 2.5.5 Smear crack or crack band models .. 28
 2.5.6 The Jenq-Shah two parameter fracture model ... 29
 2.5.7 Application of fracture mechanics to conventionally reinforced and fibre
 reinforced concrete ... 30
 2.6 Fracture mechanics for fatigue damage prediction ... 32
 2.6.1 Paris’ law ... 32
 2.6.2 Fatigue softening behaviour in cohesive crack model 34
 2.7 Discussion on theoretical framework .. 36
5.1.4 Comparison of OpenSees and Abaqus models ... 102
5.2 Size independent simulation of fracture ... 103
5.2.1 Prediction of size effect in flexural beam tests .. 104
5.2.2 Simulation of flexural disk tests in Abaqus ... 106
5.2.3 Summary of results for numerical simulation of unreinforced flexural tests .. 110
5.3 Modelling beams with reinforcement bars ... 111
5.4 Numerical model of tensile splitting test ... 114
5.5 Application of the damage model to simplified pavement structure 116
5.6 Fatigue fracture prediction .. 120
5.6.1 Fatigue prediction using the conventional method .. 120
5.6.2 Fracture mechanics based method ... 123
5.6.3 Peak load based fatigue prediction model ... 123
5.6.4 Deflection based fatigue prediction model ... 126
5.6.5 Model based on crack length ... 129
5.7 Discussion on the numerical simulation of fracture .. 130
6 CONCLUSIONS ... 134
6.1 Size effect and its implications for design ... 135
6.2 Characterization of fracture behaviour under monotonic loading 136
6.3 The use of fracture parameters in fatigue life prediction 138
6.4 The benefits of the use of fracture mechanics in UTCRCP design 140
6.5 Recommendations for implementation .. 141
REFERENCES .. 143
Appendix A: Flexural test results .. A-1
Appendix B: Cyclic test results .. B-1
Appendix C: Exponential softening .. C-1
Appendix D: Simulation using crack tip singularity .. D-1
Appendix E: Simulation of flexural disks .. E-1
LIST OF FIGURES

Figure 2-1: Typical damage evolution in UTCRCP under HVS testing (published earlier in Du Plessis and Fisher, 2008a) .. 10
Figure 2-2: Schematic representation of failure in UTCRCP ... 12
Figure 2-3: a) FPB test configuration, b) TPB test configuration ... 15
Figure 2-4: Fatigue curve at different stress / strength ratios for continuously reinforced concrete pavements according to NCHRP 1-37A (2004) .. 16
Figure 2-5: The evolution of strain in concrete under cyclic loading (after Holmen, 1979) versus the linear cumulative damage concept .. 19
Figure 2-6: Size effect for beams in flexure (after Bažant and Planas, 1997) .. 20
Figure 2-7: a) Approximation of unloaded area due to cracking, b) Change in amount of strain energy released as crack progresses ... 23
Figure 2-8: a) Sketch of fictitious crack model, b) shape of the softening curve for plain concrete (after Hillerborg et al., 1976) ... 25
Figure 2-9: Typical assumed shapes of the softening curve .. 26
Figure 2-10: Stress-strain behaviour of crack band model after Bažant and Planas, 1997) 28
Figure 2-11: Softening function for steel fibre reinforced concrete (after Hillerborg, 1985) .. 31
Figure 2-12: Stages of fatigue crack growth Subramaniam model .. 34
Figure 2-13: a) Load-displacement evolution according to Hordijk model, b) Sketch of cyclic cohesive softening function ... 35
Figure 3-1: Timeline and objectives of experimental phases .. 40
Figure 3-2a) TPB test setup, b) FPB test setup, c) Disk test configuration ... 44
Figure 3-3a) Picture of TPB setup, b) Picture of disk test setup ... 44
Figure 3-4a and b) TPB test configuration at UC Davis, c) Detail of the knife edges and clip gauge ... 46
Figure 3-5: Picture of test setup for FPB3-E and FPB3F-E .. 50
Figure 3-6: Compressive strength test setup at UP .. 51
Figure 3-7a: Assumed load condition tensile splitting test, b: Actual load condition 53
Figure 3-8: a: Principal crack formation, b: Secondary crack formation, c: schematic load-deformation curve (after Rocco et al., 1999c) ... 55
Figure 3-9: a: Initial test configuration, b: Improved test setup ... 56
Figure 3-10: Photos of split cylinder test setup .. 56
Figure 3-11: Example of TPB finite element mesh .. 60
Figure 3-12: Geometry of numerical model for splitting test .. 61
Figure 3-13b: Geometry of test, b: Geometry and boundary conditions of model 62
Figure 4-1: Example of load-displacement curve, b: Example of load-CMOD curve 65
Figure 4-2a) Average load displacement curves for monotonic TPB tests mix D, b) Nominal stress versus relative displacement Mix D specimens ... 68
Figure 4-3a) Size effect in σNu results for mix D, b) Size effect in σNu results for mix E 69
Figure 4-4: Linear regression for size effect in this and other studies ... 70
Figure 4-5: Relative size effect in studies normalized for MOR standard size specimen 70
Figure 4-6: Typical crack pattern in disk experiments .. 71
Figure 4-7: Load-displacement curves for specimens type TPB1-A .. 73
Figure 5-19a: Boundary conditions FRC pavement model, b: Result LE analysis, c: Result fracture model. ...117

Figure 5-20a: Load-displacement curve for pavement structure, b: Major principal stress condition at failure concrete pavement (displacement scale x5) ...118

Figure 5-21a: Boundary conditions plain concrete pavement model, b: Result LE analysis, c: Result fracture model. ...119

Figure 5-22: Calibration of conventional fatigue model...121

Figure 5-23: Predictive performance of conventional fatigue model for: a) 100 mm high beams, b) 50 mm high beams and c) 600 mm diameter disk specimens ..122

Figure 5-24: Calibration of fracture mechanics based fatigue model ...124

Figure 5-25: Predictive performance of fracture mechanics fatigue model for: a) 100 mm high beams, b) 50 mm high beams and c) 600 mm diameter disk specimens ..125

Figure 5-26: Displacement based model ...127

Figure 5-27: Calibration of displacement based fatigue model ...128

Figure 5-28: Predictive performance of displacement based fatigue model for: a) 100 mm high beams, b) 50 mm high beams and c) 600 mm diameter disk specimens ..129

Figure 5-29: Fracture propagation in beams of different sizes ...130
LIST OF TABLES

Table 3-1: Mix components by mass first round of testing ... 42
Table 3-2: Specimen dimensions mix A ... 42
Table 3-3: Specimen dimensions mix B ... 43
Table 3-4: Mix components by mass testing at UC Davis ... 47
Table 3-5: Specimen dimensions mix C ... 47
Table 3-6: Mix components by mass mix D ... 48
Table 3-7: Specimen dimensions mix D ... 48
Table 3-8: Mix components by mass mix E ... 49
Table 3-9: Specimen dimensions mix E ... 50
Table 4-1: Average engineering properties for all studied mixes 65
Table 4-2: σ_{Nu} results flexural beam tests ... 67
Table 4-3: σ_{Nu} results flexural disk tests ... 72
Table 4-4: Summary of work of fracture results ... 80
Table 4-5: Tensile splitting test results ... 82
Table 5-1: Accuracy of numerical models in prediction of monotonic peak load 111
Table 5-2: Comparison between predicted and actual peak loads for beams with rebar ... 114
NOMENCLATURE

Abbreviations:

C&CI South African Cement and Concrete Institute
CMOD Crack Mouth Opening Displacement
CTOD Crack Tip Opening Displacement
CTOD_{c} Critical Crack Tip Opening Displacement
EDM Embedded Discontinuity Method
FCM Fictitious Crack Model
FEM Finite Element Method
FPB Four Point Bending
FPZ Fracture Process zone
FRC Fibre Reinforced Concrete
HVS Heavy Vehicle Simulator
LE Linear Elastic
LEFM Linear Elastic Fracture Mechanics
LVDT Linear Variable Displacement Transducer
MOR Modulus of Rupture
SANRAL South African National Road Agency Limited
SDA Strong Discontinuity Approach
TPB Three Point Bending
UTCRCP Ultra Thin Continuously Reinforced Concrete Pavement
UC Davis University of California at Davis
UP University of Pretoria

Symbols:

\gamma \quad \text{Specific surface energy} \quad [\text{N/mm}]
\delta \quad \text{Deflection} \quad [\text{mm}]
\varepsilon^f \quad \text{Fracture strain}
\nu \quad \text{Poisson’s ratio}
\sigma \quad \text{Stress} \quad [\text{MPa}]
\sigma_1 \quad \text{Major principal stress} \quad [\text{MPa}]
\sigma_{I} \quad \text{Stress at base of crack tip singularity} \quad [\text{MPa}]
\sigma_f \quad \text{Stress at fracture} \quad [\text{MPa}]
\sigma_d \quad \text{Design value of tensile stress} \quad [\text{MPa}]
\sigma_N \quad \text{Nominal stress} \quad [\text{MPa}]
\sigma_{Nu} \quad \text{Ultimate nominal stress} \quad [\text{MPa}]
\sigma_{xx} \quad \text{Horizontal normal stress} \quad [\text{MPa}]
\mu \quad \text{Shear modulus} \quad [\text{MPa}]
a \quad \text{Notch depth or crack length} \quad [\text{mm}]
a_1 \quad \text{Calibration constant}
a_2 \quad \text{Distance to corner of slab} \quad [\text{mm}]
a_c \quad \text{Critical crack length} \quad [\text{mm}]
a_e \quad \text{Equivalent effective elastic crack length} \quad [\text{mm}]
b \quad \text{Specimen width} \quad [\text{mm}]
b_1 \quad \text{Calibration constant}
f_t \quad \text{Tensile strength} \quad [\text{MPa}]
\(h \) Specimen height or slab thickness [mm]
\(h_c \) Width of fracture zone [mm]
\(k \) Subgrade stiffness [N/mm]
\(l \) Radius of relative stiffness [mm]
\(m \) Calibration constant
\(l_c \) Characteristic length [mm]
\(n_i \) Number of load cycles applied at stress level \(S_i \)
\(s \) Span [mm]
\(w \) Crack width [mm]
\(w_c \) Critical crack width [mm]
\(w_I \) Crack width at base crack tip singularity [mm]
\(E \) Young’s modulus [MPa]
\(C \) Paris’s constant
\(E' \) Effective Young’s modulus in plain strain condition [MPa]
\(E_t \) Tangent modulus [MPa]
\(G_f \) Specific fracture energy [N/m]
\(I \) Moment of inertia [mm^4]
\(K \) Bulk modulus [MPa]
\(K_I \) Crack tip stress intensity [MPa mm^{1/2}]
\(K_{lc} \) Critical crack tip stress intensity [MPa mm^{1/2}]
\(N \) Number of load cycles
\(N_i \) Number of cycles at stress level \(S_i \)
\(P \) Total of external loads [N]
\(P_u \) Peak load [N]
\(S \) Stress level [MPa]
\(S_I \) Surface energy [N m]
\(U^* \) Strain energy [MPa]
\(W_f \) Work of fracture [N mm]