PROCESS DEVELOPMENT FOR THE PRODUCTION OF BENEFICIATED TITANIA SLAG

by

Jacobus Philippus van Dyk

Submitted in fulfillment of the requirements for the degree

PHILOSOPHIAE DOCTOR

In the Faculty Engineering

University of Pretoria

Pretoria

Study leader: PC Pistorius

5 November 1999
ACKNOWLEDGEMENTS

I would like to thank and herewith express my sincere appreciation to the following people:

• Nanne Vegter, my colleague and friend, for the numerous discussions during the project the ideas that were generated during those discussions.
• Corelie Visser, for providing mineralogical and moral support during the project.
• Marie Nel, Bes Bester and Jaco Vermaak for performing numerous leach tests.
• Willem van Niekerk for having the vision and perseverance to support this project financially.
• John Winter and Ernie Walpole, my Australian friends, for generating some of the initial ideas and performing most of the initial test work.
• Chris Pistorius, my supervisor, for his support and advice during this project
• My family for their tolerance and support during this project
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF FIGURES</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xviii</td>
</tr>
<tr>
<td>OPSOMMING</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER 1
INTRODUCTION

1.1 The occurrence and uses of titanium dioxide
1.2 Pigment production processes
1.2.1 The sulphate process
1.2.2 The chloride process
1.2.3 Feedstock requirements for the chloride process
1.3 The production of titania slag
1.4 Slag upgrading processes
1.4.1 Oxidation and reduction roasting followed by leaching
1.4.2 Oxidation roasting followed by leaching
1.4.3 Salt roasting followed by leaching
1.4.4 Oxidation and fluxing of molten slag followed by leaching
1.4.5 Suphidation and/or sulphation roasting followed by leaching
1.4.6 Chlorination
1.5 The motivation for upgrading chloride grade titania slag

CHAPTER 2
PRELIMINARY INVESTIGATION

2.1 Experimental design
2.1.1 Feed material and experimental plan
2.2 Experimental procedure
2.2.1 Slag pretreatment
2.2.2 Leaching
2.3 Results and discussion
2.4 Conclusions

CHAPTER 3
PROCESS DEVELOPMENT PHASE 1

3.1 Introduction
3.2 Experimental design
3.2.1 Feed material
3.2.2 Experimental plan
3.2.3 Experimental procedure
 3.2.3.1 Roast procedure
 3.2.3.1 Leach procedure

3.3. Results and discussion
 3.3.1 Roast investigation
 3.3.2 Leach investigation
 3.3.3 Mineralogical investigation
 3.3.3.1 As-cast titania feed slag
 3.3.3.2 Oxidation
 3.3.3.3 Reduction
 3.3.3.4 Leaching
 3.3.4 Summary of the mineralogical changes that occur during roasting
 3.3.4.1 Standard slag
 3.3.4.2 High iron slag
 3.3.4.3 High magnesia slag

3.4 Conclusions

CHAPTER 4
PROCESS DEVELOPMENT PHASE 2

4.1 Introduction
4.2 Experimental design
 4.2.1 Feed material
 4.2.2 Experimental plan
 4.2.3 Experimental procedure
 4.2.3.1 Roast procedure
 4.2.3.2 Leach procedure
 4.2.3.3 Electron microprobe analysis procedure

4.3 Results and discussion
 4.3.1 Standard titania slag
 4.3.1.1 Oxidation
 4.3.1.2 Reduction
 4.3.1.3 Particle size
 4.3.2 High iron titania slag
 4.3.2.1 Oxidation
 4.3.2.2 Particle size

4.4 Conclusions

CHAPTER 5
THE OXIDATION MECHANISM OF TITANIA SLAG

5.1 Introduction
5.2 Background
 5.2.1 Segregation and diffusion of elements in oxide systems
5.2.2 Diffusion of Fe in TiO₂

5.3 Oxidation of titaniferous materials
 5.3.1 Thermodynamics
 5.3.2 Kinetics of titania slag oxidation
 5.3.3 Kinetics of ilmenite oxidation
 5.3.4 Kinetics of titanomagnetite oxidation

5.4 Proposed mechanism of titania slag oxidation

5.5 Experimental plan

5.6 Experimental procedure
 5.6.1 Roasting
 5.6.2 Leaching

5.7 Results and discussion
 5.7.1 Investigation into the roasting conditions required for iron migration
 5.7.2 Porosity and particle size changes during roasting
 5.7.3 Investigation into the oxidation of coated slag particles
 5.7.4 Investigation into the oxidation state of iron at various positions in oxidised slag particles
 5.7.4.1 WDS point chemical analysis
 5.7.4.2 Leach investigation
 5.7.5 Investigation into the influence of iron-rich rims on the mechanism of oxidation
 5.7.6 Investigation into the influence of higher roasting temperatures on the mechanism of oxidation
 5.7.7 Investigation into the influence of interrupted roasting on the mechanism of oxidation

5.8 Quantitative WDS analyses of selected phases in oxidised slag

5.9 Conclusions

SUMMARY

REFERENCES

APPENDICES

Appendix I Chemical analysis of the feed slags used for the preliminary investigation
Appendix II Log sheets for the preliminary investigation experiments
Appendix III Chemical analyses of the feed slags used for process development phase 1
Appendix IV Results of the process development phase 1 roast investigation
Appendix V Results of the process development phase 1 leach investigation
Appendix VI Titration procedure used to determine the Fe(II), Fe(III) and HCl concentrations of the leach liquors
Appendix VII Chemical analyses of the feed slags used for process
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix VIII</td>
<td>List of experiments conducted for process development phase 2</td>
<td>145</td>
</tr>
<tr>
<td>Appendix IX</td>
<td>Phase 2, Series 1 – Logsheets</td>
<td>149</td>
</tr>
<tr>
<td>Appendix X</td>
<td>Phase 2, Series 2 – Logsheets</td>
<td>169</td>
</tr>
<tr>
<td>Appendix XI</td>
<td>Phase 2, Series 3 – Logsheets</td>
<td>189</td>
</tr>
<tr>
<td>Appendix XII</td>
<td>Phase 2, Series 4 – Logsheets</td>
<td>223</td>
</tr>
<tr>
<td>Appendix XIII</td>
<td>Calculation of the gas flow rate necessary for fluidisation</td>
<td>231</td>
</tr>
<tr>
<td>Appendix XIV</td>
<td>Chemical composition profile data</td>
<td>234</td>
</tr>
<tr>
<td>Appendix XV</td>
<td>Reduction leach logsheets</td>
<td>276</td>
</tr>
<tr>
<td>Appendix XVI</td>
<td>Estimation of the oxygen isobars for oxidation and reduction at 850°C</td>
<td>285</td>
</tr>
<tr>
<td>Appendix XVII</td>
<td>Formation of hematite or ferric pseudobrookite during oxidation</td>
<td>288</td>
</tr>
<tr>
<td>Appendix XVIII</td>
<td>Mössbauer data</td>
<td>290</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

CHAPTER 1

Figure 1 Flow diagram of the proposed IHM ilmenite smelting plant 4
Figure 2 Titaniferous feedstock prices 9

CHAPTER 2

Figure 3 The leach kinetics of titanium and iron in 20% HCl from: A Standard as-cast slag at 95°C; B High iron granulated slag containing at 95°C; C Oxidised and reduced slag at 107°C and; D phosphate fluxed slag at 95°C 15

CHAPTER 3

Figure 4 Summary of the results from the tests conducted to evaluate the effect of leach time and feed slag composition 20
Figure 5 The effect of excess hydrochloric acid on iron extraction at different initial hydrochloric acid concentrations 21
Figure 6 The effect of initial hydrochloric acid concentration on iron extraction at different levels of excess hydrochloric acid 21
Figure 7 The effect of acid concentration and the level of excess acid on the final product quality after 12 h of leaching 22
Figure 8 As-cast standard titania slag 23
Figure 9 Standard slag oxidised for 1 h at 850 °C, displaying iron migration towards the edges of cracks and the outer rims of the particles 25
Figure 10 Standard slag oxidised for 3 h at 800 °C, contained dense particles that displayed iron enrichment to the outsides of the particles 25
Figure 11 (Left side) Longer oxidation times resulted in a decrease in the size of the unreacted cores in the particles and an increase in the amount of iron migration to the outsides of the particles. (Right side) Two distinct phases were visible in the iron-enriched rim on the outsides of the oxidised particles 26
Figure 12 High iron slag particle oxidised for 1 h at 850 °C displaying iron migration towards the edges of cracks leaving the adjacent areas enriched in titania and slightly porous. Particle core consisted of the M₂O₅-solidsolution. The glass phase depicted in micrograph (b) contained ilmenite 28
Figure 13 High iron slag particle oxidised at 850 °C for 3 h displaying a well defined zoned texture with M₃O₅-rich inner core, TiO₂-rich mantle and porous, iron-enriched outer rim 28
Figure 14 High magnesium slag (PFE418) particle oxidised for 1 h at 850 °C displaying M₃O₅-rich core and TiO₂-rich mantle with iron enrichment towards the edges of cracks and outer rim of the slag particle. Metallic iron precipitates were evident in the vicinity of internal cracks.

Figure 15 High magnesium slag (PFE418) particle oxidised for 1 h at 850 °C displaying M₃O₅-rich core with metallic iron precipitates associated with rutile along internal cracks extending through the particle.

Figure 16 Standard slag (PFE437) particle, which had been oxidised at 850 °C for 1 h and reduced for 40 min at 800 °C displaying porosity and iron migration towards the outer margins of the particle. This particular slag particle had no unreacted core.

Figure 17 High iron slag oxidised at 850°C for 3 h and reduced at 800°C for 30 minutes containing small unreacted M₃O₅ cores and broad TiO₂ mantles. Iron enrichment towards the outer margins of the particles can be observed.

Figure 18 Oxidised and reduced high iron slag particle displaying iron enrichment towards the particle rim and along the edges of cracks extending through the particle.

Figure 19 Optical micrograph of high magnesia slag which had been oxidised at 850 °C for 2 h and reduced at 800 °C for 30 min. Precipitated carbon associated with the particle is clearly visible.

Figure 20 Standard slag, oxidised for 1 h at 850 °C; reduced at 800 °C for 40 min; leached for 5 h and calcined at 800°C for 2 h.

Figure 21 High iron slag that was oxidised, reduced and then leached for 12 h.

Figure 22 Optical micrograph of the high iron slag which was oxidised for 2 h at 850 °C, reduced for 30 min. at 800 °C, leached for 12 h and calcined. The exterior of the particles consisted predominantly of rutile and the interior predominantly of anatase.

Figure 23 High magnesia slag, leached for 1 h; the effect of leaching is visible mainly at the outer margins of the individual slag particles.

Figure 24 Optical micrograph of the high magnesia slag, which was oxidised for 2 h at 850 °C, reduced for 30 min. at 800 °C, leached for 12 h and calcined. The particle display a zoned appearance, in the center is an unreacted core surrounded by a mantle of anatase, while the rims consist of rutile.

Figure 25 Summary of the morphological changes that occur during the production of BTS.
CHAPTER 4

Figure 26 Experimental set-up used for the roast experiments
Figure 27 Standard titania slag oxidised for $\frac{1}{2}$ h at 850 °C in 8 % O$_2$. SEM micrographs as well as a chemical composition profile (weight %) through one of the particles are shown
Figure 28 Standard titania slag oxidised for 1 h at 850 °C in 8 % O$_2$. SEM micrographs as well as a chemical composition profile (weight %) through one of the particles are shown
Figure 29 Standard titania slag oxidised for 2 h at 850 °C in 8 % O$_2$. SEM micrographs as well as a chemical composition profile (weight %) through one of the particles are shown
Figure 30 Standard titania slag oxidised for 4 h at 850 °C in 8 % O$_2$. SEM micrographs as well as a chemical composition profile (weight %) through one of the particles are shown
Figure 31 Standard titania slag oxidised for 2 h at 850 °C in 8 % O$_2$ and reduced for 20 min in 100 % CO. SEM micrographs as well as a chemical composition profile (weight %) through one of the particles are shown
Figure 32 Standard titania slag oxidised for 2 h at 850 °C in 8 % O$_2$, reduced for 20 min in 100 % CO and leached for 12 h in boiling 20 % HCl. SEM micrographs as well as a chemical composition profile (weight %) through one of the particles are shown
Figure 33 The influence of oxidation time during roasting of standard slag on BTS product grade. The slag was oxidised at 850 °C in 8 % O$_2$, reduced in 100 % CO for 20 min and leached in boiling HCl for 12 h
Figure 34 The influence of oxidation time, during roasting of standard slag, on iron extraction during leaching. The slag was oxidised at 850 °C in 8 % O$_2$, reduced in 100 % CO for 20 min and leached in boiling HCl for 12 h
Figure 35 The change in the oxidation state of iron during oxidation roasting of standard titania slag as determined by Mössbauer analysis
Figure 36 Changes in the relative concentration of the iron containing phases during oxidation roasting of standard titania slag as determined by Mössbauer analysis
Figure 37 The influence of oxygen concentration and temperature during oxidation of standard slag on BTS product grade. The slag was oxidised for 2 h, reduced for 20 min in 100 % CO and leached for 12 h in boiling 20 % HCl. The slag contained the equivalent of 85% TiO$_2$ before treatment
Figure 38 The influence of oxygen concentration during oxidation of standard slag at 850 °C on the total iron extraction during leaching. The slag was oxidised for 2 h, reduced for 20 min in 100 % CO and leached for 12 h in boiling 20 % HCl.

Figure 39 The influence of roasting temperature and oxygen concentration during oxidation of standard slag on the rate of iron extraction during leaching. The slag was oxidised for 2 h, reduced for 20 min in 100 % CO and leached for 12 h in boiling 20 % HCl.

Figure 40 The influence of reduction time, during roasting of standard slag, on BTS product grade. The slag was oxidised for 2 h at 850 °C in 8 % O₂, reduced in 100 % CO and leached for 12 h in boiling 20 % HCl.

Figure 41 The influence of reduction time during roasting of standard slag on the rate of iron extraction during leaching. The slag was oxidised for 2 h at 850 °C in 8 % O₂, reduced in 100 % CO and leached for 12 h in boiling 20 % HCl.

Figure 42 The changes in the oxidation state of iron during reduction as determined by Mössbauer analysis.

Figure 43 The changes in the relative concentration of the iron containing phases in oxidised standard titania slag during reduction for various times as determined by Mössbauer analysis.

Figure 44 The influence of the particle size distribution of standard slag on BTS product grade. The slag was oxidised at 850 °C for 2 h in 8 % O₂, reduced for 20 min in 100 % CO and leached for 12 h in 20 % HCl.

Figure 45 The influence of the particle size distribution of standard slag on iron extraction during leaching. The slag was oxidised at 850 °C for 2 h in 8 % O₂, reduced for 20 min in 100 % CO and leached for 12 h in boiling HCl.

Figure 46 The influence of oxidation time and the particle size distribution of standard slag on the rate of iron extraction during leaching. The slag was oxidised at 850 °C in 8 % O₂, reduced for 20 min in 100 % CO and leached for 12 h in boiling 20 % HCl.

Figure 47 High iron titania slag oxidised for ½ h at 850 °C in 8 % O₂. SEM micrographs as well as a chemical composition profile (weight %) through one of the particles are shown.

Figure 48 High iron titania slag oxidised for 1 h at 850 °C in 8 % O₂. SEM micrographs as well as a chemical composition profile (weight %) through one of the particles are shown.

Figure 49 High iron titania slag oxidised for 2 h at 850 °C in 8 % O₂. SEM micrographs as well as a chemical composition profile (weight %) through one of the particles are shown.
Figure 50 High iron titania slag oxidised for 4 h at 850 °C in 8 % O2. SEM micrographs as well as a chemical composition profile (weight %) through one of the particles are shown.

Figure 51 High iron titania slag oxidised for 2 h at 850 °C in 8 % O2 and reduced for 20 min in 100 % CO. SEM micrographs as well as a chemical composition profile through one of the particles are shown.

Figure 52 High iron titania slag oxidised for 4 h at 850 °C in 8 % O2, reduced for 20 min in 100 % CO and leached for 12 h in boiling 20 % HCl. SEM micrographs as well as a chemical composition profile through one of the particles are shown.

Figure 53 The influence of oxidation time, during roasting of high iron slag, on BTS product grade. The slag was oxidised at 850 °C in 8 % O2, reduced in 100 % CO for 20 min and leached for 12 h in boiling 20 % HCl.

Figure 54 The influence of oxidation time, during roasting of high iron slag, on the rate of iron extraction during leaching. The slag was oxidised at 850 °C in 8 % O2, reduced in 100 % CO for 20 min and leached for 12 h in boiling 20 % HCl.

Figure 55 The influence of oxygen concentration and temperature (in air-CO2 mixtures) during oxidation of high iron slag on BTS product grade. The slag was oxidised for 2 h, reduced for 20 min in 100% CO and leached for 12 h in boiling 20 % HCl. The slag contained an equivalent of 72% TiO2 before treatment.

Figure 56 The influence of temperature and oxygen concentration during oxidation of high iron slag on the rate of iron extraction during leaching. The slag was oxidised for 2 h, reduced for 20 min in 100 % CO and leached for 12 h in 20 % HCl.

Figure 57 The effect of particle size distribution on final BTS grade. The slag was oxidised at 850°C for 2 h in 8% O2, reduced for 20 min in 100% CO and leached for 12 h in 20% HCl.

Figure 58 The influence of the particle size distribution of high iron slag on the rate of iron extraction during leaching. The slag was oxidised at 850°C for 2 h in 8% O2, reduced for 20 min in 100% CO and leached for 12 h in 20% HCl.

CHAPTER 5

Figure 59 Part of the Ti-O-Fe phase diagram at 1000 °C (compiled from phase diagrams produced by Lindsley, 1976 and Ericksson and Pelton, 1996). A star indicates the chemical composition of as-cast slag and the oxidation path of this material is indicated by a dotted line.
Figure 60 The effect of temperature on the TiO2-FeO-Fe2O3 phase diagram (Haggerty, 1976)
Figure 61 The isotherm of the Fe-Fe2O3-TiO2 system at 800 °C (after Borowiec and Rosenqvist, 1981)
Figure 62 Summary of the phase and chemical changes that occurs in titania slag during oxidation
Figure 63 Proposed mechanism for the oxidation of titania slag
Figure 64 Slag roasted for 2 h at 850 °C. Oxygen was used to roast sample A, air was used for sample B and argon was used for sample C
Figure 65 Particle size changes during roasting of titania slag
Figure 66 Micrographs of the slag sample coated with gold after roasting in air at 850 °C for 30 min
Figure 67 Variation of iron concentration, iron oxidation state and titanium oxidation state along a line through an oxidised slag particle
Figure 68 Titania slag oxidised for 45 min in 10 % O2 at 850 °C and leached for different times under reducing conditions
Figure 69 Iron speciation in solution during leaching of oxidised titania slag
Figure 70 Iron speciation in solution during leaching of slag that was previously oxidised and reduction leached
Figure 71 Titania slag that was oxidised for 45 min in air, reduction leached for 1 h and roasted again in air for 2 h at 850 °C
Figure 72 Titania slag that was oxidised for 45 min in air, reduction leached for 1 h and roasted again in argon for 2 h at 850 °C
Figure 73 Titania slag that was oxidised for 45 min in air, reduction leached for 1 h and roasted again in carbon monoxide for 2 h at 850 °C
Figure 74 Micrographs of slag oxidised at 1050 °C for various times. Micrographs of the samples after reduction for 20 min at 850 °C are also shown
Figure 75 WDS Line chemical analysis through a particle of standard titania slag that was oxidised at 1050 °C for 30 min in 10 % O2
Figure 76 WDS Line chemical analysis through a particle of standard titania slag that was oxidised at 1050 °C for 60 min in 10 % O2
Figure 77 Micrographs of a titania slag sample that was oxidised at 850 °C for 30 min, then cooled to room temperature and oxidised again at 850 °C for 2 h
Figure 78 Micrographs of a titania slag sample that was oxidised at 850 °C for 30 min, then cooled to room temperature and oxidised again at 1050 °C for 2 h
Figure 79 Micrographs of a recrystallised titania slag particle observed in the slag sample that was oxidised at 850 °C for 30 min, then cooled to room temperature and oxidised again at 1050 °C for 2 h

Figure 80 Micrographs of sintered titania slag particles observed in a sample that was oxidised at 850 °C for 30 min, then cooled to room temperature and oxidised again at 1050 °C for 2 h
LIST OF TABLES

CHAPTER 1

Table 1 Impact of feedstock impurities on chloride process unit operations 3
Table 2 SORELSLAG™ composition 5
Table 3 Upgraded Slag composition 6
Table 4 SORELSLAG™ composition 7
Table 5 QIT salt roasting product composition 7
Table 6 US Bureau of Mines slag composition 7
Table 7 Synthetic rutile product composition 8
Table 8 Feed slag composition to the sulphiding-sulphation process 8
Table 9 Impurity content of the residue from the sulphiding-sulphation process 8
Table 10 Feed slag to the chlorination process 9
Table 11 Chlorination process product composition 9

CHAPTER 2

Table 12 Chemical composition of the feed slags 11
Table 13 The effect of different pre-treatments and slag compositions on the leachability of impurities 13
Table 14 The effect of phosphate fluxing on the leachability of impurities from titania slag 14
Table 15 The leach results presented in Table 14 normalised to a silica free basis 14
Table 16 Phase-chemical composition of the slag, given in order of decreasing abundance 16

CHAPTER 3

Table 17 Concentration of selected species in the feed slags used for this investigation 17
Table 18 Coal analysis 17
Table 19 Variables investigated during the roast study 18
Table 20 Variables investigated during the leach study 18
Table 21 Results of the roast investigation on feed slag PFE437 19
Table 22 Phase-chemical composition of the feed slag samples as determined by XRD, given in order of decreasing abundance. The chemical compositions used to classify the slags are also given 23
Table 23 Phase-chemical compositions of slag PFE437 after oxidation at different temperatures and times, given in order of decreasing abundance 24
CHAPTER 4

Table 33 Chemical composition of the feed slags used in this investigation
Table 34 Phase-chemical composition of the feed slags used in this investigation
Table 35 The phase-chemical composition, as determined by XRD, of standard slag after oxidation. The samples are categorised by the oxidation time used. For the experiments listed the slag was oxidised at 850 °C in 8 % O₂
Table 36 The phase-chemical composition, as determined by XRD, of standard slag after oxidation and reduction. The samples are categorised by the oxidation time used. For the experiments listed the slag was oxidised at 850 °C in 8 % O₂ and reduced in 100 % CO for 20 min.

Table 37 The phase-chemical composition, as determined by XRD, of standard slag after oxidation, reduction and leaching. The samples are categorised by the oxidation time used. For the experiments listed the slag was oxidised at 850 °C in 8 % O₂, reduced in 100 % CO for 20 min and leached in 20 % HCl for 12 h.

Table 38 Phase chemical analysis, as determined by XRD, of the oxidation samples used for the Mössbauer investigation.

Table 39 The phase chemical composition as determined by XRD of standard slag after oxidation, reduction and leaching. The samples are categorised by the oxidation atmosphere that was used. The slag was oxidised at 850 °C for 2 h, reduced in 100 % CO for 20 min and leached in boiling 20 % HCl for 12 h.

Table 40 The phase-chemical composition as determined by XRD-analysis of standard slag after oxidation, reduction and leaching. The samples are categorised by the roasting temperature that was used. The slag was oxidised in 8 % O₂ for 2 h, reduced in 100 % CO and leached for 12 h in boiling 20 % HCl.

Table 41 The phase-chemical composition, as determined by XRD, of standard slag after oxidation, reduction and leaching. The samples are categorised by the retention time during reduction. The slag was oxidised at 850 °C for 2 h in 8% O₂, and reduced in 100 % CO.

Table 42 Phase chemical composition, as determined by XRD, of the oxidised and reduced samples submitted for Mössbauer analysis.

Table 43 The phase-chemical composition, as determined by XRD, of standard slag after oxidation, reduction and leaching. The samples are categorised by the size distribution used. The slag was oxidised at 850 °C for 2 h in 8 % O₂, reduced in 100 % CO for 20 min and leached in boiling 20 % HCl for 12 h.

Table 44 The phase-chemical composition of high iron titania slag after oxidation. The samples are categorised by the retention time during oxidation. The slag was oxidised at 850 °C in 8 % O₂.
The phase-chemical composition of high iron titania slag after oxidation and reduction. The samples are categorised by the retention time during oxidation. The slag was oxidised at 850 °C in 8 % O₂ and reduced in 100 % CO for 20 min.

The phase-chemical composition, as determined by XRD, of high iron slag after oxidation, reduction and leaching. The samples are categorised by the retention time during oxidation. For the experiments listed the slag was oxidised at 850°C in 8 % O₂, reduced for 20 min in 100 % CO and leached in 20 % HCl for 12 h.

Table 45 The phase-chemical composition of high iron titania slag after oxidation and reduction. The samples are categorised by the retention time during oxidation. The slag was oxidised at 850 °C in 8 % O₂ and reduced in 100 % CO for 20 min.

Table 46 The phase-chemical composition, as determined by XRD, of high iron slag after oxidation, reduction and leaching. The samples are categorised by the retention time during oxidation. For the experiments listed the slag was oxidised at 850°C in 8 % O₂, reduced for 20 min in 100 % CO and leached in 20 % HCl for 12 h.

Chapter 5

Table 47 Phase composition of the slag samples roasted in 100 % O₂, air and argon at 850 °C for 2 h.

Table 48 Porosity of slag particles before and after the roasting stages.

Table 49 Phase composition of the gold coated titania slag roasted in air at 850 °C for 30 min.

Table 50 Phase-chemical compositions as determined by XRD of oxidised and reduction leached titania slag after roasting in various atmospheres.

Table 51 Phase-chemical compositions of slag samples roasted at 1050 °C.

Table 52 Mössbauer analysis of slag samples oxidised at 1050 °C and reduced at 850 °C.

Table 53 Phase-chemical composition as determined by XRD-analysis of the samples subjected to interrupted roasting.

Table 54 Quantitative WDS analyses of selected phases in oxidised slag.
PROSESONTWIKKELING VIR DIE PRODUKSIE VAN OPGEGRADEERDE TITAAN SLAK

deur

Jacobus Philippus van Dyk

Vir die graad Philosophiae Doctor aan die Departement Materiaalkunde en Metallurgiese Ingenieurswese by die Universiteit van Pretoria

Studieleier: PC Pistorius

Sleutelwoorde: titaanslag, chloriedproses, rutiel, opgegradeerde slak, pigment, ystermigrasie, oksidasie, titaandioksied, pigment, ilmeniet, anataas

OPSOMMING

Daar is 'n reeks voermateriale beskikbaar vir die produksie van TiO2 pigment. Dit wissel van natuurlike voermateriale soos ilmeniet en rutiel to sintetiese rutiel. Daar is 'n sterk toename in die prys van titaanryke voermateriale soos die TiO2 graad van die materiale toeneem. 'n Proses is ontwikkel om voordeel te trek uit die prysverskil tussen chloriedgraad slak en natuurlike rutiel. Die proses verhoog die TiO2 inhoud van die slak van ~85% na meer as 95%. Hierdie "beneficiated titania slag" (BTS) lyk na 'n ideale voermateriaal vir die chloried proses.

Aanvanklik is verskeie prosesse geëvalueer. Daar is veral klem gele op die voorafbehandeling van die slak. Dit was nodig omdat die onsuwerhede in slak baie moeilik loog. Deur van 'n geskikte voorafbehandeling gebruik te maak kan die onsuwerhede maklik loogbaar gemaak word, terwyl die titaan grootliks nie-loogbaar bly. Die resultate het getoon dat 'n proses wat uit oksidasie- en reduksie roostering bestaan gevolg deur loging, die grootste kans op sukses het.

Die eerste deel van die prosesontwikkeling is in 'n steenkoolgevuurde fluidbedooster gedoen. Die prosesparameters was gedeeltelik geoptimiseer, omdat daar kon slegs BTS met 'n TiO2 inhoud van 94% gemaak kon word. Die daaropvolgende prosesontwikkeling is in 'n klein roostereaktor gedoen wat gekoppel was aan 'n gasmengsisteem. Dit het beter beheer oor die roostertoestande toegelaat. Die proses parameters is hiermee geoptimiseer na: oksidasie by 850 °C vir 1.5 h in 8% O2; reduksie by 850 °C vir 10 min in 100% CO en loging in 20% kokende soutsuur. Onder hierdie proseskondisies is BTS met 'n graad van > 97% TiO2 geproduseer.
There is a range of feed materials available for the production of TiO₂ pigment. These range from natural materials like ilmenite and rutile to synthetic materials like synthetic rutile. There is a large increase in the price of titaniferous feed materials as the TiO₂ content of the material increases. To take advantage of the difference in price between chloride grade slag and natural rutile a process was developed to increase the TiO₂ content of chloride grade slag from ~85% to more than 95%. This beneficiated titania slag product (BTS) should be ideal as feed material to the chloride pigment process.

Initially several processes were evaluated. Particular emphasis was placed on the slag pre-treatment procedure. This was necessary as impurities could only be leached with difficulty from as-cast slag. A suitable pre-treatment procedure would render the impurities easily leachable, while the titanium is retained in an insoluble form. The results indicated that a process consisting of oxidation and reduction roasting would satisfy these requirements.

Detailed process development was then undertaken on this process. The first phase of the process development was conducted in a coal fired fluid bed roaster. This allowed a set of semi optimised process parameters to be established, but the highest TiO₂ content that could be achieved was 94%. A second stage of process development was under taken under more controlled conditions, using a small fluid bed reactor connected to a gas mixing system. Based on the results in this phase of the process development a new set of optimum process parameters was established. They are oxidation at 850 °C for 1.5 h in an atmosphere containing 8% O₂; reduction at 850 °C for 10 min in a 100% CO atmosphere and leaching in boiling 20 % hydrochloric acid for 12 h. Under these conditions it was possible to produce BTS containing > 97% TiO₂.
During oxidation of titania slag several important morphological changes occur. These are the conversion of the original M_3O_5 phase in the slag to a mixture of rutile/anatase, hematite and ferric M_3O_5. In the process the iron in the slag migrates to the outside surfaces of the slag particles where it is easily accessible during leaching. The iron containing phases are converted to ilmenite during reduction and during leaching the ilmenite is removed. This yields the BTS product. As the oxidation roast appeared to be a very important of the BTS process it was decided to investigate the mechanism of titania slag oxidation. A mechanism based on the nucleation energy that is required to form the relevant phases during oxidation was proposed. This mechanism was tentatively confirmed through selected experiments.