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Ticks evolved an obligate, hematophagous lifestyle approximately 120 million years ago 

while the vertebrate hemostatic system has existed for at least 400 million years. This 

implies that ticks adapted to an established and efficient hemostatic system . Adaptation to 

a new environment at a molecular level implies the gain of, new protein. functions. 

Mechanisms for the acqui sition of new protein functions include gene duplicati on and 

subsequent gain/loss qf protein function. This predicts the presence of multi-gene or 

protein families. The present study investigated the adaptation of ticks to a blood-feeding 

environment through the use of such multi-gene families present in the sa li vary gland 

pro teins of the soft tick Ornithodoros savignyi. 

In this study, a fami ly of platelet aggregation inhibitors named savignygrins was 

characteri zed. These savignygrins fo r which gene duplication was indicated inhibit 

platelet aggregation induced by various agonists, disaggregate aggregated plate lets and 

inhibit the binding of the monoclonal antibody P2 to integrin Cl.Ub~3 and CI.(lb~3 to 

fibrinogen. This indicates that the savignygrins target the fibrinogen receptor, wh ich was 

confirmed by sequence identity to disagregin, a fibrinogen receptor antagonist from the 

closely related ti ck specie Ornithodoros moubata. Savignygrin, however, differs from 

disagregin due to the presence of the integrin recognition motif RGD . 

The thrombin inhibitor savlgmn was cloned and sequenced. Savignin cons ists of two 

BPTI-Kunitz domains. Homology modeling using the structure of ornilhodorin, a 

thrombin inhibitor from 0. moubata, shows similar mechanisms of inhibition. This 
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Summary 

includes targeting of thrombin 's active site with its N-tenninal BPTI-domain and 

thrombin's fibrinogen recognition exosite with its C-tenninal domain. 

Protein fo ld prediction as well as phylogenetic anal ys is indicated that the sav ignygrins 

share the BPTI-fold with thrombin and fXa inhibitors previpusly described for the 

Ornithodoros genus. A model of protein evolution for the tick BPTI-inhibitors is 

proposed that indicates a sequential evolution of inhibition of the substrate recognition 

capability of thrombin (targeting of the fibrinogen binding exosite), its catalytic 

capabi lity (targeting of the active site), the catalytic capability of fXa (similar to that of 

thrombin) and platelet aggregation. This model acco unts for the different inhibitory 

mechanisms of the tick anti-coagulants relative to that of the canonical BPTI-family. The 

unique presentation mode of the RGD motif on the BPTI substrate-presenting loop of the 

platelet aggregation inhibitors is also explained. 

Four highly abundant proteins (TSGPs) of the lipoca lin family were characteri zed. It was 

proposed that these proteins function during sali vary gland granule biogenesis. TSGP2 

and TSGP4 were also identified as toxins that affect the cardiac system. [n contrast to 

savignygrin and apyrase, which localizes to two specific sali vary granule types, the 

TSGPs localize to all the different granule types identified in the salivary glands . 

Localization studies also indicate that instead of the previously described three granular 

cell types in soft ti ck salivary glands, there are fi ve. Phylogenetic analysis of the ti ck 

lipocalins indica tes a series of gene duplication events and subsequen t gain/loss of 

protein function. The absence of the toxins in the salivary glands of O. moubata sugges ts 

that the toxins as well as the non-toxic TSGP3 might be recent gene dup lications that 

occurred after the di vergence of these two tick species . 
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Biochernie 

Phi losophia Doctor 

Bosluise het 'n verpligte bloedvoedende lewenstyl ongeveer 120 miljoen jaar gelede 

ontwikkel. Werweldiere se hemostatiese sisteem bestaan al ongeveer 400 miljoen jaar. 

Bosluise moes dus by 'n bestaande en hoogs ontwikkelde hemostatiese sisteem aanpas. 

Aanpassing op molekulere vlak impliseer die oiltwikkeling van nuwe proteYen funksie. 

Meganismes vir die ontwikkeling van nuwe proteien funksie sl uit geen duplikasie en die 

daaropvlogende wins/verlies van prote"ien funksie in. Dit voorspel die bestaan van multi

geen of protei"en families. Die huidige studie ondersoek die aanpassing van bosluise by 'n 

bloedvoedende lewenstyl deur gebruik te maak van multi-geen families leenwoordig in 

die speekselkl iere van die sagte bosluis Ornithodoros savignyi. 

'n Familie van bloedplaatjie aggregasie inhibilore is gekaJakteriseer. Geen duplikasie kon 

aangetoon word. Bloedplaaljie aggregasie deur verskeie agoniste sowel as binding van 

die monoklonale teenliggaam P2 aan die integrien allb~) en allb~) aan fibrinogeen is deur 

savignygrin voorkom. Dit idenlifiseer die fibrinogeen reseptor as teiken van savignygrin. 

Identiteit aan die fibrinogeen reseptor antagonis disagregien bevestig die hipotese. 

Savignygrin verskil egter van disagregin a.g.v. die teenwoordigheid van die integrien 

herkennings motief, RGD. 

Die trombien inhibitor, savignin se geen volgorde is bepaal deur klonering. Savignin 

bestaan uit twee Kunitz-BPTI domeine. 'n Struktuur model gegrond op omithodorin , 'n 

trombien inhibitor van O. moubata, voorspel soortgelyke inhibitor meganismes. Dit sluit 

die teikening van trombien se aktiewe setel deur die N-terminale BPTI-domein en die 

fibr inogeen herkennings setel deur die C-terminale BPTI-domein in. 
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ProteIen-vou voorspelling en filogenetiese analise dui aan dat savignygrin die BPTI-vou 

dee I saam met die trombien en fXa inhibitore geidentifiseer in the genus Ornithodoros. 'n 

Model vir die opeenvolgende onwikkeling van die boslui s BPTI-inhibitor funksie word 

voorgestel. Dit sluit in die teiken van trombien se substraat herkennings setel, trombien se 

aktiewe sentrum, fXa se aktiewe setel en bloedplaatjie aggregasie. Die model verklaar die 

uiteenlopende inhibisie meganismes van the bosluis BPTI-inhibitore ten opsigte van die 

kanonikale BPTI-inhibitore. Die unieke presentering van die ROD motief op die BPTI

substraat herkennings Ius word ook verklaar. 

Vier van die mees volopste speekselklier proteIene (TSOPs) wat deel is van die 

lipokalien familie is gekarakteriseer. 'n Funhie in die biogenese van speekselkl ier 

'granules is voorgestel. TSOP2 en TSOP4 is ook as toksiene aang.edui wat die hart aaotas. 

In teenstelling met savignyrin en ap irase wat in slegs twee granule tipes gevind word, 

word die TSOPs in al ,die granule sel tipes gevind. In plaas van die oorspronklike drie 

granule sel tipes van sagte bosluise, is vyf aangedui. Filogenetiese analise van die 

lipokaliene dui 'n reeks geen duplikasies aan met dienooreenkomstige wins/verlies van 

funksie. Die afwesigheid van die toksiene in die speekselklier ekstrakte van O. moubata 

dui ook aan dat die toksiene sowel as die nie-toksiese TSOP3 geen duplikasies mag wees 

wat plaasgevind het na die spesiasie van die twee bosluis spesies. 
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