
CHAPTER FOUR

GRAPHEME-TO-PHONEME CONVERSION

4.1 INTRODUCTION

In this chapter we analyse the grapheme-to-phoneme (g-to-p) conversion task through a number of

experiments. Our aim is obtain a pronunciation modelling mechanism that is well suited to boot-

strapping. We choose an instance based learning approach, with Dynamically Expanding Context

(DEC) as the baseline algorithm, for reasons discussed in Section 4.2. We utilise the pronunciation

dictionaries described in Section 4.3 to analyse various aspects of the task, and to benchmark our

results. As DEC is sensitive to alignment errors, we first analyse grapheme-to-phoneme alignment

accuracy (in Section 4.4), and define the alignment approachwe utilise in subsequent experiments.

We then proceed to analyse a number of variations of DEC, and suggest small adaptations to the stan-

dard algorithm (Section 4.5). These variations lead to the definition of a new grapheme-to-phoneme

conversion algorithm described in Section 4.6. This algorithm –Default & Refine– has a number of

attractive properties that makes it suitable for bootstrapping.

4.2 BASELINE ALGORITHM

As discussed in Section 3.4.1, the ideal grapheme-to-phoneme conversion mechanism will have the

following characteristics:

1. High predictive ability, even for very small training setsizes.

2. Exact representation of training data.

3. Low computational cost (both for rule extraction and pronunciation prediction).

4. Robustness to noise in the training data.

26

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Of the approaches discussed in Section 2.2.2, we exclude anythat require linguistic input (such as

finite state transduction) or extensive computational resources (such as meta-classifiers). Of the re-

maining approaches, most exhibit comparable asymptotic performance, with the best results currently

achieved by pronunciation by analogy (PbA) approaches and instance-based learning methods, as de-

scribed earlier.

Both PbA approaches and instance-based learning methods can provide exact representation after

conversion, as required. Also, the computational complexity of examples within both of these classes

of algorithms are within acceptable limits, with PbA approaches providing some advantage with

regard to computational cost [25]. As bootstrapping is typically not the aim of grapheme-to-phoneme

approaches, little information is available with regard torobustness to noise. The first requirement

then becomes the deciding factor for choice of algorithm: how well does the algorithm generalise

from very small data sets. Again, explicit information is not available, but it seems from the results

provided by Damperet al in [25] that the PbA algorithm only starts to generalise wellwhen the

training dictionary is of sufficient size1. We therefore choose an example of instance-based learning

as the basis for our initial experimentation. Specifically,we choose Dynamically Expanding Context

(DEC), an algorithm that is simple to implement, and generalises fairly well from a small training set.

4.3 EXPERIMENTAL DATA AND APPROACH

We utilise the following databases during experiments:

• NETtalk, a publicly available 20,008-word English pronunciation dictionary [20], derived from

Miriam Webster’s pocket dictionary (1974). Hand-crafted grapheme-to-phoneme alignments

are included in the electronic version.

• FONILEX, a publicly available pronunciation dictionary of Dutch words as spoken in the Flem-

ish part of Belgium [19]. We obtained the exact 173,873-wordpre-aligned version of the dic-

tionary as used by Hoste [41].

• OALD, a publicly available English pronunciation dictionary [18]. We obtained the exact

60,399-word pre-aligned version of the dictionary as used by Black [23].

• Afrikaans A, a 5,013-word Afrikaans pronunciation dictionary, built using the bootstrapping

system and developed as part of this thesis. This dictionarywas transcribed by a linguistically

sophisticated first-language Afrikaans speaker and manually verified by the author. Of the

5,013 words, 90 words are invalid: the remaining 4,923 wordsare all valid and distinct.

• Afrikaans B, a 8,053-word Afrikaans pronunciation dictionary, built using the bootstrapping

system and developed as part of this thesis. This dictionarywas bootstrapped fromAfrikaans

1When trained on the (American English) Teachers’ Word Book (TWB), the PbA algorithm that was evaluated achieved
approximately 40% word accuracy after 2000 words [25]

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 27

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

A and transcribed by a linguistically sophisticated first-language Afrikaans speaker, but not

exhaustively verified. (Some verification was performed, asdescribed in Section 6.5.) Of the

8,053 words, 271 words are invalid: the remaining 7,782 words are all valid and distinct.

Where any of the above databases include pronunciation variants (one word associated with two

or more valid pronunciations), all but the first pronunciation variant are removed from the database,

prior to dividing the database into training and test sets. When we report on results, we use the term

phoneme correctnessto specify the percentage of phonemes identified correctly,phoneme accuracy

as the number of correct phonemes minus the number of insertions, divided by the total number of

phonemes in a correct pronunciation, andword accuracyto specify the percentage of words com-

pletely correct. While we typically report on phoneme accuracy only, phoneme correctness is some-

times included in order to provide a comparative measure with results from other sources. Unless

otherwise stated, we perform 10-fold cross-validation. During 10-fold cross-validation we subdivide

the entire corpus randomly into 10 distinct sub-sections, and then perform 10 training/testing exper-

iments, training on nine of the sub-sections and testing on the tenth. For the different measurements

(word accuracy, phoneme accuracy, phoneme correctness) wereport on the standard deviation of the

mean of each of these measurements, indicated byσ10
2. Where there is uncertainty with regard to the

measure used in a benchmark result, word accuracy provides the least ambiguous comparison.

As in previous sections, we use the format

(x1..xm, g, y1..yn) → p (4.1)

to specify extracted grapheme-to-phoneme rules. Hereg indicates the focal grapheme,xi andyj the

graphemic context, andp the phonemic realisation of the graphemeg. We also use a more compact

representation:

x1..xm − g − y1..yn → p (4.2)

to indicate the same rule. Note that each grapheme specifies aseparate element, even though these

separate elements are written next to each other (without spaces or other indicators of element bound-

ary.)

4.4 GRAPHEME-TO-PHONEME ALIGNMENT

Errors in grapheme-to-phoneme alignment do not affect different rule extraction techniques to the

same extent. DEC-based rule extraction mechanisms are sensitive to alignment accuracy. For ex-

ample, the correct DEC extraction rule for the grapheme-pair ‘ee’ in English is−e − e → iy and

e − e− → φ whereφ indicates the null phoneme. If the system incorrectly aligns the words “keen”

2If the mean of a random variable is estimated withn independent measurements, and the standard deviation of those
measurements isσ, the standard deviation of the mean isσn = σ√

n
.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 28

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

and “seen” as follows:k e e n → k iy φ n ands e e n → s φ iy n, DEC will not be able to extract

the fairly simple rule specified above, as the two words provide conflicting evidence with regard to

the pronunciation of the grapheme pair ‘ee’. Note that the linguistic accuracy of the position of the

null phoneme is not important, as long as the choice of position is consistent across the set of train-

ing instances. As DEC is sensitive to alignment accuracy, weoptimise the grapheme-to-phoneme

alignment process before analysing the grapheme-to-phoneme conversion process.

4.4.1 PRE-PROCESSING OF GRAPHEMIC NULLS

Many languages require few or no graphemic nulls and the additional variability introduced by cater-

ing for graphemic nulls result in miss-alignments. For our base algorithm (Align v1) we use forced

Viterbi alignment based on the probabilitiesP(grapheme i| phoneme j); and initialise probabilities

from words and pronunciations that have equal length, as described by Andersenet al [54]. However,

we insert graphemic and phonemic nulls in two separate steps. In a pre-processing phase, graphemic

null generator pairs (two graphemes that result in more thantwo phonemes) are identified by Viterbi

alignment of all word-pairs where pronunciation length is longer than word length. Phonemic nulls

are inserted in a second phase of Viterbi alignment. (Where the first phase introduces unnecessary

graphemic nulls, these are typically mapped to phonemic nulls during the second phase.) In both

phases the alignment process is repeated until no further likelihood improvement is observed.

Alignment accuracy on theNETtalkcorpus using this implementation (Align v1) is higher than

the results reported by Andersenet al [22], as compared in Table 4.1. This improvement is due to an

implementation difference rather than a conceptual difference: The algorithms are similar, apart from

the different handling of graphemic nulls, and graphemic nulls do not occur in theNETtalkcorpus3.

4.4.2 UTILISING THE PHONEMIC CHARACTER OF NULL-PHONEMES

An additional improvement can be obtained if the transcription convention used byNETtalk is

adapted. InNETtalk, null phonemes are used to identify graphemes that are “deleted” during pro-

nunciation, for example the wordwriter is transcribed asw r i t e r → φ r ay t φ axr. An alternative

convention would be to use null phonemes simply to identify instances where two or more graphemes

give rise to a single phoneme (without identifying a particular grapheme as deleted), by aligning the

first grapheme in such a group with a non-null phoneme, and subsequent graphemes with nulls. Using

this convention, the wordwriter is transcribed asw r i t e r → r φ ay t axr φ. A null phoneme then

simply indicates that the phonemic realisation remains thesame for more than one grapheme.

Using a set of about 40 rewrite rules, theNETtalkdictionary can be rewritten using either the

one convention or the other. Using the second convention, the dictionary responds better to data-

3In earlier work, when adding graphemic nulls by hand, we found that the use of pseudo-phonemes can complement
the use of pseudo-graphemes. Pagelet al [52] suggested the use of pseudo-graphemes (e.g. creating two graphemesXx to
represent thek ands phonemes that originate fromx separately). We found that, when a more natural choice, the use of
pseudo-phonemes (e.g. creating aks phoneme to represent thek ands combination) can improve alignment accuracy.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 29

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

driven alignment and the second version of our Viterbi algorithm (Align v2). This algorithm explicitly

calculates theprobability that a specific grapheme is realised as a null phoneme, given the previous

non-null phonemic realisation of the preceding grapheme orgraphemes, and provides a significant

performance improvement, as shown in Table 4.1.

Table 4.1:Phoneme and word alignment accuracy obtained on the NETtalkcorpus.

Database Type Phoneme Word
NETtalk-original Iterative Viterbi [22] 93.2 83.7
NETtalk-original Align v1 96.5 87.3
NETtalk-rewritten Align v2 98.7 95.4

The effect of the improvement in alignment accuracy on rule extraction accuracy is depicted in

Fig. 4.1. TheAlign v1 and Align v2 algorithms are used prior toDEC-min4 rule extraction on a

10,000-word subset of theFONILEXdatabase, and grapheme-to-phoneme prediction accuracy mea-

sured against a 5000-word test set.

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000

W
or

d-
le

ve
l a

cc
ur

ac
y

Number of words

Align v1
Align v2

Figure 4.1:Effect of different alignment algorithms on word-level pronunciation prediction accuracy
of DEC-min, as measured on a 10,000-word subset of FONILEX.

In order to verify that this effect is not corpus-specific, weperform a further evaluation using the

OALD corpus. We analyse the effect of the two different alignmentalgorithms (Align v1 and Align

v2) when extracting bothDEC-growandDEC-minrules using training sets of increasing size. For

each training set of a specific size, 10 distinct training sets are generated. All training sets are tested

against a non-overlapping 5970-word test set (10% of the full data set). A similiar trend is observed as

on theFONILEXcorpus, as depicted in Fig. 4.2. For example, the mean phoneme accuracy forDEC-

grow rules trained on a 5000-word training set is86.83% (with σ10 = 0.07) when aligned according

to Align v1, and87.54% (with σ10 = 0.06) when aligned according toAlign v2. During the earlier

4TheDEC-minalgorithm is described in Section 4.5.2.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 30

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

 74

 76

 78

 80

 82

 84

 86

 88

 0 1000 2000 3000 4000 5000

P
ho

ne
m

e
ac

cu
ra

cy

DEC-min

Align v1

 74

 76

 78

 80

 82

 84

 86

 88

 0 1000 2000 3000 4000 5000

P
ho

ne
m

e
ac

cu
ra

cy

DEC-min

Align v1
Align v2

 15

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

DEC-min

Align v1

 15

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

DEC-min

Align v1
Align v2

 74

 76

 78

 80

 82

 84

 86

 88

 0 1000 2000 3000 4000 5000

P
ho

ne
m

e
ac

cu
ra

cy

DEC-grow

Align v1

 74

 76

 78

 80

 82

 84

 86

 88

 0 1000 2000 3000 4000 5000

P
ho

ne
m

e
ac

cu
ra

cy

DEC-grow

Align v1
Align v2

 15

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

DEC-grow

Align v1

 15

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

DEC-grow

Align v1
Align v2

 15

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

DEC-grow

Align v1
Align v2

Figure 4.2:Effect of different alignment algorithms on prediction accuracy of DEC-grow and DEC-
min, as measured using the OALD corpus.

stages of the rule extraction process (when alignment probabilities are still unstable) this provides a

signficant advantage.

4.5 DEC-BASED GRAPHEME-TO-PHONEME PREDICTION

4.5.1 STANDARD DEC

A conceptual description of DEC as applied to the grapheme-to-phoneme problem by Torkkola [21]

is provided in Section 2.2.2.3. In this section, we discuss the approach in further detail: Each DEC

rule specifies a mapping of a single grapheme to a single phoneme for a given left and right graphemic

context, i.e is of the form:(left-context,grapheme,right-context)→ phoneme. Each word in the train-

ing dictionary is aligned with its pronunciation on a per-grapheme basis, as illustrated in Table 4.2.

Rules are extracted by finding the smallest context that provides a unique mapping of grapheme to

phoneme. If ann−letter context is not sufficient, the context is expanded to either the right or the left.

This ‘specificity order’ influences the performance of the algorithm. Different orderings are illustrated

in Table 4.3 as applied to grapheme‘s’ in the word‘interesting’. Context 1 is expanded symmetri-

cally on a right-grapheme-first basis, context 2 is expandedsymmetrically on a left-grapheme-first

basis, and context 3 favours the right context on a 2:1 basis.The set of extracted rules are stored as

a hierarchical tree, with more general rules at the root, andmore specific rules at the leaves. The tree

is traversed from the root to the leaves, and the rule at the first matching leaf (the rule describing the

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 31

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Table 4.2:Word alignment and rule extraction in standard DEC.

Alignment examples r o s e→ r ow zφ
r o w s→ r ow φ z
r o o t→ r uw φ t

Rule examples for -o- in context -o: -o-o→ uw
in context -se: -o-se→ ow
in context o-: o-o-→ φ

Table 4.3:Different examples of context expansion order in DEC.

size context 1 context 2 context 3
0 s s s
1 st es st
2 est est sti
3 esti rest esti
4 resti erest estin

largest matching context) is used to predict the specific grapheme-to-phoneme realisation. If no leaf

is matched, the most probable outcome of the last matching leaf is used, as can be estimated from the

training data. In our implementation of DEC, we do not explicitly order the rules in a tree structure,

but number them according to the order in which they are extracted (corresponding to a topological

sort of all rules that can apply to a single word). We then search via reverse rule order rather than tree

traversal. This variation does not change the algorithm functionally.

If DEC is not allowed to grow an asymmetric context when it reaches a word boundary and

conflicting rules are ignored (DEC-conflict) the performance of the algorithm degrades for larger

training corpora, especially if rules regarding the context surrounding a grapheme early or late in a

word are of predictive importance. In order to remove this effect, the version of DEC (DEC-grow)

that was implemented as baseline algorithm allows a contextto grow towards the opposite side if a

word boundary is encountered. This effect is illustrated inFig. 4.3 where we plot the results for

DEC-conflictandDEC-growduring the initial stages of learning (using theFONILEXcorpus).

4.5.2 SHIFTING WINDOWS

DEC, as applied by Torkkola [21] expands the context of a grapheme one letter at a time, either

favouring the right- or left-hand side explicitly. We analyse the implications of using a sliding window

rather than a strict expanding context. We define a sliding window that first considers all possible

contexts of sizen, before continuing to consider contexts of sizen+1, which prevents rules with

unnecessarily large contexts from being extracted. In contrast to the DEC context expansion of Table

4.3, a sliding window applied to grapheme‘s’ in the word‘interesting’ would result in the context

ordering indicated in Table 4.4. Since multiple rules of thesame context size may apply to a single

grapheme-to-phoneme mapping (such asre,s,ti→ sandere,s,t→ s), contexts that are already served

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 32

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

 80

 85

 90

 95

 100

 0 1000 2000 3000 4000 5000

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

DEC-conflict

 80

 85

 90

 95

 100

 0 1000 2000 3000 4000 5000

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

DEC-conflict
DEC-grow

 30

 35

 40

 45

 50

 55

 60

 65

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-conflict

 30

 35

 40

 45

 50

 55

 60

 65

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-conflict
DEC-grow

 30

 35

 40

 45

 50

 55

 60

 65

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-conflict
DEC-grow

Figure 4.3:Comparing DEC-conflict and DEC-grow during initial learning stage (first 5000 words
of FONILEX). DEC-grow is chosen as baseline algorithm.

Table 4.4:Context expansion order in shifted DEC.

order size context order size context
1 0 s 2 1 st
3 1 es 4 2 est
5 2 sti 6 2 res
7 3 esti 8 3 rest
9 3 stin 10 3 eres

by existing rules can be removed to prevent over-specialisation. Because all contexts of each size

are considered, the order in which contexts are expanded (for a specific context-level) becomes less

significant than in standard DEC.

Figures 4.4 and 4.5 compare the performance of different DECvariations. In all experiments,

a symmetric right-first expansion scheme is used5 (as also in Table 4.4). The size of the maximum

context allowed when extracting rules is not restricted, and the same word training order (random

selection from corpus) is used. In order to compare with previous results, we use the exact alignments

as used in [41]. Where word variants occur, we only use the first variant – both for training and testing

purposes.

Three shifted window versions of DEC are implemented: extracting the first valid rule encoun-

tered (DEC-win) extracting the maximum number of valid rules (DEC-max) and pruning this system

to obtain the minimum number of rules that still provide fullcoverage for the training corpus (DEC-

min). When a shifting window is used, more than one conflicting rule of the same size may apply to

a word. Various conflict resolution strategies can be implemented: in the set of experiments reported

below, the most frequently observed rule is favoured. For the training set sizes analysed, the pruned,

shifted window version of DEC (DEC-min) provides a small but consistent performance improvement

in word accuracy6. DEC-win is not shown, but results in a learning curve similar toDEC-grow, both

5A symmetric, right-first expansion scheme is used when rule options are generated for consideration prior to selection
of the actual rule – actual rules are generated according to ashifting window, and do not exhibit strict right-first behaviour.

6Note that phoneme accuracy initially follows a different trend for this corpus.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 33

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

 80

 85

 90

 95

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow
DEC-max
DEC-min

Figure 4.4:Word-level accuracy of different DEC variations during initial learning stage, as mea-
sured using the first 5000 words of FONILEX.

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow
DEC-max
DEC-min

Figure 4.5: Phoneme-level accuracy of different DEC variations duringinitial learning stage, as
measured using the first 5000 words of FONILEX.

with regard to word and phoneme accuracy. Asymptotic performance is only approached for larger

training sets, as compared in Table 4.5.DEC-mincontinues to perform better thanDEC-grow, with a

small margin. The improvements during the initial learningstages are small, and introduce additional

overhead during computation. Of more interest is that the new DEC variation (DEC-min) forms the

basis for further algorithmic improvement, as discussed inthe next sections.

As can be expected, the extracted rule sets grow in differentways with regard to rule number

and rule length, as the size of the training dictionary increases. An analysis of the different types

of rule sets extracted from the same training dictionary is provided in Table 4.6. The numbers of

rules of each size (the size of the context that specifies the rule) are compared, as extracted from

different sized training dictionaries usingDEC-grow, DEC-maxandDEC-min. Note thatDEC-max

tends to extract more rules thanDEC-growbut that these rules tend to be shorter.DEC-minreduces

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 34

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Table 4.5: Phoneme correctness, phoneme accuracy and word accuracy comparison for different
DEC variations, as measured using the FONILEX corpus.

phoneme correctnessphoneme accuracy word accuracy
±σ10 ±σ10 ±σ10

DEC-max 98.44 0.01 98.28 0.01 88.71 0.06
DEC-grow 98.50 0.01 98.32 0.04 88.60 0.07
DEC-win 98.57 0.01 98.40 0.01 89.53 0.05
DEC-min 98.58 0.01 98.41 0.01 89.58 0.06

the number of rules significantly (in comparison withDEC-max). DEC-minextracts slightly more

rules thanDEC-win, but as can be expected, these are much shorter (more general).

Table 4.6:Number and size of rules: DEC-grow, DEC-max and DEC-min
Rule type: DEC-grow DEC-max DEC-min
Dict size: 100 1,000 10,000 100 1,000 10,000 100 1,000 10,000

1 27 27 27 27 27 27 27 27 27
2 65 92 103 108 105 103 86 104 102
3 127 545 1259 256 1224 2375 102 705 1661
4 19 323 1996 24 926 7031 9 375 3469
5 7 131 1845 - 78 3081 - 33 1381
6 - 33 712 - 7 341 - 3 178
7 - 8 280 - - 27 - - 18
8 - - 71 - - 5 - - 3
9 - - 32 - - 1 - - 1
10 - - 4 - - 1 - - 1
11 - - 5 - - - - - -
12 - - 1 - - - - - -
13 - - - - - - - - -
14 - - - - - - - - -
15 - - 1 - - - - - -

Total 245 1,160 6,337 415 2,367 12,992 224 1,247 6,841

4.5.3 RULE PAIRS

When analysing the specific errors made by these DEC variations, it becomes apparent that some

rules occur in ‘rule pairs’, i.e. two rules always occur as companions in the training data. These rule

pairs are sometimes not applied as companions in the test data, causing errors. For example, during

rule extraction a rule−e − en → iy is typically followed by a second rule rulee − e − n → φ

or e − e− → φ, and is a better rule to apply when predicting the instancek − e − en than the

otherwise equally likely rule#k− e−. We experiment with the implication of forcing such rule pairs

to occur in tandem. First, we identify rule pairs that alwaysoccur together in the training data and

exhibit a context overlap of at least the two focal graphemes. Then we restrict our rule application

to only use one of the rules in such a pair if the second rule in the pair is also applicable to the

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 35

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

same training instance. However, constraining rule pairs in this way does not have a significant effect

on predictive accuracy: In some instances the rule pair approach does correct a second phoneme that

would otherwise have been wrong, but in a comparable number of cases this approach causes a second

phoneme to be wrong, which would otherwise have been correct. We therefore do not continue with

further experimentation along this route.

4.5.4 CONFLICT RESOLUTION

In standard DEC, the largest matching rule is always unique7. When a shifting window is used, more

than one conflicting rule of the same size may apply to a word. If we usenum(r, p) to specify the

number of training instances that match the context of a specific rule r and specific outcome asp, we

calculate the ‘accuracy’ of the ruler as:

accuracy(r) =
num(r, outcome(r))
∑

x num(r, x) + 1
for all possible outcomesx. (4.3)

In the experiments described above, if more than one candidate rule (of the same size) is applicable to

the current word being predicted, we choose the rule for which accuracy(r) is highest. This is a fairly

simple conflict resolution strategy, and various alternative options are possible. We experiment with

a number of these, including (1) voting among possible rules(choosing the outcome that most of the

candidate rules agree upon), (2) applying the smaller (fall-back) context rather than any of the larger

conflicting rules, and (3) simply choosing any of the rules atrandom (in practice whichever of the

candidate rules was generated first during rule extraction), and find no consistent improvement using

any of the alternative conflict resolution strategies. We continue to use the initial conflict resolution

strategy (highestaccuracy(r)) for further experimentation.

4.5.5 DEFAULT RULES

The question of how to best resolve conflict is closely linkedto the question of how to best define

default rules. One of the consequences of DEC rule extraction is that there exists only a single rule

of any given length that can potentially apply to a specific word (where this length lies between one

and the total length of the word being predicted). If the wordbeing predicted is of lengthn, and no

matching rule of lengthn exists, then a single rule of sizen − 1 may potentially apply. In effect the

latter rule acts as ‘back-off value’ for the rule of lengthn. If a rule of lengthn − 1 does not exist

either, the (unique) matching rule of lengthn− 2 becomes the next possible candidate8. When using

shifting windows, there is no longer a unique rule of any given length that can potentially apply when

predicting a word – more than one candidate may exist. We therefore consider the effect of adding

default rules explicitly: for any set of rules of context sizen with one or more internal disagreements

7This rule may be conflicted (i.e. not a leaf node in Torkkola’soriginal implementation) in which case the most fre-
quently observed outcome across the training data is generated, but no conflicting rules of the same size can exist.

8From a conceptual perspective – this is not the process that is followed in practice during DEC prediction.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 36

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

and no ‘default rule’ of sizen − 1, we add an explicit rule of context sizen − 1 with an outcomep

such thatnum(r, p) is the maximum over all possible outcomes. Interestingly, adding this additional

information decreases rule accuracy. An error analysis indicates that inappropriate ‘default rules’ are

extracted: while these rules correctly ‘fill the gaps’ amongthe rules extracted from the training data,

the ‘default rules’ are forced to specific value by the previously extractedDEC-minrules, and do not

generalise well. This leads us to the definition of a default-and-refinement approach to grapheme-to-

phoneme prediction, as discussed in the next section (Section 4.6). This approach utilises a similar

rule definition format as DEC, but the rule extraction process is more distant from original DEC than

the variations studied up to this point.

4.6 A DEFAULT-AND-REFINEMENT APPROACH TO G-TO-P PREDICTIO N

Grapheme-to-phoneme prediction algorithms rely on the connection between the spoken and written

form of a language. It is expected that, the more modern the writing system of a language, the stronger

this connection, and the more regular the spelling system ofthe language [71]. This may not always

hold in practice, for example, when a language with mainly (or only) an oral tradition is transcribed

for the first time, and the variability introduced through the initial transcription process has not yet

stabilised through usage or an education system that utilises the written form. While alternative

outcomes are possible, the languages studied as part of thisthesis all exhibit a combination of a fairly

modern writing system associated with a fairly to highly regular spelling system.

The more regular the spelling system of the language, the stronger the concept of a ‘default

phoneme’: a grapheme that is realised as a single phoneme significantly more often than as any

other phoneme. Figure 4.6 and Figure 4.7 illustrate this phenomenon for Flemish. When counting

the number of times a specific grapheme is realised as a specific phoneme, most graphemes follow

the trend depicted in Figure 4.6. Here,y is realised as a single phoneme more than60% of the

time, with the next two phonemic candidates occurring only24% and4% of the time, respectively.

For graphemes that exhibit ‘conflicted default phoneme’ behaviour, such as (h,j,n,u), the trend is

less strong, but also clearly discernible, as depicted in Figure 4.7. Similar trends are observable for

languages with less regular spelling systems, with a largerproportion of graphemes of these languages

displaying the behaviour depicted in Figure 4.7.

We use this information to define an algorithm that utilises greedy search to find the most general

rule at any given stage of the rule extraction process, and explicitly orders these rules according to the

reverse rule extraction order9. Explicitly ordering the rules provides flexibility duringrule extraction,

and ensures that the default pattern acts as a back-off mechanism for the more specialized rules.

The framework we use is similar to that used in previous sections: Each grapheme-to-phoneme rule

9It is interesting to note that, while the rule application order of DEC is ordered by context size (largest rule first), our
reverse rule extraction order automatically reverts to context size ordering in the case of DEC-based rule extraction.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 37

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10

%
 o

f s
am

pl
es

Most to least frequent g-to-p mapping observed

d
s
t
y

Figure 4.6:Default phoneme behaviour of graphemes d,s,t and j in Flemish. Only the first 10 phone-
mic candidates are displayed.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10

%
 o

f s
am

pl
es

Most to least frequent g-to-p mapping observed

h
j

n
u

Figure 4.7:Conflict phoneme behaviour of graphemes h,j,n,u in Flemish.Only the first 10 phonemic
candidates are displayed.

consists of a pattern

gleft − g − gright → p (4.4)

whereg indicates the grapheme being considered,gleft andgright are the graphemic left and right

contexts of the rule, andp the specific phonemic realisation ofg. The pronunciation for a word is

generated one grapheme at a time. Each grapheme and its left and right context as found in the target

word are compared with each rule in the ordered rule set; and the first matching rule is applied.

Prior to rule extraction, grapheme-to-phoneme alignment is performed according to the Viterbi-

based alignment process described in Section 4.4. Pronunciation variants are currently not allowed:

if a word has more than one possible pronunciation, only the first is kept. Each aligned word-

pronunciation pair is used to generate a set of possible rules by extracting the sub-pattern of each

word pattern; an example of such a process is shown in Table 4.7.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 38

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Table 4.7:The relationship between a word (test) and, for one of its graphemes (e), the word pattern
and sub-patterns that are generated during rule extraction.

Word test
Word pattern #t-e-st#→ eh
Sub-patterns -e-→ eh,-e-s→ eh,t-e-→ eh,t-e-s→ eh

t-e-st→ eh, #t-e-s→ eh,-e-st#→ eh
#t-e-st→ eh,t-e-st#→ eh,#t-e-st#→ eh

Once all possible rules have been generated in this way, rules are extracted on a per-grapheme

basis, one rule at a time. For any specific grapheme, applicable words are split into two sets based on

whether the current rule set (initially empty) predicts thepronunciation of that grapheme accurately

(Completedwords) or not (Newwords). These two large word sets are used to keep track of status,

but further manipulation utilises two sets of sub-patterns: the Possiblesub-patterns, indicating all

possible new rules, and consisting of all the sub-patterns of each word pattern inNew, excluding all

for which the left-hand side is an existing rule; and theCaughtset of sub-patterns, indicating all the

sub-patterns covered by the current rule set irrespective of whether the outcome of the rule matches

that of the word or not. Both thePossibleandCaughtsets of sub-patterns count the number of times,

per possible outcome, that a matching word pattern is observed in the relevant word sets.

The next rule is chosen by finding the pattern for which the matching count inPossibleminus

the conflicting count inCaughtis highest. (The conflicting count is the number of times a matching

left-hand pattern is observed with a conflicting right-handphoneme.) Definition of a new rule moves

words from theNew to theCompletedset. Any words that are currently in theCompletedset and

conflict with the new rule, are moved back to theNewset. This process is repeated until all words have

been moved from theNewto theCompletedset. The algorithm ensures that the next rule chosen is the

one that will cause the most net words to be moved from theNewto theCompletedset, irrespective of

context size. As this number (net words processed) is alwayspositive10, the algorithm cannot enter an

infinite loop. The stronger the default behaviour exhibitedby a specific grapheme described by a new

rule, the more words are processed during the extraction of that specific rule. Conflict is only resolved

in theCompletedset: new rules are allowed to conflict with words still inNew, which ensures that the

rule set is built for the default pattern(s) first.

In order to ensure computational efficiency when trained on larger dictionaries, we use the fol-

lowing techniques during implementation:

• Words are pre-processed and the word patterns relevant to a single grapheme extracted and

written to file. All further manipulation considers a singlegrapheme (and the corresponding

set of word patterns) at a time.

• The context size of the sub-patterns considered is grown systematically: only sub-patterns up to

10A rule based on a full word pattern can only apply to that single word, and will result in a ‘net move count’ of 1. Since
the maximum of all these ‘net move counts’ is selected, this value will always be positive.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 39

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

sizemax+win are evaluated, wheremax indicates the current largest rule, andwin is defined

to ensure that any larger contexts that may be applicable areconsidered, without requiring all

patterns to be searched.

• Whenever a sub-pattern inPossibleor Caughtreaches a count of zero, the sub-pattern is deleted

and not considered further, unless re-added based on an inter-set move of a related word.

While these techniques ensure that a fairly large dictionary (200,000 words) can be trained in an

acceptable amount of time when using the process in a non-interactive fashion, the process to train

a sizeable dictionary becomes too slow for interactive bootstrapping. This issue is addressed fur-

ther in Section 4.6.4. In the remainder of this thesis we refer to the algorithm described above as

‘Default&Refine’.

4.6.1 ASYMPTOTIC PERFORMANCE

In order to evaluate the asymptotic behaviour ofDefault&Refine, we compare our results on a fairly

large corpus with published results for a number of alternative algorithms. As theDefault&Refine

algorithm is motivated by ’default behaviour’, we first evaluate the algorithm on a language with a

fairly regular spelling system (Flemish), before testing it on a language with an irregular spelling

system (English).

4.6.1.1 REGULAR SPELLING SYSTEMS

We evaluate the accuracy of theDefault&Refinealgorithm when trained on the fullFONILEXtraining

set, and compare its performance with that of alternative algorithms in Table 4.8: theIB1-IG result

utilises an instance-based learning algorithm and is as reported in [41]; theDEC-growandDEC-min

results are calculated using the algorithms described in Section 4.5.2; and theD&R result reports the

Default&Refinevalues. TheDEC andDefault&Refineexperiments utilise the same alignments as

used in [41].

Table 4.8: Phoneme correctness, phoneme accuracy and word accuracy comparison for different
algorithms using the FONILEX corpus

phon correct phon accuracy word accuracy
±σ10 ±σ10 ±σ10

IB1-IG 98.18 - - - 86.37 -
DEC-grow 98.50 0.01 98.32 0.04 88.60 0.07
DEC-min 98.58 0.01 98.41 0.01 89.58 0.06
D&R 98.87 0.01 98.78 0.01 92.03 0.06

The focus of [41] was to investigate the effect of cascading two classifiers – one trained onFONILEX

and one onCELEX– a Dutch variant corpus, and creating meta-classifiers using C5.0 (decision tree

learning), IB1-IG (instance-based learning as described in Section 2.2.2.3), IGTREE (an algorithm

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 40

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

that induces decision trees utilising information gain) and MACCENT (a maximum entropy-based

algorithm). The highest accuracy reported was for such a meta-classifier system:91.55% word

accuracy for a single meta-classifier; and92.25% word accuracy for a meta-meta-classifier of all

meta-classifiers. (These systems all utilised theCELEX data as an additional data source.) We find

thatDefault&Refinehas good asymptotic accuracy, and performs better than the comparative (single)

classifiers.

4.6.1.2 LESS REGULAR SPELLING SYSTEMS

As the algorithm is motivated by ’default behaviour’ we wereinterested in the extent in which the

algorithm would fail for a language such as English, with a less regular spelling system. We therefore

evaluate the asymptotic performance of the algorithm against benchmark results available for both

theNETtalkand theOALD corpus. It is reassuring to find that the algorithm again performs well, as

shown in Tables 4.9 and 4.10.

Table 4.9: Phoneme accuracy, phoneme correctness and word accuracy comparison for different
algorithms using the NETtalk corpus

phon correct phon accuracy word accuracy
±σ10 ±σ10 ±σ10

Trie - - 89.8 - 51.7 -
DTree - - 89.9 - 53.0 -
DEC-T - - 90.8 - - -
DEC-Y - - 92.21 - 56.67 -
D&R 91.37 0.08 90.50 0.1 58.66 0.21
SMPA - - 93.19 - 63.96 -

In Table 4.9 we compare the performance of a number of algorithms on theNETtalk corpus.

We list the results obtained by Andersenet al [22] using Trie structures (Trie) and decision trees

(DTree) respectively; by both Torkkola [21] and Yvon [36] using Dynamically Expanding Context

(DEC-T and DEC-Y); by Yvon [36] using SMPA, a pronunciation-by-analogy algorithm; and the

results ofDefault&Refine(D&R) using own alignments. The phoneme correctness reported in[36]

for DEC seems anomalously high, in relation to our own experiments, those obtained in [21], and the

reported word accuracy. TheSMPAalgorithm employs a pronunciation by analogy approach, andis

less suitable for training on very small data sets. The latter results only pertain to words that could

be pronounced – about0.5% of words were not pronounceable with SMPA when fully trained. Note

also that the SMPA results score the accuracy of variants in the test set differently to the approach

employed in this thesis11.

In Table 4.10 we compare the performance ofDefault&Refine(D&R) with the results obtained by

11In the SMPA experiments all variants but one are removed fromthe training set, but all variants are retained in the test
set – if any of the possible variants are generated during testing, the prediction is marked as accurate. This is different to
the scoring approach used in this thesis, as described in Section 4.3

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 41

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Black et al [23] using Classification and Regression Trees (CART) for two data sets: one including

stress assignment (SA) and one without. We use the exact alignments, and the same single training

set and test set as used by Black12. The CART trees were generated taking part-of-speech information

into account – whichDefault&Refinedoes not use. Without POS information, the CART result (with

stress assignment) decreases to95.32% phoneme correctness and71.28% word accuracy .

Table 4.10:Phoneme accuracy, phoneme correctness and word accuracy comparison for CART and
Default&Refine using the OALD corpus (SA indicates stress alignment)

phon correct phon accuracy word accuracy
Incl. SA:
CART 95.80 - 74.56
D&R 97.12 96.87 83.76

Excl. SA:
CART 96.36 - 76.92
D&R 97.80 97.56 87.40

4.6.2 LEARNING EFFICIENCY

In order to use this algorithm for the bootstrapping of pronunciation dictionaries, we are specifically

interested in the performance of the algorithm when trainedon very small training sets. We therefore

evaluate word and phoneme accuracy for different training dictionaries of sizes smaller than 3,000

words, using subsets fromFONILEX. Figure 4.8 demonstrates the phoneme accuracy learning curve

for Default&Refinein comparison withDEC-grow. Each rule set is evaluated against the full 17,387-

word test set.

 80

 82

 84

 86

 88

 90

 92

 94

 0 500 1000 1500 2000 2500 3000

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

Default&Refine
DEC

Figure 4.8:Phoneme accuracy during initial 3000 training words, as measured using the FONILEX
corpus.

12When 10-fold cross-validation is performed using different subsets of this data set, a slightly lower cross-validated
accuracy is obtained:96.62% phoneme accuracy and82.37% word accuracy when stress assignment is included, and
97.66% phoneme accuracy and86.41% word accuracy without stress assignment.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 42

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

4.6.3 SIZE OF THE RULE SET

While the size of the rule set is typically not a concern during grapheme-to-phoneme bootstrapping,

it can be important for other applications (such as dictionary compression). We therefore analyse the

size of the rule set, and find that the rule set extracted byDefault&Refineis significantly smaller that

extracted byDEC-grow, as shown in Figures 4.9 and 4.10.Default&Refineprovides both a more

accurate and more compact prediction model: the 156,486-word training dictionary is represented

with 100% accuracy by 15,053 rules.

 0

 2

 4

 6

 8

 10

 12

 0 2000 4000 6000 8000 10000

S
iz

e
of

 r
ul

e
co

nt
ex

t

Number of rules per context size

DEC

1,000
10,000

156,486

Figure 4.9:Number of rules per context size extracted by DEC-grow from training dictionaries of
three different sizes.

 0

 2

 4

 6

 8

 10

 12

 0 2000 4000 6000 8000 10000

S
iz

e
of

 r
ul

e
co

nt
ex

t

Number of rules per context size

Default&Refine

1,000
10,000

156,486

Figure 4.10:Number of rules per context size extracted by Default&Refinefrom training dictionaries
of three different sizes.

4.6.4 CONTINUOUS LEARNING

The ideal bootstrapping system will be able to update the rule set after every correction by the verifier,

immediately incorporating further learning in the bootstrapping knowledge base. The time taken for

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 43

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

such updates is therefore of crucial importance. The updatespeed is influenced by two factors: the

alignment speed and the rule extraction speed. Ifn represents the number of words in the training

dictionary, then the complexity of the alignment process and that of the rule extraction process is

both approximatelyO(n), if it is assumed for the sake of simplicity that all words aremore or less

of equal length13. This is typical of various of the rule extraction techniques that are appropriate for

grapheme-to-phoneme bootstrapping.

If the entire set of training words is processed after every correction, the update time becomes

a limiting factor as the dictionary grows. In our implementation, continuous updating becomes un-

wieldy when the number of words with known pronunciations exceeds approximately 2000. On the

other hand, by performing batch updates at specific times that suit the verifier (e.g. at the end of a

verification session), the update time does not become a constraint, but the learning obtained during

the session is not utilised to refine models until after the end of the session. In order to obtain an

algorithm that allows for continuous model updating while keeping the update time within acceptable

limits, an incremental version of theDefault&Refinealgorithm was developed.

While the original algorithm creates a set of graphemic ruletrees (one tree per grapheme) from the

training set by considering all the training words simultaneously, the incremental version utilises the

trees constructed during the previous (batch mode) update,and adds the new refinements as leaves to

these trees: for each grapheme in the new word, if the realised phoneme is predicted accurately by the

current graphemic tree, no update occurs; otherwise the smallest rule is extracted that will describe the

new word without affecting any of the existing predictions.This version hasO(d) complexity where

d represents the average depth of the various graphemic rule trees (which is approximately equivalent

to the average context size of the graphemic rule set). Usingthis incremental process, additional

learning can be obtained from the new words added without causing discernible delay, even for large

training dictionaries.

In practice, the bootstrapping process operates in two phases: during the first phase a batch up-

date occurs for every word; during the second phase a batch update occurs at synchronisation events

only, and incremental updates are performed in between synchronisation events. The interval between

synchronisation events is based on a set number of “update words”, i.e. words that have been cor-

rected by the verifier (words that were correctly predicted prior to verification do not contribute to this

count). At the end of this interval, a synchronisation eventoccurs: the complete training dictionary is

re-aligned, and new rules are extracted in batch mode. During the update interval, the Viterbi proba-

bilities calculated at the previous synchronisation eventare used per word to perform a fast alignment

(the probabilities are used in the standard way, but not updated) and incrementalDefault&Refineis

used to extract additional rules from the single aligned word-pronunciation pair. Phase 2 is initiated

well before the time required by the full update event becomes noticeable. (For our current system

we progress from phase 1 to phase 2 when 1500 valid words have been processed.)

As can be expected, the new algorithm is an approximation of standardDefault&Refine, and

13See section 4.7.3 for a further discussion of the computational complexity ofDefault&Refine.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 44

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

Batch mode (50)
Incremental mode (50)

Figure 4.11:Phoneme accuracy comparison for incremental and batch modeat an update interval of
50, measured using the FONILEX corpus.

-10

-5

 0

 5

 10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

P
er

ce
nt

ag
e

ch
an

ge
 in

 p
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

d1: Inc vs Batch (50)
d2: Inc vs None (50)

Figure 4.12:Relative change in phoneme accuracy when comparing incremental with batch mode
(δ1), and incremental mode vs no updating between synchronisation events (δ2); both at update in-
terval 50.

therefore somewhat less accurate than the original. We evaluate the performance of the system using

an existing pronunciation dictionary (FONILEX), and perform 10-fold cross-validation on all our

results. In order to determine the efficiency of the incremental approach, we first compare the two

rule extraction processes (incremental mode and batch or standard mode) without taking changes in

alignment into account. We utilise the same set of alignments14 for both types of rule extraction, and

measure phoneme accuracy on the same training set using the two different algorithms. We find that

the decrease in accuracy is slight once the graphemic trees are of sufficient size, as demonstrated in

Fig. 4.11 for a synchronisation interval of 50. The difference in accuracy can be analysed in further

detail by calculating two values:δ1, the relative increase in phoneme error rate when utilisingthe

14The alignments used were obtained from a 173,873-word training dictionary.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 45

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

incremental mode compared to the batch mode, andδ2, the relative decrease in phoneme error rate

when utilising the incremental mode, in comparison with only performing updates at synchronisation

events and not updating the models in between; that is,

δ1(x) =
inc(x) − batch(x)

1 − batch(x)
∗ 100 (4.5)

δ2(x) =
inc(x) − batch(x − 1)

1 − batch(x − 1)
∗ 100 (4.6)

and wherebatch(x) indicates the phoneme accuracy using batch rule extraction, and inc(x) the

phoneme accuracy using incremental rule extraction, both at synchronisation pointx. Fig. 4.12 illus-

trates the trends for theδ1 andδ2 values for an update interval of 50 (still utilising ideal alignments),

providing an additional perspective on the same data as displayed in Fig. 4.11.

The effect on rule set accuracy is strongly influenced by the length of the update interval. We

therefore compare the performance of the two algorithms fordifferent update intervals, and find that

the averageδ1 andδ2 values are both fairly linear in relation to the update interval: the longer the

interval, the less accurate incremental updating becomes when compared with batch updating, and the

more value is provided by incremental updating vs performing no updates in between synchronisation

events. In Fig 4.13 we plot theδ1 andδ2 values for update intervals of length50, 100, 150 and200

during the first 4500 words of bootstrapping. These trends continue for larger update intervals.

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 50 100 150 200 250

P
er

ce
nt

ag
e

ch
an

ge
 in

 p
ho

ne
m

e
ac

cu
ra

cy

Length of update interval

Average d1
Average d2

Figure 4.13:Averageδ1 andδ2 values for update intervals of length 50,100,150 and 200.

Finally, in order to ensure that the fast alignment process does not introduce a noticeable loss

in accuracy, we compare the two algorithms (batch and incremental rule extraction), applying the

alignment process as it would be used in practise: performing a full alignment during synchronisation

events and using the fast alignment process in between. We find that while there is a greater variance

in the effect on phoneme accuracy when using the fast alignment process during the first phase of

bootstrapping, this effect becomes negligible during the second phase of bootstrapping. (In practice,

fast alignment is only used during the second stage of bootstrapping.) In Fig 4.14 we plot theδ1

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 46

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

values for an update interval of 50, when using ideal alignments and actual alignments.

-10

-5

 0

 5

 10

 500 1000 1500 2000 2500 3000 3500

C
ha

ng
e

in
 p

ho
ne

m
e

ac
cu

ra
cy

Number of words

(a) Ideal alignments
(b) Actual alignments

Figure 4.14:Change in phoneme accuracy (δ1) when comparing incremental with batch mode when
(a) ideal alignments are used, and (b) when actual alignments are used.

The above results indicate that incrementalDefault&Refineprovides an effective way of increas-

ing system responsiveness. As there is a clear trade-off between the length of an update interval and

learning efficiency, the update interval can be chosen in a way that is suitable for the specific dictio-

nary developer: longer continuous sessions (requiring slightly more corrections), or shorter sessions

with frequent breaks. As the dictionary size increases and the rule set approaches asymptotic accu-

racy, the number of words considered between synchronisation events increases automatically15. For

large dictionaries, the batch update process can become a daily event, rather than an hourly event,

as would be the case for relatively small dictionaries. Also, as the user interface requires little pro-

cessing capacity, the batch update may be scheduled to occurin the background during incremental

verification, transparent to the user16.

4.7 BOOTSTRAPPING ANALYSIS

In this section we summarise the characteristics ofDEC-grow, DEC-minandDefault&Refineaccord-

ing to the four main requirements for bootstrapping, as described in Section 4.2: predictive ability,

conversion accuracy, computational cost and robustness tonoise.

4.7.1 PREDICTIVE ABILITY

In Fig. 4.15 we compare the accuracy of the three algorithms for small training sets, using

the FONILEX corpus. TheDefault&Refinealgorithm performs particularly well, achieving 90%

15For example, using an update interval of 50, approximately 200 training words are considered per session when just
past the 4000-word mark. (See Fig. 4.12.)

16This approach was not implemented.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 47

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

phoneme accuracy prior to the 500 word-mark.DEC-grow requires an additional 800 words be-

fore the same level of accuracy is reached. Since the correction of incorrectly predicted phonemes is

the most labour-intensive aspect of bootstrapping pronunciation dictionaries (as discussed in Section

6.3.2.4) this represents a significant improvement to the process.

 84

 86

 88

 90

 92

 94

 96

 0 500 1000 1500 2000 2500 3000

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow

 84

 86

 88

 90

 92

 94

 96

 0 500 1000 1500 2000 2500 3000

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow
DEC-min

 84

 86

 88

 90

 92

 94

 96

 0 500 1000 1500 2000 2500 3000

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow
DEC-min

D&R

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow
DEC-min

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow
DEC-min

D&R

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow
DEC-min

D&R

Figure 4.15: Accuracy comparison during initial 5000 words of training,as measured using the
FONILEX corpus.

From a bootstrapping perspective, asymptotic accuracy is not as important, unless very large

dictionaries are built. Asymptotic accuracies for different languages are compared for the dictionaries

listed in Table 4.11. Per dictionary the number of words in total (size) and number of distinct words

(distinct) are indicated. Word accuracy is listed in Table 4.12 and phoneme accuracy in Table 4.13, as

analysed during 10-fold cross-validation of the dictionaries.

Table 4.11:Dictionaries used for accuracy analysis

Language Dictionary Size Distinct
Afrikaans Afrikaans B 7,782 7,782
English NETtalk 20,008 19,802
English OALD (no SA) 60,399 59,835
Flemish FONILEX 173,873 163,526

Table 4.12:Word accuracy of g-to-p algorithms for larger dictionariesin different languages.

Dictionary DEC-grow DEC-min Default&Refine
±σ10 ±σ10 ±σ10

Afrikaans B 79.08 0.44 79.90 0.51 84.82 0.29
NETtalk 47.82 0.41 47.61 0.35 58.66 0.21
OALD (excl SA) 77.62 0.17 79.98 0.17 86.41 0.15
FONILEX 88.60 0.07 89.58 0.06 92.03 0.06

4.7.2 CONVERSION ACCURACY

All the studied algorithms are memory-based and provide complete retrieval of training data: the

entire training dictionary can be reconstructed from the grapheme-to-phoneme rule set without any

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 48

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Table 4.13:Phoneme accuracy of g-to-p algorithms for larger dictionaries in different languages.

Dictionary DEC-grow DEC-min Default&Refine
±σ10 ±σ10 ±σ10

Afrikaans B 95.96 0.09 95.98 0.14 97.08 0.08
NETtalk 87.82 0.11 87.20 0.08 90.50 0.10
OALD (no SA) 95.85 0.04 96.08 0.04 97.41 0.03
FONILEX 98.32 0.04 98.41 0.01 98.78 0.01

loss of accuracy.

4.7.3 COMPUTATIONAL COST

 0

 1000

 2000

 3000

 4000

 5000

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

Number of words in training dictionary

Align

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

Number of words in training dictionary

Extract DEC-win

 0

 50
 100

 150

 200

 250

 300

 350

 400

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

Number of words in training dictionary

Extract DEC-grow

 0

 10

 20

 30

 40

 50

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

Number of words in training dictionary

Extract D&R

 0

 10

 20

 30

 40

 50

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

Number of words in training dictionary

Extract D&R

Figure 4.16:Time required for alignment and extraction of initial patterns from different sized train-
ing dictionaries, measured using the FONILEX corpus.

The computational cost of the various algorithms results from four separate processes:

1. Grapheme-to-phoneme alignment:Aligning words on a grapheme-to-phoneme basis. An iden-

tical grapheme-to-phoneme alignment process is used for all of the algorithms. The computa-

tional cost of alignment is influenced by the number of times the full dictionary is processed

before the alignment probabilities stabilise. As this is typically a small number, alignment is

approximatelyO(n) wheren indicates the number of words in the training dictionary. Asthe

probabilities stabilise more quickly when more training data is available, alignment can exhibit

better than linear dependency in practice.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 49

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

2. Extracting initial patterns prior to rule set extraction:In the current implementation, the dic-

tionary is read once, all required patterns are extracted and separated according to grapheme.

Further rule extraction utilises the per-grapheme patternsets as input. This process is again

O(n) for all the algorithms.

3. Rule extraction:Extracting a specific rule set from a grapheme-specific pattern set. For the

implementations ofDEC-growandDefault&Refine, rule extraction may require as many as

n + (n − 1) + (n − 2)... ∼
n(n − 1)

2
(4.7)

steps, which results inO(n2) behaviour. This would be the case for a dictionary that is con-

flicted to the extent that every single word gives rise to a separate rule. However, in practise,

the number of steps required is closer to

n + k.n + k2.n + ... ∼
n

1 − k
(4.8)

where0 ≤ k < 1 provides some indication of the pronunciation conflict for the specific lan-

guage (and dictionary) being considered. The more exceptions in the dictionary, the higherk,

and the higher the complexity of rule extraction. In practice, rule extraction therefore displays

O(n) behaviour.

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
in

 s
ec

on
ds

Number of words in training dictionary

DEC-max
DEC-min

DEC-grow

Figure 4.17:Time required to extract DEC-grow, DEC-max and DEC-min rules from different sized
training dictionaries, measured using the FONILEX corpus.

4. Pronunciation prediction:Predicting the pronunciation of a single word based on an existing

rule set. Pronunciation prediction is efficient for all the algorithms studied. For each type of

rule extraction, the ensuing rule set can be arranged in an efficient tree structure. Pronunciation

prediction is ofO(d.l) wherel indicates the length of the word predicted, andd again repre-

sents the average depth of the various graphemic rule trees (which is approximately equivalent

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 50

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

to the average context size of the graphemic rule set, as described in Section 4.6.4). Our im-

plementation ofDEC-maxandDEC-minexhibit worse than linear dependency, as depicted in

Fig. 4.17.

 0

 200

 400

 600

 800

 1000

 1200

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

 0

 5

 10

 15

 20

 25

 30

 35

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

 0

 5

 10

 15

 20

 25

 30

 35

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

Figure 4.18:Time required to extract Default&Refine rules for differentphonemes from different sized
training dictionaries, measured using the FONILEX corpus.

These trends are further illustrated in Fig. 4.16 4.18 and 4.17. Execution time for alignment,

pattern extraction and rule extraction is plotted for a training dictionary as it increases in size. These

values were measured on a 1600 MHz Intel Pentium 4 personal computer with 1 GB memory, using

the initial Perl prototype used during experimentation (System A). In comparison, equivalent algo-

rithms are much faster as implemented in System B, a more robust version of the initial prototype17,

as listed in Table 4.14.

17These systems are described in more detail in Chapter 6. System A was developed inPerlby the author, and used during
algorithm development and experimentation; System B was re-implemented inJava(without any algorithmic changes) by
members of the CSIR HLT Research Group. The second system wasused to build a medium-sized dictionary, as described
in Section 6.5.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 51

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Table 4.14:A comparison of computation times in seconds for alignment and Default&Refine rule
extraction for two different implementations of the bootstrapping system.

Task System A System B
Alignment: 10,000 words 185.32 8.15
Alignment: 50,000 words 793.23 49.08
Default&Refine: 10,000 words 272.40 26.13
Default&Refine: 50,000 words 1335.36 320.06

4.7.4 ROBUSTNESS TO NOISE

In order to analyse the effect of errors on predictive accuracy, we conduct a number of simulation

experiments, usingAfrikaans A, one of a set of Afrikaans bootstrapped dictionaries, as described

in Section 4.3. Based on earlier experience with dictionarydevelopers who are more error prone

(see Section 6.3.2.2), we artificially corrupt a fraction ofthese transcriptions and then measure the

predictive accuracy ofDefault&Refineon the corrupted databases.

We introduce two types of corruptions into the transcriptions:

• Systematic corruptionsreflect the fact that users are prone to making certain transcription errors

- for example, in the ARPAbet phone set,ay is often used whereey is intended. We allow a

number of such substitutions, to reflect observed confusions by Afrikaans transcribers.

• Random corruptionssimulate the less systematic errors that also occur in practice; in our sim-

ulations, random insertions, substitutions and deletionsof phonemes are introduced.

We generate four corrupted data sets (systematic substitutions and random insertions, substitu-

tions and deletions), where 1%, 2%, 5% and 10% of the words arerandomly selected for corruption.

We generateDefault&Refineand DEC-grow rule sets with 90% of the words of each (corrupted)

dictionary and measure the accuracy of the rules against theremaining 10% (using the original un-

corrupted dictionary), and perform 10-fold cross-validation.

The effect of the simulated errors on predictive accuracy isdepicted below. In Figure 4.19 the

average word accuracy and phoneme accuracy are plotted against the percentage of corrupted words

for DEC-grow and Default&Refine. Note that the most significant effect is due to insertions, as

unnecessary insertions cause superfluous graphemic nulls,which introduce alignment errors. This

effect is visible for bothDEC-growand Default&Refine, as both rely on accurate pre-alignments.

Figure 4.20 provides a more detailed analysis: the change inaverage word accuracy and phoneme

accuracy is plotted in the same way as above. Here it can be seen that deletions and substitutions

affect the predictive accuracy to a similar extent, whetherrandom or systematic. This behaviour is

quite different to the behaviour observed later (see Section 6.4), when the position of rules in the

extracted rule set is used to predict errors in the training data. As no rules are discarded during

standardDefault&Refine, rule set position does not affect predictive accuracy. Both rule extraction

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 52

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

techniques perform well in the presence of low levels of noise, withDefault&Refineproviding a slight

advantage overDEC-grow.

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

Default&Refine

ri

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

Default&Refine

ri
rd

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

Default&Refine

ri
rd
rs

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

Default&Refine

ri
rd
rs
cx

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

Default&Refine

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

Default&Refine

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

Default&Refine

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

Default&Refine

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

DEC-grow

Figure 4.19:Effect of noise on average phoneme and word accuracy when extracting rules from a
corrupted version of the Afrikaans A database. Databases are corrupted with random insertions(ri),
random deletions (rd), random substitutions (rs) and systematic substitutions (cx).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 53

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

Default&Refine

ri

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

Default&Refine

ri
rd

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

Default&Refine

ri
rd
rs

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

Default&Refine

ri
rd
rs
cx

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

Default&Refine

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

Default&Refine

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

Default&Refine

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

Default&Refine

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

DEC-grow

Figure 4.20: Effect of noise on change in average phoneme and word accuracy when extracting
rules from a corrupted version of the Afrikaans A database. Databases are corrupted with random
insertions(ri), random deletions (rd), random substitutions (rs) and systematic substitutions (cx).

4.8 CONCLUSION

In this chapter we analysed the grapheme-to-phoneme conversion task through a set of experiments

based on variations of Dynamically Expanding Context (DEC). We proposed an enhancement to the

standard approach for grapheme-to-phoneme alignment and defined a new grapheme-to-phoneme

conversion algorithm (Default & Refine). This algorithm utilises the concept of a default phoneme

to extract a cascade of increasingly more specialised rules, and has a number of attractive proper-

ties including language independence, rapid learning, good asymptotic accuracy, robustness to noise,

and the production of compact rule sets. In subsequent chapters, we utilise bothDEC-minandDe-

fault&Refineas grapheme-to-phoneme conversion mechanism during bootstrapping.

Table 4.6 and Figures 4.9 and 4.10 depict an interesting trend: as the rule sets that fully describe

the training data become smaller and smaller, the generalisation accuracy of the rule set increases.

This raises an interesting theoretical question: What is the smallest possible rule set within a rewrite

rule based framework that can fully reconstruct a given set of training data with 100% accuracy? In

the next chapter (Chapter 5) we explore this question further.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 54

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

	Front
	Chapter 1
	Chapter 2
	Chapter 3
	CHAPTER 4
	4.1 INTRODUCTION
	4.2 BASELINE ALGORITHM
	4.3 EXPERIMENTAL DATA AND APPROACH
	4.4 GRAPHEME-TO-PHONEME ALIGNMENT
	4.5 DEC-BASED GRAPHEME-TO-PHONEME PREDICTION
	4.6 A DEFAULT-AND-REFINEMENT APPROACH TO G-TO-P PREDICTION
	4.7 BOOTSTRAPPING ANALYSIS
	4.8 CONCLUSION

	Chapter 5
	Chapter 6
	Chapter 7
	Back

