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CHAPTER FOUR

GRAPHEME-TO-PHONEME CONVERSION

4.1 INTRODUCTION

In this chapter we analyse the grapheme-to-phoneme (y-tofpversion task through a number of
experiments. Our aim is obtain a pronunciation modellingma@ism that is well suited to boot-
strapping. We choose an instance based learning approdtthDynamically Expanding Context
(DEC) as the baseline algorithm, for reasons discusseddtidBet.2. We utilise the pronunciation
dictionaries described in Section 4.3 to analyse variopgds of the task, and to benchmark our
results. As DEC is sensitive to alignment errors, we firstym@agrapheme-to-phoneme alignment
accuracy (in Section 4.4), and define the alignment approaschtilise in subsequent experiments.
We then proceed to analyse a number of variations of DEC, aggkst small adaptations to the stan-
dard algorithm (Section 4.5). These variations lead to tfanidion of a new grapheme-to-phoneme
conversion algorithm described in Section 4.6. This atgori—Default & Refine- has a number of
attractive properties that makes it suitable for bootgtiragn

4.2 BASELINE ALGORITHM

As discussed in Section 3.4.1, the ideal grapheme-to-pher@mnversion mechanism will have the
following characteristics:

1. High predictive ability, even for very small training sgtes.
2. Exact representation of training data.
3. Low computational cost (both for rule extraction and praciation prediction).

4. Robustness to noise in the training data.
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Of the approaches discussed in Section 2.2.2, we excludéhahyequire linguistic input (such as
finite state transduction) or extensive computational uess (such as meta-classifiers). Of the re-
maining approaches, most exhibit comparable asymptotforpeance, with the best results currently
achieved by pronunciation by analogy (PbA) approachesrstdrice-based learning methods, as de-
scribed earlier.

Both PbA approaches and instance-based learning methogsmade exact representation after
conversion, as required. Also, the computational complediexamples within both of these classes
of algorithms are within acceptable limits, with PbA apmioas providing some advantage with
regard to computational cost [25]. As bootstrapping isdgfty not the aim of grapheme-to-phoneme
approaches, little information is available with regarddbustness to noise. The first requirement
then becomes the deciding factor for choice of algorithmuw fneell does the algorithm generalise
from very small data sets. Again, explicit information is m@ailable, but it seems from the results
provided by Dampeet al in [25] that the PbA algorithm only starts to generalise welien the
training dictionary is of sufficient size We therefore choose an example of instance-based learning
as the basis for our initial experimentation. Specificallg,choose Dynamically Expanding Context
(DEC), an algorithm that is simple to implement, and gensgalfairly well from a small training set.

4.3 EXPERIMENTAL DATA AND APPROACH

We utilise the following databases during experiments:

e NETtalk a publicly available 20,008-word English pronunciatiactionary [20], derived from
Miriam Webster’'s pocket dictionary (1974). Hand-craftedgheme-to-phoneme alignments
are included in the electronic version.

e FONILEX a publicly available pronunciation dictionary of Dutchnae as spoken in the Flem-
ish part of Belgium [19]. We obtained the exact 173,873-waoretaligned version of the dic-
tionary as used by Hoste [41].

e OALD, a publicly available English pronunciation dictionary8]1 We obtained the exact
60,399-word pre-aligned version of the dictionary as useBlack [23].

e Afrikaans A a 5,013-word Afrikaans pronunciation dictionary, buiing the bootstrapping
system and developed as part of this thesis. This dictiowasy/transcribed by a linguistically
sophisticated first-language Afrikaans speaker and mbnuetified by the author. Of the
5,013 words, 90 words are invalid: the remaining 4,923 warésall valid and distinct.

e Afrikaans B a 8,053-word Afrikaans pronunciation dictionary, buiing the bootstrapping
system and developed as part of this thesis. This dictiowarybootstrapped frorfrikaans

"When trained on the (American English) Teachers’ Word BAak'B), the PbA algorithm that was evaluated achieved
approximately 40% word accuracy after 2000 words [25]
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A and transcribed by a linguistically sophisticated firstgaage Afrikaans speaker, but not
exhaustively verified. (Some verification was performeddescribed in Section 6.5.) Of the
8,053 words, 271 words are invalid: the remaining 7,782 wame all valid and distinct.

Where any of the above databases include pronunciatioantar{one word associated with two
or more valid pronunciations), all but the first pronun@atiariant are removed from the database,
prior to dividing the database into training and test setbekwe report on results, we use the term
phoneme correctneds specify the percentage of phonemes identified corrgatigneme accuracy
as the number of correct phonemes minus the number of iossrtdivided by the total number of
phonemes in a correct pronunciation, amdrd accuracyto specify the percentage of words com-
pletely correct. While we typically report on phoneme aecyronly, phoneme correctness is some-
times included in order to provide a comparative measurh wasults from other sources. Unless
otherwise stated, we perform 10-fold cross-validationribg10-fold cross-validation we subdivide
the entire corpus randomly into 10 distinct sub-sectiong, taen perform 10 training/testing exper-
iments, training on nine of the sub-sections and testincgherténth. For the different measurements
(word accuracy, phoneme accuracy, phoneme correctnesgped on the standard deviation of the
mean of each of these measurements, indicated & Where there is uncertainty with regard to the
measure used in a benchmark result, word accuracy providdedst ambiguous comparison.

As in previous sections, we use the format

($1--$m797y1--?/n) —p (41)

to specify extracted grapheme-to-phoneme rules. kiéndicates the focal grapheme; andy; the
graphemic context, angthe phonemic realisation of the grapheméeie also use a more compact
representation:

T1.-Tm — G — Y1--Yn — P (4.2)

to indicate the same rule. Note that each grapheme specifiegaaate element, even though these
separate elements are written next to each other (witheespor other indicators of element bound-

ary.)

4.4 GRAPHEME-TO-PHONEME ALIGNMENT

Errors in grapheme-to-phoneme alignment do not affeceufit rule extraction techniques to the
same extent. DEC-based rule extraction mechanisms ariivgeng alignment accuracy. For ex-
ample, the correct DEC extraction rule for the grapheme-pai in English is—e — e — iy and
e — e— — ¢ whereg indicates the null phoneme. If the system incorrectly aigre words “keen”

2|f the mean of a random variable is estimated witindependent measurements, and the standard deviations# th

measurements is, the standard deviation of the mearris = %
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and “seen” as followsk ee n — k iy ¢ nands e e n — s ¢ iy n, DEC will not be able to extract
the fairly simple rule specified above, as the two words mlewionflicting evidence with regard to
the pronunciation of the grapheme pair ‘ee’. Note that thguistic accuracy of the position of the
null phoneme is not important, as long as the choice of mwsi consistent across the set of train-
ing instances. As DEC is sensitive to alignment accuracyppténise the grapheme-to-phoneme
alignment process before analysing the grapheme-to-ph®menversion process.

4.4.1 PRE-PROCESSING OF GRAPHEMIC NULLS

Many languages require few or no graphemic nulls and thdiadédl variability introduced by cater-
ing for graphemic nulls result in miss-alignments. For oasé algorithm Align v1) we use forced
Viterbi alignment based on the probabilitiP¢grapheme | phoneme j)and initialise probabilities
from words and pronunciations that have equal length, azithesl by Anderseet al[54]. However,
we insert graphemic and phonemic nulls in two separate .sbe@spre-processing phase, graphemic
null generator pairs (two graphemes that result in more tivarphonemes) are identified by Viterbi
alignment of all word-pairs where pronunciation lengthasder than word length. Phonemic nulls
are inserted in a second phase of Viterbi alignment. (WHeditst phase introduces unnecessary
graphemic nulls, these are typically mapped to phonemils mlulring the second phase.) In both
phases the alignment process is repeated until no furttedihibod improvement is observed.
Alignment accuracy on thBlETtalkcorpus using this implementatiol{gn v1) is higher than
the results reported by Andersenal [22], as compared in Table 4.1. This improvement is due to an
implementation difference rather than a conceptual difiee: The algorithms are similar, apart from
the different handling of graphemic nulls, and graphemitsrao not occur in théNETtalkcorpus.

4.4.2 UTILISING THE PHONEMIC CHARACTER OF NULL-PHONEMES

An additional improvement can be obtained if the transimiptconvention used b\NETtalk is
adapted. IMNETtalk null phonemes are used to identify graphemes that aret&leluring pro-
nunciation, for example the wosdriter is transcribed as r it e r — ¢ r ay t ¢ axr. An alternative
convention would be to use null phonemes simply to identi§tances where two or more graphemes
give rise to a single phoneme (without identifying a patacygrapheme as deleted), by aligning the
first grapheme in such a group with a non-null phoneme, anskesjutent graphemes with nulls. Using
this convention, the wordriter is transcribed as r i t e r — r ¢ ay t axr ¢. A null phoneme then
simply indicates that the phonemic realisation remains#me for more than one grapheme.

Using a set of about 40 rewrite rules, tNE&Ttalkdictionary can be rewritten using either the
one convention or the other. Using the second conventiandittionary responds better to data-

3In earlier work, when adding graphemic nulls by hand, we tbthat the use of pseudo-phonemes can complement
the use of pseudo-graphemes. Pagall[52] suggested the use of pseudo-graphemes (e.g. creatirgraphemes z to
represent thé ands phonemes that originate fromseparately). We found that, when a more natural choice, sheofi
pseudo-phonemes (e.g. creatingsgphoneme to represent theands combination) can improve alignment accuracy.
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driven alignment and the second version of our Viterbi atgor (Align v2). This algorithm explicitly
calculates therobability that a specific grapheme is realised as a nullqdoe, given the previous
non-null phonemic realisation of the preceding graphemgraphemesand provides a significant
performance improvement, as shown in Table 4.1.

Table 4.1:Phoneme and word alignment accuracy obtained on the NETtajtus.

Database Type Phoneme| Word
NETtalkoriginal | Iterative Viterbi [22] 93.2 83.7
NETtalkoriginal | Align vl 96.5 87.3
NETtalkrewritten | Align v2 98.7 95.4

The effect of the improvement in alignment accuracy on ruleagtion accuracy is depicted in
Fig. 4.1. TheAlign v1andAlign v2 algorithms are used prior tDEC-mirf rule extraction on a
10,000-word subset of tHeONILEX database, and grapheme-to-phoneme prediction accuracy me
sured against a 5000-word test set.

Align v1 -
70 - Alignv2 =

50

40 /

il

0 2000 4000 6000 8000 10000
Number of words

Word-level accuracy

Figure 4.1:Effect of different alignment algorithms on word-leveluaciation prediction accuracy
of DEC-min, as measured on a 10,000-word subset of FONILEX.

In order to verify that this effect is not corpus-specific, peform a further evaluation using the
OALD corpus. We analyse the effect of the two different alignmadgorithms Align v1 and Align
v2) when extracting bottbEC-growand DEC-minrules using training sets of increasing size. For
each training set of a specific size, 10 distinct training se¢ generated. All training sets are tested
against a non-overlapping 5970-word test $8¥( of the full data set). A similiar trend is observed as
on theFONILEXcorpus, as depicted in Fig. 4.2. For example, the mean pheaeouracy foDEC-
grow rules trained on a 5000-word training seB&83% (with o190 = 0.07) when aligned according
to Align v1, and87.54% (with 019 = 0.06) when aligned according talign v2 During the earlier

4The DEC-minalgorithm is described in Section 4.5.2.
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Figure 4.2:Effect of different alignment algorithms on prediction acy of DEC-grow and DEC-
min, as measured using the OALD corpus.

stages of the rule extraction process (when alignment pilitizs are still unstable) this provides a
signficant advantage.

4.5 DEC-BASED GRAPHEME-TO-PHONEME PREDICTION

45.1 STANDARD DEC

A conceptual description of DEC as applied to the graphesyabneme problem by Torkkola [21]
is provided in Section 2.2.2.3. In this section, we dischssapproach in further detail: Each DEC
rule specifies a mapping of a single grapheme to a single phef@r a given left and right graphemic
context, i.e is of the form(left-context,grapheme,right-context} phonemeEach word in the train-
ing dictionary is aligned with its pronunciation on a pegjgineme basis, as illustrated in Table 4.2.
Rules are extracted by finding the smallest context thatigegva unique mapping of grapheme to
phoneme. If am—letter context is not sufficient, the context is expandedtteethe right or the left.
This ‘specificity order’ influences the performance of thgoaithm. Different orderings are illustrated
in Table 4.3 as applied to grapherise in the word‘interesting’. Context 1 is expanded symmetri-
cally on a right-grapheme-first basis, context 2 is expargjedmetrically on a left-grapheme-first
basis, and context 3 favours the right context on a 2:1 basis.set of extracted rules are stored as
a hierarchical tree, with more general rules at the root,maark specific rules at the leaves. The tree
is traversed from the root to the leaves, and the rule at thierfiatching leaf (the rule describing the
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Table 4.2:Word alignment and rule extraction in standard DEC.

Alignment examples | rose—rowzo
rows—rowaez

root—ruwoet

Rule examples for -0t in context -0:  -0-0— uw
in context -se:  -0-se» OW
in context o-:  0-0— ¢

Table 4.3:Different examples of context expansion order in DEC.

size | context 1| context 2| context 3
0 S S S
1 st es st
2 est est sti
3 esti rest esti
4 resti erest estin

largest matching context) is used to predict the specifiplgme-to-phoneme realisation. If no leaf
is matched, the most probable outcome of the last matchaigdeised, as can be estimated from the
training data. In our implementation of DEC, we do not explicorder the rules in a tree structure,
but number them according to the order in which they are etdda(corresponding to a topological
sort of all rules that can apply to a single word). We thendeara reverse rule order rather than tree
traversal. This variation does not change the algorithnatfanally.

If DEC is not allowed to grow an asymmetric context when itciezs a word boundary and
conflicting rules are ignoredDEC-conflic) the performance of the algorithm degrades for larger
training corpora, especially if rules regarding the contxrounding a grapheme early or late in a
word are of predictive importance. In order to remove thieaf the version of DECEEC-grow)
that was implemented as baseline algorithm allows a comegtow towards the opposite side if a
word boundary is encountered. This effect is illustratedrig. 4.3 where we plot the results for
DEC-conflictandDEC-growduring the initial stages of learning (using tR®NILEXcorpus).

45.2 SHIFTING WINDOWS

DEC, as applied by Torkkola [21] expands the context of algeage one letter at a time, either
favouring the right- or left-hand side explicitly. We ansdythe implications of using a sliding window
rather than a strict expanding context. We define a slidingdesv that first considers all possible
contexts of sizen, before continuing to consider contexts of sizel, which prevents rules with

unnecessarily large contexts from being extracted. Inrasthto the DEC context expansion of Table
4.3, a sliding window applied to graphent in the word‘interesting’ would result in the context

ordering indicated in Table 4.4. Since multiple rules of $aene context size may apply to a single
grapheme-to-phoneme mapping (suchegs,ti— sandere,s,t— s), contexts that are already served
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Figure 4.3:Comparing DEC-conflict and DEC-grow during initial learmgjrstage (first 5000 words
of FONILEX). DEC-grow is chosen as baseline algorithm.

Table 4.4:Context expansion order in shifted DEC.

order | size | context|| order| size | context
1 0 S 2 1 st
3 1 es 4 2 est
5 2 sti 6 2 res
7 3 esti 8 3 rest
9 3 stin 10 3 eres

by existing rules can be removed to prevent over-speciaisa Because all contexts of each size
are considered, the order in which contexts are expandead @pecific context-level) becomes less
significant than in standard DEC.

Figures 4.4 and 4.5 compare the performance of different D&ttions. In all experiments,

a symmetric right-first expansion scheme is ds@ also in Table 4.4). The size of the maximum
context allowed when extracting rules is not restricted] e same word training order (random
selection from corpus) is used. In order to compare withiptevresults, we use the exact alignments
as used in [41]. Where word variants occur, we only use thie/éirgant — both for training and testing
purposes.

Three shifted window versions of DEC are implemented: eting the first valid rule encoun-
tered DEC-win) extracting the maximum number of valid ruld3EC-may and pruning this system
to obtain the minimum number of rules that still provide fudiverage for the training corpuBEC-
min). When a shifting window is used, more than one conflicting nf the same size may apply to
a word. Various conflict resolution strategies can be imgleted: in the set of experiments reported
below, the most frequently observed rule is favoured. Fertttaining set sizes analysed, the pruned,
shifted window version of DEC¥EC-min provides a small but consistent performance improvement
in word accuracy. DEC-winis not shown, but results in a learning curve similabBC-grow both

5A symmetric, right-first expansion scheme is used when mt®ps are generated for consideration prior to selection
of the actual rule — actual rules are generated accordinghéfting window, and do not exhibit strict right-first beliaur.
5Note that phoneme accuracy initially follows a differerrtd for this corpus.
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Figure 4.4:Word-level accuracy of different DEC variations duringtiai learning stage, as mea-
sured using the first 5000 words of FONILEX.
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Figure 4.5: Phoneme-level accuracy of different DEC variations durinijal learning stage, as
measured using the first 5000 words of FONILEX.

with regard to word and phoneme accuracy. Asymptotic paerémice is only approached for larger
training sets, as compared in Table 4282C-mincontinues to perform better th&EC-grow with a
small margin. The improvements during the initial learnatgiges are small, and introduce additional
overhead during computation. Of more interest is that tlve DEC variation DEC-mir) forms the
basis for further algorithmic improvement, as discussetiénext sections.

As can be expected, the extracted rule sets grow in diffexays with regard to rule number
and rule length, as the size of the training dictionary iases. An analysis of the different types
of rule sets extracted from the same training dictionaryriviged in Table 4.6. The numbers of
rules of each size (the size of the context that specifiesul®} are compared, as extracted from
different sized training dictionaries usim@EC-grow; DEC-maxand DEC-min Note thatDEC-max
tends to extract more rules th&®EC-growbut that these rules tend to be shorteEC-minreduces
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Table 4.5: Phoneme correctness, phoneme accuracy and word accurampasson for different
DEC variations, as measured using the FONILEX corpus.

phoneme correctnessphoneme accuracy word accuracy|
+o10 +o10 +o10
DEC-max | 98.44 0.01 98.28 0.01 88.71 0.06
DEC-grow | 98.50 0.01 98.32 0.04 88.60 0.07
DEC-win | 98.57 0.01 98.40 0.01 89.53 0.05
DEC-min | 98.58 0.01 98.41 0.01 89.58 0.06

the number of rules significantly (in comparison witieC-may. DEC-minextracts slightly more

rules tharDEC-win, but as can be expected, these are much shorter (more general

Table 4.6:Number and size of rules: DEC-grow, DEC-max and DEC-min

Rule type: DEC-grow DEC-max DEC-min
Dict size: | 100 1,000 10,000 100 1,000 10,000 100 1,000 10,000
1 27 27 27 27 27 27 27 27 27
2 65 92 103 | 108 105 103 | 86 104 102
3 127 545 1259 | 256 1224 2375 | 102 705 1661
4 19 323 1996 | 24 926 7031 | 9 375 3469
5 7 131 1845 | - 78 3081 | - 33 1381
6 - 33 712 | - 7 341 | - 3 178
7 - 8 280 | - - 27 - - 18
8 - - 71 - - 5 - - 3
9 - - 32 - - 1 - - 1
10 - - 4 - - 1 - - 1
11 - - 5 - - - - - -
12 - - 1 - - - - - -
13 - - - - - - - - -
14 - - - - - - - - -
15 - - 1 - - - - - -
Total 245 1,160 6,337| 415 2,367 12,992 224 1,247 6,841

4.5.3 RULE PAIRS

When analysing the specific errors made by these DEC vargtib becomes apparent that some
rules occur in ‘rule pairs’, i.e. two rules always occur ampanions in the training data. These rule
pairs are sometimes not applied as companions in the testaaising errors. For example, during
rule extraction a rule-e — en — iy is typically followed by a second rule rule— e —n — ¢
ore —e— — ¢, and is a better rule to apply when predicting the instahice e — en than the
otherwise equally likely rulgtk — e—. We experiment with the implication of forcing such rulerngai
to occur in tandem. First, we identify rule pairs that alwagsur together in the training data and
exhibit a context overlap of at least the two focal graphenTgsen we restrict our rule application
to only use one of the rules in such a pair if the second ruldénpair is also applicable to the
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same training instance. However, constraining rule paitkis way does not have a significant effect
on predictive accuracy: In some instances the rule paircgabr does correct a second phoneme that
would otherwise have been wrong, but in a comparable nunfloases this approach causes a second
phoneme to be wrong, which would otherwise have been coveéettherefore do not continue with
further experimentation along this route.

45.4 CONFLICT RESOLUTION

In standard DEC, the largest matching rule is always urfighen a shifting window is used, more
than one conflicting rule of the same size may apply to a wdrdeelusenum(r, p) to specify the
number of training instances that match the context of aifipeale » and specific outcome as we
calculate the ‘accuracy’ of the ruleas:

accuracy(r) = num(r, outcome(r)) for all possible outcomes. 4.3)

> num(r,z) + 1

In the experiments described above, if more than one catedidke (of the same size) is applicable to
the current word being predicted, we choose the rule for aicuracy(r) is highest. This is a fairly
simple conflict resolution strategy, and various altexmgatiptions are possible. We experiment with
a number of these, including (1) voting among possible r(dbsosing the outcome that most of the
candidate rules agree upon), (2) applying the smallerlfiatk) context rather than any of the larger
conflicting rules, and (3) simply choosing any of the rulesaatdom (in practice whichever of the
candidate rules was generated first during rule extragtamy find no consistent improvement using
any of the alternative conflict resolution strategies. Watiomie to use the initial conflict resolution
strategy (highesiccuracy(r)) for further experimentation.

455 DEFAULT RULES

The question of how to best resolve conflict is closely linkedhe question of how to best define
default rules. One of the consequences of DEC rule extragithat there exists only a single rule
of any given length that can potentially apply to a specifieduavhere this length lies between one
and the total length of the word being predicted). If the wieihg predicted is of length, and no
matching rule of length exists, then a single rule of size— 1 may potentially apply. In effect the
latter rule acts as ‘back-off value’ for the rule of length If a rule of lengthn — 1 does not exist
either, the (unique) matching rule of length- 2 becomes the next possible candidai/hen using
shifting windows, there is no longer a unique rule of any gilength that can potentially apply when
predicting a word — more than one candidate may exist. Wefthier consider the effect of adding
default rules explicitly: for any set of rules of contextesizwith one or more internal disagreements

"This rule may be conflicted (i.e. not a leaf node in Torkkokeriginal implementation) in which case the most fre-
quently observed outcome across the training data is gexetaut no conflicting rules of the same size can exist.
8From a conceptual perspective — this is not the processstiallowed in practice during DEC prediction.
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and no ‘default rule’ of sizew — 1, we add an explicit rule of context size— 1 with an outcomep
such thathum(r, p) is the maximum over all possible outcomes. Interestingldirgg this additional
information decreases rule accuracy. An error analysisatels that inappropriate ‘default rules’ are
extracted: while these rules correctly ‘fill the gaps’ amdmng rules extracted from the training data,
the ‘default rules’ are forced to specific value by the praslg extractedEC-minrules, and do not
generalise well. This leads us to the definition of a defanti-refinement approach to grapheme-to-
phoneme prediction, as discussed in the next section (Be4t6). This approach utilises a similar
rule definition format as DEC, but the rule extraction predeanore distant from original DEC than
the variations studied up to this point.

4.6 A DEFAULT-AND-REFINEMENT APPROACH TO G-TO-P PREDICTIO N

Grapheme-to-phoneme prediction algorithms rely on theéeotion between the spoken and written
form of a language. Itis expected that, the more modern titengysystem of a language, the stronger
this connection, and the more regular the spelling systetheofanguage [71]. This may not always
hold in practice, for example, when a language with maintyofdy) an oral tradition is transcribed
for the first time, and the variability introduced througte timitial transcription process has not yet
stabilised through usage or an education system thategilise written form. While alternative
outcomes are possible, the languages studied as part ti¢isis all exhibit a combination of a fairly
modern writing system associated with a fairly to highlyuleg spelling system.

The more regular the spelling system of the language, tlwmgtr the concept of a ‘default
phoneme’: a grapheme that is realised as a single phonemificsigtly more often than as any
other phoneme. Figure 4.6 and Figure 4.7 illustrate thisiphenon for Flemish. When counting
the number of times a specific grapheme is realised as a spekdheme, most graphemes follow
the trend depicted in Figure 4.6. Hengjs realised as a single phoneme more théfx of the
time, with the next two phonemic candidates occurring @l and4% of the time, respectively.
For graphemes that exhibit ‘conflicted default phoneme’abadur, such ash(j,n,u), the trend is
less strong, but also clearly discernible, as depictedguifei 4.7. Similar trends are observable for
languages with less regular spelling systems, with a lagngggortion of graphemes of these languages
displaying the behaviour depicted in Figure 4.7.

We use this information to define an algorithm that utilise=edy search to find the most general
rule at any given stage of the rule extraction process, aplicék/ orders these rules according to the
reverse rule extraction orderExplicitly ordering the rules provides flexibility duringle extraction,
and ensures that the default pattern acts as a back-off misaihdor the more specialized rules.
The framework we use is similar to that used in previous eesti Each grapheme-to-phoneme rule

°It is interesting to note that, while the rule applicationl@r of DEC is ordered by context size (largest rule first), our
reverse rule extraction order automatically reverts taexrsize ordering in the case of DEC-based rule extraction.
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Figure 4.6:Default phoneme behaviour of graphemes d,s,t and j in Flen@sly the first 10 phone-
mic candidates are displayed.
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Figure 4.7:Conflict phoneme behaviour of graphemes h,j,n,u in Flen@stly the first 10 phonemic
candidates are displayed.

consists of a pattern
Gleft — 9 — Gright — P (4'4)

whereg indicates the grapheme being considerggd;; and g, are the graphemic left and right
contexts of the rule, angd the specific phonemic realisation @f The pronunciation for a word is
generated one grapheme at a time. Each grapheme and itsdefght context as found in the target
word are compared with each rule in the ordered rule set;l@éirst matching rule is applied.

Prior to rule extraction, grapheme-to-phoneme alignmemerformed according to the Viterbi-
based alignment process described in Section 4.4. Pratigrcivariants are currently not allowed:
if a word has more than one possible pronunciation, only tist i kept. Each aligned word-
pronunciation pair is used to generate a set of possible hyeextracting the sub-pattern of each
word pattern; an example of such a process is shown in Table 4.
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Table 4.7:The relationship between a word (test) and, for one of itpgeanes (e), the word pattern
and sub-patterns that are generated during rule extraction

Word test

Word pattern| #t-e-st#— eh

Sub-patterns| -e- — eh,-e-s— eh,t-e-— eh,t-e-s— eh
t-e-st— eh, #t-e-s— eh,-e-st#— eh
#t-e-st— eh,t-e-st#— eh #t-e-st#— eh

Once all possible rules have been generated in this ways auke extracted on a per-grapheme
basis, one rule at a time. For any specific grapheme, apf@ieadrds are split into two sets based on
whether the current rule set (initially empty) predicts grenunciation of that grapheme accurately
(Completedwvords) or not Newwords). These two large word sets are used to keep tracktaksta
but further manipulation utilises two sets of sub-pattertige Possiblesub-patterns, indicating all
possible new rules, and consisting of all the sub-pattefreach word pattern ilNew; excluding all
for which the left-hand side is an existing rule; and @aughtset of sub-patterns, indicating all the
sub-patterns covered by the current rule set irrespecfivéhether the outcome of the rule matches
that of the word or not. Both thossibleandCaughtsets of sub-patterns count the number of times,
per possible outcome, that a matching word pattern is obdénsthe relevant word sets.

The next rule is chosen by finding the pattern for which thechiaty count inPossibleminus
the conflicting count irCaughtis highest. (The conflicting count is the number of times actmag
left-hand pattern is observed with a conflicting right-hgmbneme.) Definition of a new rule moves
words from theNewto the Completedset. Any words that are currently in tli@ompletedset and
conflict with the new rule, are moved back to thewset. This process is repeated until all words have
been moved from thBlewto theCompletedset. The algorithm ensures that the next rule chosen is the
one that will cause the most net words to be moved fronNiwto theCompletedset, irrespective of
context size. As this number (net words processed) is alpagiive'®, the algorithm cannot enter an
infinite loop. The stronger the default behaviour exhibibgda specific grapheme described by a new
rule, the more words are processed during the extractidmadtpecific rule. Conflict is only resolved
in the Completedset: new rules are allowed to conflict with words stilNiew, which ensures that the
rule set is built for the default pattern(s) first.

In order to ensure computational efficiency when trainedawgdr dictionaries, we use the fol-
lowing techniques during implementation:

e Words are pre-processed and the word patterns relevantitmle grapheme extracted and
written to file. All further manipulation considers a singjeapheme (and the corresponding
set of word patterns) at a time.

e The context size of the sub-patterns considered is growarsggically: only sub-patterns up to

1%A rule based on a full word pattern can only apply to that singbrd, and will result in a ‘net move count’ of 1. Since
the maximum of all these ‘net move counts’ is selected, thise/will always be positive.
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sizemax +win are evaluated, wheraax indicates the current largest rule, anéh is defined
to ensure that any larger contexts that may be applicablecm®idered, without requiring all
patterns to be searched.

¢ Whenever a sub-pattern Rossibleor Caughtreaches a count of zero, the sub-pattern is deleted
and not considered further, unless re-added based on ars@itmove of a related word.

While these techniques ensure that a fairly large dictpr{a®0,000 words) can be trained in an
acceptable amount of time when using the process in a neragtive fashion, the process to train
a sizeable dictionary becomes too slow for interactive steeypping. This issue is addressed fur-
ther in Section 4.6.4. In the remainder of this thesis werrfehe algorithm described above as
‘Default&Refiné

46.1 ASYMPTOTIC PERFORMANCE

In order to evaluate the asymptotic behaviouDeffault&Refing we compare our results on a fairly
large corpus with published results for a number of altévaatlgorithms. As théefault&Refine
algorithm is motivated by 'default behaviour’, we first avale the algorithm on a language with a
fairly regular spelling system (Flemish), before testibgn a language with an irregular spelling
system (English).

4.6.1.1 REGULAR SPELLING SYSTEMS

We evaluate the accuracy of tbefault&Refinealgorithm when trained on the fUHONILEXtraining
set, and compare its performance with that of alternatigerdhms in Table 4.8: théB1-1G result
utilises an instance-based learning algorithm and is awtegbin [41]; theDEC-growandDEC-min
results are calculated using the algorithms described dtid®e4.5.2; and th®&R result reports the
Default&Refinevalues. TheDEC and Default&Refineexperiments utilise the same alignments as
used in [41].

Table 4.8: Phoneme correctness, phoneme accuracy and word accurampasson for different
algorithms using the FONILEX corpus

phon correct | phon accuracy word accuracy
+o10 +o1o +o10
IB1-I1G 98.18 - - - 86.37 -
DEC-grow | 98.50 0.01| 98.32 0.04 | 88.60 0.07
DEC-min | 98.58 0.01|98.41 0.01| 89.58 0.06
D&R 98.87 0.01|98.78 0.01|92.03 0.06

The focus of [41] was to investigate the effect of cascadivmdlassifiers — one trained GtfONILEX
and one orCELEX- a Dutch variant corpus, and creating meta-classifiergushO0 (decision tree
learning), IB1-IG (instance-based learning as describe8ection 2.2.2.3), IGTREE (an algorithm
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that induces decision trees utilising information gainfl AMACCENT (a maximum entropy-based
algorithm). The highest accuracy reported was for such a4tlessifier system91.55% word
accuracy for a single meta-classifier; a92125% word accuracy for a meta-meta-classifier of all
meta-classifiers. (These systems all utilised@eL £ X data as an additional data source.) We find
thatDefault&Refinehas good asymptotic accuracy, and performs better tharothparative (single)
classifiers.

4.6.1.2 LESS REGULAR SPELLING SYSTEMS

As the algorithm is motivated by 'default behaviour’ we wémterested in the extent in which the
algorithm would fail for a language such as English, withssleegular spelling system. We therefore
evaluate the asymptotic performance of the algorithm agjdianchmark results available for both
the NETtalkand theOALD corpus. It is reassuring to find that the algorithm againqren well, as
shown in Tables 4.9 and 4.10.

Table 4.9: Phoneme accuracy, phoneme correctness and word accuranpascson for different
algorithms using the NETtalk corpus

phon correct | phon accuracy word accuracy

+o10 +o10 +o10
Trie - - 89.8 - 51.7 -
DTree - - 89.9 - 53.0 -
DEC-T - - 90.8 - - -
DEC-Y - - 92.21 - 56.67 -
D&R 91.37 0.08| 90.50 0.1 |[58.66 0.21
SMPA - - 93.19 - 63.96 -

In Table 4.9 we compare the performance of a number of algogton theNETtalk corpus.
We list the results obtained by Andersenal [22] using Trie structuresTfie) and decision trees
(DTre@ respectively; by both Torkkola [21] and Yvon [36] using ynically Expanding Context
(DEC-T and DEC-Y); by Yvon [36] using SMPA, a pronunciation-by-analogy aiguon; and the
results ofDefault&Refing(D&R) using own alignments. The phoneme correctness reportg@6jn
for DEC seems anomalously high, in relation to our own experits, those obtained in [21], and the
reported word accuracy. Tt&MPAalgorithm employs a pronunciation by analogy approach,isnd
less suitable for training on very small data sets. Therlaéisults only pertain to words that could
be pronounced — abo0t5% of words were not pronounceable with SMPA when fully trainkidte
also that the SMPA results score the accuracy of variantsdndst set differently to the approach
employed in this thests.

In Table 4.10 we compare the performanc®efault&Refing D&R) with the results obtained by

HIn the SMPA experiments all variants but one are removed traniraining set, but all variants are retained in the test
set — if any of the possible variants are generated durinitngeghe prediction is marked as accurate. This is diffeten
the scoring approach used in this thesis, as described tio8dc3
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Black et al [23] using Classification and Regression TreEART) for two data sets: one including
stress assignment (SA) and one without. We use the exaanadigts, and the same single training
set and test set as used by Bl#ckrhe CART trees were generated taking part-of-speechrirdtion
into account — whiclDefault&Refinedoes not use. Without POS information, the CART result (with
stress assignment) decrease8i32% phoneme correctness afitl28% word accuracy .

Table 4.10:Phoneme accuracy, phoneme correctness and word accuraggasson for CART and
Default&Refine using the OALD corpus (SA indicates stregmalent)

phon correct| phon accuracy word accuracy
Incl. SA:
CART 95.80 - 74.56
D&R 97.12 96.87 83.76
Excl. SA:
CART 96.36 - 76.92
D&R 97.80 97.56 87.40

4.6.2 LEARNING EFFICIENCY

In order to use this algorithm for the bootstrapping of prasiation dictionaries, we are specifically
interested in the performance of the algorithm when tramedery small training sets. We therefore
evaluate word and phoneme accuracy for different trainictjatharies of sizes smaller than 3,000
words, using subsets froFONILEX Figure 4.8 demonstrates the phoneme accuracy learning cur
for Default&Refinein comparison wittDEC-grow Each rule set is evaluated against the full 17,387-
word test set.
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Figure 4.8:Phoneme accuracy during initial 3000 training words, as swad using the FONILEX
corpus.

12When 10-fold cross-validation is performed using différsubsets of this data set, a slightly lower cross-validated
accuracy is obtained96.62% phoneme accuracy ar&2.37% word accuracy when stress assignment is included, and
97.66% phoneme accuracy aé.41% word accuracy without stress assignment.
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4.6.3 SIZE OF THE RULE SET

While the size of the rule set is typically not a concern dumgmapheme-to-phoneme bootstrapping,
it can be important for other applications (such as dictiprampression). We therefore analyse the
size of the rule set, and find that the rule set extracteBdiault&Refinds significantly smaller that
extracted byDEC-grow, as shown in Figures 4.9 and 4.1Default&Refineprovides both a more
accurate and more compact prediction model: the 156,486-tvaining dictionary is represented
with 100% accuracy by 15,053 rules.
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Figure 4.9:Number of rules per context size extracted by DEC-grow fi@iming dictionaries of
three different sizes.
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Figure 4.10:Number of rules per context size extracted by Default&Rdfore training dictionaries
of three different sizes.

4.6.4 CONTINUOUS LEARNING

The ideal bootstrapping system will be able to update threeget after every correction by the verifier,
immediately incorporating further learning in the boapping knowledge base. The time taken for
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such updates is therefore of crucial importance. The upfaed is influenced by two factors: the
alignment speed and the rule extraction speed: épresents the number of words in the training
dictionary, then the complexity of the alignment procesd Hrat of the rule extraction process is
both approximatelyO(n), if it is assumed for the sake of simplicity that all words amere or less
of equal length®. This is typical of various of the rule extraction technigubat are appropriate for
grapheme-to-phoneme bootstrapping.

If the entire set of training words is processed after evenyection, the update time becomes
a limiting factor as the dictionary grows. In our implemdita, continuous updating becomes un-
wieldy when the number of words with known pronunciationseeds approximately 2000. On the
other hand, by performing batch updates at specific timessthinthe verifier (e.g. at the end of a
verification session), the update time does not become draoris but the learning obtained during
the session is not utilised to refine models until after the einthe session. In order to obtain an
algorithm that allows for continuous model updating whigeging the update time within acceptable
limits, an incremental version of tHeefault&Refinealgorithm was developed.

While the original algorithm creates a set of graphemic ttdles (one tree per grapheme) from the
training set by considering all the training words simudtansly, the incremental version utilises the
trees constructed during the previous (batch mode) updatkadds the new refinements as leaves to
these trees: for each grapheme in the new word, if the régliseneme is predicted accurately by the
current graphemic tree, no update occurs; otherwise thikeshiaule is extracted that will describe the
new word without affecting any of the existing predictiofihis version hag)(d) complexity where
d represents the average depth of the various graphemiaeele fwhich is approximately equivalent
to the average context size of the graphemic rule set). Usiisgincremental process, additional
learning can be obtained from the new words added withougicguliscernible delay, even for large
training dictionaries.

In practice, the bootstrapping process operates in twogshaturing the first phase a batch up-
date occurs for every word; during the second phase a battdteipccurs at synchronisation events
only, and incremental updates are performed in betweerhsynisation events. The interval between
synchronisation events is based on a set number of “updatgsiya.e. words that have been cor-
rected by the verifier (words that were correctly predictadrgo verification do not contribute to this
count). At the end of this interval, a synchronisation eveaurs: the complete training dictionary is
re-aligned, and new rules are extracted in batch mode. Dtini& update interval, the Viterbi proba-
bilities calculated at the previous synchronisation eaeetused per word to perform a fast alignment
(the probabilities are used in the standard way, but nottepdland incrementdbefault&Refineis
used to extract additional rules from the single aligneddagnonunciation pair. Phase 2 is initiated
well before the time required by the full update event becomaticeable. (For our current system
we progress from phase 1 to phase 2 when 1500 valid words legredrocessed.)

As can be expected, the new algorithm is an approximationtasfdardDefault&Refine and

13See section 4.7.3 for a further discussion of the computaticomplexity ofDefault&Refine.
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Figure 4.11:Phoneme accuracy comparison for incremental and batch rabde update interval of
50, measured using the FONILEX corpus.
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Figure 4.12:Relative change in phoneme accuracy when comparing inecreineith batch mode
(61), and incremental mode vs no updating between synchrimisatents ¢;); both at update in-
terval 50.

therefore somewhat less accurate than the original. We&eathe performance of the system using
an existing pronunciation dictionarfFQNILEX), and perform 10-fold cross-validation on all our
results. In order to determine the efficiency of the incretaleapproach, we first compare the two
rule extraction processes (incremental mode and batctandatd mode) without taking changes in
alignment into account. We utilise the same set of alignsiémor both types of rule extraction, and
measure phoneme accuracy on the same training set usingdlufferent algorithms. We find that
the decrease in accuracy is slight once the graphemic treasf aufficient size, as demonstrated in
Fig. 4.11 for a synchronisation interval of 50. The diffeserin accuracy can be analysed in further
detail by calculating two valuesi;, the relative increase in phoneme error rate when utilisiteg

The alignments used were obtained from a 173,873-worditgitictionary.
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incremental mode compared to the batch mode,&anthe relative decrease in phoneme error rate
when utilising the incremental mode, in comparison withygeérforming updates at synchronisation
events and not updating the models in between; that is,

_inc(x) — batch(x)

(@) = 1 — batch(x)

inc(x) — batch(z — 1)
1 — batch(x — 1)

100 (4.5)

do(x) = * 100 (4.6)
and wherebatch(x) indicates the phoneme accuracy using batch rule extraciodinc(z) the
phoneme accuracy using incremental rule extraction, datiirechronisation point. Fig. 4.12 illus-
trates the trends for thi andd, values for an update interval of 50 (still utilising ideailggments),
providing an additional perspective on the same data ataglesghin Fig. 4.11.

The effect on rule set accuracy is strongly influenced by émgth of the update interval. We
therefore compare the performance of the two algorithmslifeerent update intervals, and find that
the average); andd, values are both fairly linear in relation to the update ivéér the longer the
interval, the less accurate incremental updating becorheswompared with batch updating, and the
more value is provided by incremental updating vs perfogmia updates in between synchronisation
events. In Fig 4.13 we plot th§ andd, values for update intervals of lengtio, 100, 150 and 200
during the first 4500 words of bootstrapping. These trendsirmoe for larger update intervals.

4

Average dl ——
Average d2 DG
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Figure 4.13:Average); andd. values for update intervals of length 50,100,150 and 200.

Finally, in order to ensure that the fast alignment processcot introduce a noticeable loss
in accuracy, we compare the two algorithms (batch and inentah rule extraction), applying the
alignment process as it would be used in practise: perfaymifull alignment during synchronisation
events and using the fast alignment process in between. \dehfi while there is a greater variance
in the effect on phoneme accuracy when using the fast alighp®cess during the first phase of
bootstrapping, this effect becomes negligible during #moad phase of bootstrapping. (In practice,
fast alignment is only used during the second stage of bapgEing.) In Fig 4.14 we plot thé,
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values for an update interval of 50, when using ideal aligmshand actual alignments.
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Figure 4.14:Change in phoneme accurady Y when comparing incremental with batch mode when
(a) ideal alignments are used, and (b) when actual alignshard used.

The above results indicate that incrememafault&Refingprovides an effective way of increas-
ing system responsiveness. As there is a clear trade-ofieleet the length of an update interval and
learning efficiency, the update interval can be chosen inyatheat is suitable for the specific dictio-
nary developer: longer continuous sessions (requirirgtyi more corrections), or shorter sessions
with frequent breaks. As the dictionary size increases hadtule set approaches asymptotic accu-
racy, the number of words considered between synchromisatients increases automaticitlyFor
large dictionaries, the batch update process can becomidyaedant, rather than an hourly event,
as would be the case for relatively small dictionaries. Aldthe user interface requires little pro-
cessing capacity, the batch update may be scheduled to iocthe background during incremental
verification, transparent to the us&r

4.7 BOOTSTRAPPING ANALYSIS

In this section we summarise the characteristicBBC-grow, DEC-mirandDefault&Refineaccord-
ing to the four main requirements for bootstrapping, as mlesd in Section 4.2: predictive ability,
conversion accuracy, computational cost and robustneassite.

4.7.1 PREDICTIVE ABILITY

In Fig. 4.15 we compare the accuracy of the three algoritharssfall training sets, using
the FONILEX corpus. TheDefault&Refinealgorithm performs particularly well, achieving 90%

5For example, using an update interval of 50, approximatély taining words are considered per session when just
past the 4000-word mark. (See Fig. 4.12.)
%This approach was not implemented.
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phoneme accuracy prior to the 500 word-mafREC-grow requires an additional 800 words be-
fore the same level of accuracy is reached. Since the cimmeat incorrectly predicted phonemes is
the most labour-intensive aspect of bootstrapping proatioa dictionaries (as discussed in Section

6.3.2.4) this represents a significant improvement to tbeqss.
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Figure 4.15: Accuracy comparison during initial 5000 words of trainings measured using the
FONILEX corpus.

From a bootstrapping perspective, asymptotic accuracytisas important, unless very large
dictionaries are built. Asymptotic accuracies for diffgr&anguages are compared for the dictionaries
listed in Table 4.11. Per dictionary the number of words talt¢size and number of distinct words
(distinc) are indicated. Word accuracy is listed in Table 4.12 anchphwe accuracy in Table 4.13, as
analysed during 10-fold cross-validation of the dictioegr

Table 4.11Dictionaries used for accuracy analysis

Language Dictionary Size Distingt
Afrikaans Afrikaans B 7,782 7,782
English NETtalk 20,008 19,807
English OALD (no SA) 60,399 59,835
Flemish FONILEX 173,873 163,526

Table 4.12:Word accuracy of g-to-p algorithms for larger dictionarigsdifferent languages.

Dictionary DEC-grow DEC-min Default&Refine
+o10 +o10 +o10
Afrikaans B 79.08 0.44| 7990 0518482 0.29
NETtalk 4782 0.41| 4761 0.35|58.66 0.21
OALD (excl SA) | 77.62 0.17| 79.98 0.17| 86.41 0.15
FONILEX 88.60 0.07| 89.58 0.06| 92.03 0.06

4.7.2 CONVERSION ACCURACY

All the studied algorithms are memory-based and provideptera retrieval of training data: the
entire training dictionary can be reconstructed from trepgeme-to-phoneme rule set without any
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Table 4.13:Phoneme accuracy of g-to-p algorithms for larger dictiaearin different languages.

Dictionary DEC-grow DEC-min Default&Refine
+010 +o10 +o10
Afrikaans B 95.96 0.09| 95.98 0.14| 97.08 0.08
NETtalk 87.82 0.11| 87.20 0.08| 90.50 0.10
OALD (no SA) | 95.85 0.04| 96.08 0.04| 97.41 0.03
FONILEX 98.32 0.04| 9841 0.01| 98.78 0.01
loss of accuracy.
4.7.3 COMPUTATIONAL COST
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Figure 4.16:Time required for alignment and extraction of initial patis from different sized train-
ing dictionaries, measured using the FONILEX corpus.

The computational cost of the various algorithms resutimffour separate processes:

1. Grapheme-to-phoneme alignmeAligning words on a grapheme-to-phoneme basis. An iden-

tical grapheme-to-phoneme alignment process is used|fof tie algorithms. The computa-

tional cost of alignment is influenced by the number of tintesfull dictionary is processed

before the alignment probabilities stabilise. As this igi¢gplly a small number, alignment is

approximatelyO(n) wheren indicates the number of words in the training dictionary. the

probabilities stabilise more quickly when more trainindgedia available, alignment can exhibit

better than linear dependency in practice.
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2. Extracting initial patterns prior to rule set extractiorin the current implementation, the dic-
tionary is read once, all required patterns are extracteldsaparated according to grapheme.
Further rule extraction utilises the per-grapheme patsets as input. This process is again
O(n) for all the algorithms.

3. Rule extraction: Extracting a specific rule set from a grapheme-specific patet. For the
implementations oDEC-growandDefault&Refingrule extraction may require as many as

n(n—1)

n+(n—1+n-—2)..~ 5

4.7)

steps, which results i (n?) behaviour. This would be the case for a dictionary that is con
flicted to the extent that every single word gives rise to asse rule. However, in practise,
the number of steps required is closer to

n

kn+kn+..~
n—+kn -+ n -+ 11— %

(4.8)

where0 < k < 1 provides some indication of the pronunciation conflict toe specific lan-
guage (and dictionary) being considered. The more exaeptiothe dictionary, the highé,
and the higher the complexity of rule extraction. In pragtiwle extraction therefore displays
O(n) behaviour.

70

DEC-max ——
DEC-min —-—x--
60 | DEC-grow ---x--- B

50 t :
40 t T

30 | .

Time in seconds

20 t :

m'—f—’""‘*jj;/’ii""n'w T | | | | | |
0 000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of words in training dictionary

Figure 4.17:Time required to extract DEC-grow, DEC-max and DEC-min sui®m different sized
training dictionaries, measured using the FONILEX corpus.

4. Pronunciation prediction:Predicting the pronunciation of a single word based on astiexi
rule set. Pronunciation prediction is efficient for all tHgaxithms studied. For each type of
rule extraction, the ensuing rule set can be arranged infigieet tree structure. Pronunciation
prediction is ofO(d.l) wherel indicates the length of the word predicted, ahdgain repre-
sents the average depth of the various graphemic rule tndesh(is approximately equivalent
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to the average context size of the graphemic rule set, asildeddn Section 4.6.4). Our im-
plementation oDEC-maxand DEC-minexhibit worse than linear dependency, as depicted in

Fig. 4.17.
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Figure 4.18:Time required to extract Default&Refine rules for differehbnemes from different sized
training dictionaries, measured using the FONILEX corpus.

These trends are further illustrated in Fig. 4.16 4.18 aid.4Execution time for alignment,
pattern extraction and rule extraction is plotted for anirag dictionary as it increases in size. These
values were measured on a 1600 MHz Intel Pentium 4 personghw@r with 1 GB memory, using
the initial Perl prototype used during experimentation (System A). In caispa, equivalent algo-
rithms are much faster as implemented in System B, a morestelusion of the initial prototypgé,
as listed in Table 4.14.

These systems are described in more detail in Chapter GerBystvas developed iRerl by the author, and used during
algorithm development and experimentation; System B wasptemented inJava(without any algorithmic changes) by
members of the CSIR HLT Research Group. The second systemsgdgo build a medium-sized dictionary, as described
in Section 6.5.
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Table 4.14:A comparison of computation times in seconds for alignmadt Refault&Refine rule
extraction for two different implementations of the baagsping system.

Task System A| System B
Alignment: 10,000 words 185.32 8.15
Alignment: 50,000 words 793.23 49.08

Default&Refine: 10,000 words 272.40 26.13
Default&Refine: 50,000 words 1335.36 320.06

4.7.4 ROBUSTNESS TO NOISE

In order to analyse the effect of errors on predictive aayyreve conduct a number of simulation
experiments, usind\frikaans A one of a set of Afrikaans bootstrapped dictionaries, asriesi
in Section 4.3. Based on earlier experience with dictiordgyelopers who are more error prone
(see Section 6.3.2.2), we atrtificially corrupt a fractionttidse transcriptions and then measure the
predictive accuracy dbefault&Refineon the corrupted databases.

We introduce two types of corruptions into the transcripgio

e Systematic corruption®flect the fact that users are prone to making certain trgntien errors
- for example, in the ARPAbet phone saly is often used whereyis intended. We allow a
number of such substitutions, to reflect observed confesignAfrikaans transcribers.

e Random corruptionsimulate the less systematic errors that also occur inipegaéh our sim-
ulations, random insertions, substitutions and deletamhonemes are introduced.

We generate four corrupted data sets (systematic submtisuand random insertions, substitu-
tions and deletions), where 1%, 2%, 5% and 10% of the wordsaaddmly selected for corruption.
We generatdDefault&Refineand DEC-grow rule sets with 90% of the words of each (corrupted)
dictionary and measure the accuracy of the rules againsethaining 10% (using the original un-
corrupted dictionary), and perform 10-fold cross-valiolat

The effect of the simulated errors on predictive accuraajejsicted below. In Figure 4.19 the
average word accuracy and phoneme accuracy are plottetsatg# percentage of corrupted words
for DEC-grow and Default&Refine Note that the most significant effect is due to insertiorss, a
unnecessary insertions cause superfluous graphemic whiish introduce alignment errors. This
effect is visible for bothDEC-grow and Default&Refing as both rely on accurate pre-alignments.
Figure 4.20 provides a more detailed analysis: the changedrage word accuracy and phoneme
accuracy is plotted in the same way as above. Here it can Ilmetlaedeletions and substitutions
affect the predictive accuracy to a similar extent, whetaedom or systematic. This behaviour is
quite different to the behaviour observed later (see Sedid), when the position of rules in the
extracted rule set is used to predict errors in the trainiata.d As no rules are discarded during
standardDefault&Refine rule set position does not affect predictive accuracy.hBate extraction
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techniques perform well in the presence of low levels of moigith Default&Refingoroviding a slight
advantage oveDEC-grow

80 80
g 75 ' g 78
E 70 70 J
S 65 E 65

80 60

50 50

0 2 4 6 8 10 12

accuracy (abs)

Phoneme accuracy (abs)

0 2 4 6 8 10 12
Default&Refine DEC-grow

Figure 4.19:Effect of noise on average phoneme and word accuracy whescerg rules from a

corrupted version of the Afrikaans A database. Databasesarrupted with random insertions(ri),
random deletions (rd), random substitutions (rs) and sysiiic substitutions (cx).
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Figure 4.20: Effect of noise on change in average phoneme and word accwhen extracting
rules from a corrupted version of the Afrikaans A databasatabases are corrupted with random
insertions(ri), random deletions (rd), random substitas (rs) and systematic substitutions (cx).

4.8 CONCLUSION

In this chapter we analysed the grapheme-to-phoneme omersk through a set of experiments
based on variations of Dynamically Expanding Context (DB& proposed an enhancement to the
standard approach for grapheme-to-phoneme alignment efiied a new grapheme-to-phoneme
conversion algorithmOefault & Refing. This algorithm utilises the concept of a default phoneme
to extract a cascade of increasingly more specialised,rale$ has a number of attractive proper-
ties including language independence, rapid learningd g@gmptotic accuracy, robustness to noise,
and the production of compact rule sets. In subsequent efsapte utilise botiDEC-minandDe-
fault&Refineas grapheme-to-phoneme conversion mechanism duringtiaggsg.

Table 4.6 and Figures 4.9 and 4.10 depict an interestingl:tr@hthe rule sets that fully describe
the training data become smaller and smaller, the genatialisaccuracy of the rule set increases.
This raises an interesting theoretical question: Whatessthallest possible rule set within a rewrite
rule based framework that can fully reconstruct a given gbning data with 1004 accuracy? In
the next chapter (Chapter 5) we explore this question furthe
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