
CHAPTER THREE

BOOTSTRAPPING MODEL

3.1 INTRODUCTION

In this chapter we sketch a basic framework for the analysis of the bootstrapping process. We de-

scribe the bootstrapping model in Section 3.2, and discuss the factors to consider when evaluating the

efficiency of the bootstrapping process in Section 3.3. In Section 3.4 we show how this model applies

to the pronunciation modelling task in particular.

3.2 MODEL DESCRIPTION

As introduced in Section 2.3, we use the term ‘bootstrapping’ to describean iterative process whereby

a model is improved via a controlled series of increments, ateach stage utilising the previous model

to generate the next one. During bootstrapping the model is grown systematically, becoming increas-

ingly accurate from one increment to the next. When analysing the bootstrapping process, it soon

becomes apparent that the process relies on an automated or semi-automated mechanism to convert

among various representations of the model considered. Each representation describes the same task

in a format that provides a specific benefit: either because the representation is amenable to auto-

mated modelling and analysis, or because it describes the current model in a way that is convenient

for a human to verify and improve. The remainder of this section contains a definition of the various

components of a bootstrapping system, a description of the bootstrapping process, and examples of

bootstrapping applications.
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3.2.1 COMPONENTS

The general bootstrapping concept utilising two model representations is depicted in Figure 3.1. The

number of representations is limited to two for the sake of simplicity – three or more representations

can also be included in the model.

Figure 3.1:General bootstrapping concept, utilising two model representations.

The following components play a role during bootstrapping:

• Alternative representations:Two or more representations of the same model lie at the heartof

the bootstrapping process. In the Fig. 3.1 these are indicated asA andB.

• Conversion mechanisms:Each conversion mechanism (indicated asA → B andB → A)

provides an automated or semi-automated means to convert data from one representation to

another.

• Verification mechanisms:Once converted to a specific representation, the model can beim-

proved via automated or human (manual) verification, indicated in the figure by theVerify

components.

• Base data:This term is used to refer to the domain of the model. Thecurrent baseindicates

the domain that has been used in training the current model, and consists of a subset of, or the
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full base data set. The current base data is implicitly or explicitly included in each of the two

representations.

• Increment mechanisms:The Add components are used to increase the current base during

bootstrapping. At the one extreme, all model instances can be included in a single increment;

at the other, a single instance can be added per bootstrapping cycle. The increment mechanisms

may utilise active learning techniques [69,70] in order to select an appropriate set of instances

to add.

• External data: This term refers to additional data sources that are utilised during bootstrap-

ping. Typically, external data is used to initialise a bootstrapping system with models that were

developed on a related task.

3.2.2 PROCESS

Prior to bootstrapping, the various representations are initialised in preparation for the first iteration.

Typically only a single representation requires initialisation (A in this instance). External data may

be included in this process, or the bootstrapping process starts without any initial knowledge of the

task not included in the base data. The increment mechanism chooses the first base set to use. Once

initialised, the bootstrapping process consists of the following steps, many of which are optional, as

indicated:

1. The current base, as well as the current representationA is used to generate the next represen-

tationB.

2. B is verified, either manually or automatically. (Optional)

3. Based on the current state of the bootstrapping system, the increment mechanism increases the

current base set. (Optional if (6) is not)

4. The current base, as well as the current representationB is used to generate representationA.

5. A is verified, either manually or automatically. (Optional)

6. Based on the current state of the bootstrapping system, the increment mechanism increases the

current base set. (Optional if (3) is not)

This cycle is repeated until a sufficiently accurate and/or comprehensive model is obtained.

3.2.3 EXAMPLES

Two typical examples of bootstrapping are illustrated in Figures 3.2 and 3.3. The first example (Fig.

3.2) illustrates the automated bootstrapping scenario described in Section 1.2. For this task, the

base data consists of audio data and phonemic transcriptions (initially not aligned with the audio
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Figure 3.2:An example of automated bootstrapping.

data).A represents the phonemic segmentation of the audio data, andB the acoustic models derived

from the segmentations. The focus is on the refinement of the acoustic models: the segmentations

themselves are only important to the extent that they influence the quality of the acoustic models. The

A → B mechanism consists of the training, re-clustering, and re-training of acoustic models, and

theB → A mechanism of automatic Viterbi alignment of the phonemic transcriptions, utilising the

current acoustic models.

The second example (Fig. 3.3) illustrates a simple bootstrapping scenario where machine learning

and human intervention are combined, as would be the case, for example, when bootstrapping audio

segmentations for Text-to-Speech purposes. The base data again consists of audio data and phonemic

transcriptions;A represents the human-readable segmentation of the audio data, andB the acoustic

models derived from the segmentations. TheA → B mechanism consists of acoustic model training,

and theB → A mechanism of automatic alignment. Here the focus is on achieving optimal segmen-

tations and these are hand-verified until the acoustic models are stable enough to support accurate

alignments (and possibly even after that, if high quality segmentations are required).

3.3 EFFICIENCY OF BOOTSTRAPPING PROCESS

The main aim of a bootstrapping system is to obtain as accurate a model as possible from available

data. When human intervention is used to supplement or create the training data itself, the aim shifts

towardsminimising the amount of human effort required during the process. This is the focus of our
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Figure 3.3:An example of bootstrapping where machine learning and human intervention are com-
bined.

analysis, and we therefore measure bootstrapping efficiency as a function of model accuracy:

efficiency(a) =
tbootstrap(a)

tmanual(a)
(3.1)

where a is the accuracy of the current model as measured against an independent test set and

tbootstrap(a) andtmanual(a) specify the time (measured according to amount of human intervention)

required to develop a model of accuracya with and without bootstrapping respectively.

Bootstrapping is analysed according to bootstrapping cycles. While bootstrapping, all base in-

stances do not result in valid data that can be included in themodel training process. Of the instances

that define valid base data, some will be correctly represented by the initial representation (B), and

others will contain errors. We define a number of variables toassist us in the analysis of these in-

stances: At the start of cyclex of the bootstrapping process, we definen(x) as the number of instances

included in the current base,ninvalid(x) as the number of instances that are invalid,ncorrect(x) as the

number of instances that are valid and correct, andnerror(x) as the number of instances that are valid

and incorrect. For these variables, the following will always hold:

n(x) = ninvalid(x) + nvalid(x)

nvalid(x) = ncorrect(x) + nerror(x) (3.2)
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Related incremental variables are used to represent the increase during cyclex, namelyinc n(x),

inc ninvalid(x), inc nvalid(x), inc ncorrect(x) andinc nerror(x). The same intervention mechanism

may have different cost implications based on thestatus of the instance. In the simplest case, the

status of an instance may simply be correct, incorrect or invalid, but subtler differences are possible,

e.g. the number of changes required to move from an incorrectto a correct version. The expected

status of a newly predicted instance changes as the system becomes more accurate. Prior to human

intervention at stagex of the bootstrapping process, the number of instances of each status within the

current increment is given by:

inc n(x) =
∑

s∈status

inc n(s, x) (3.3)

Combining machine learning and human intervention in a way that minimises the amount of

human effort required during the process can be achieved in two ways: (a) by minimising the effort

required by the human verifier to identify errors accurately, and (b) by optimising the speed and

accuracy with which the system learns from the human input. This section describes the various

factors that influence the efficiency of the bootstrapping process from both these perspectives.

3.3.1 HUMAN FACTORS

The first human factor that impacts on the efficiency of the bootstrapping process relates torequired

user expertise:whether the task requires expert skills, or whether a limited amount of task-directed

training is sufficient. If is assumed that the user has the skills required, the following measurements

provide an indication of the efficiency of the bootstrappingprocess for a specific user:

• User learning curve:The time it takes for a specific user to become fully proficientusing the

bootstrapping system. Measured asttrain, initial training data is assumed to be discarded.

• Cost of intervention:The average amount of user time required per interventioni when an

instance is in statuss, for a fully trained user using the bootstrapping system. Measured as

tverify(i, s) a different average cost may be associated with different types of interventions.

If more than one intervention is used to generate a single instance during one cycle of boot-

strapping, the combination of mechanisms is modelled as an additional (single) mechanism.

Depending on the bootstrapping process, it may be more realistic to measure this value for a

set of instances.

• Task difficulty:The average number of errors for a fully trained user using the bootstrapping

system. Indicated byerror ratebootstrap(i, s), this is measured in percentage as the average

number of errors per 100 instances generated using intervention mechanismi to verify an in-

stance initially in states.
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• Quality and cost of user verification mechanisms:Implicit in the above two measurements

are the cost and effect on error-rate of additional assistance provided during user intervention.

Rather than modelling additional user assistance providedduring existing interventions sepa-

rately, the combined intervention is again modelled as an additional type of intervention. In the

same way, automated verification mechanisms are modelled asadditional interventions.

• Difficulty of manual task:The average number of errors for a fully trained user developing

instances manually. Indicated byerror ratemanual, this is measured in percentage as the

average number of errors per 100 manual instances developed, where each manual instance

can be associated with an individual base data instance in the bootstrapped system.

• Manual development speed:The average amount of time per instance development for a fully

trained user performing this task manually, measured astdevelop; this value can also be analysed

separately per types of instance development astdevelop(s), if so required.

• Initial set-up cost:The time it takes for a user to prepare the initial system for manual devel-

opment or bootstrapping; measured in time astsetup manual andtsetup bootstrap respectively.

3.3.2 MACHINE LEARNING FACTORS

The faster a system learns between verification cycles, the fewer corrections are required from a

human verifier, and the more efficient the bootstrapping process becomes. From a machine learning

perspective, learning speed and accuracy are directly influenced by:

• Predictive accuracy of current base:modelled as the expected number of instances of each

status at a specific cycle of the bootstrapping process, and indicated byE(inc n(s, x)). Implicit

to this measurement are four factors:

– Accuracy of representations:The ability of the chosen representations to model the spe-

cific task.

– Set sampling ability:The ability to identify the the next ‘best’ instance or instances to add

to the knowledge base, possibly utilising active learning techniques.

– System continuity:The speed at which the system updates its knowledge base. This

has a significant effect on system responsiveness, especially during the initial stages of

bootstrapping.

– Robustness to human error:The stability of the conversion mechanisms and chosen rep-

resentations in the presence of noise introduced by human error.

• On-line conversion speed:Any additional time costs introduced when computation is per-

formed while a human verifier is required to be present (but idle while waiting for the com-

putation to complete); measured as an average per number of valid instances developed and

indicated bytidle(n).
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• Quality and cost of verification mechanisms:The average amount of time required to utilise

additional assistance mechanismj – from a computational perspective – when an instance is in

statuss, measured astauto(j, s).

• Validity of base data:Using invalid data slows the bootstrapping process, especially if human

intervention is required to verify the validity of base data; measured in % of base data, this is

indicated byvalid ratio.

Two additional factors that are not included explicitly in the general model, but can be included

based on the requirements of the specific bootstrapping task, are:

• Conversion accuracy:The ability of the conversion to model convert between representations

without loss of accuracy.

• Effect of incorporating additional data sources:The ability of the system to boost accuracy by

incorporating external data sources at appropriate times.

3.3.3 SYSTEM ANALYSIS

The combined effect of the machine learning factors and human factors provide an indication of the

expected cost of using the bootstrapping system. The time todevelop a bootstrapping model viaN

cycles of bootstrapping, utilising a set of interventionsI, is given by:

tbootstrap(N, I) = tsetup bootstrap + ttrain + titerate(N, I)

= tsetup bootstrap + ttrain

+

N−1
∑

x=1

(

∑

i∈I

∑

s∈status

(tverify(s, i) + tauto(s, i)) ∗ inc n(s, x)

+tidle ∗ inc nvalid(x + 1)

)

(3.4)

wheretiterate(N, I) combines the cost of the various iterations, excluding the cost associated with

system setup and user training. The expected value ofinc n(s, x) depends on the specific conversion

mechanism, and is influenced byvalid ratio anderror ratebootstrap(i, s).

This cost of bootstrapping can be compared to the expected cost of developingnmanual instances

via a manual process:

tmanual = tsetup manual + tdevelop ∗ nmanual (3.5)

If nbootstrap andnmanual are chosen such that

E[inc n(correct, nbootstrap)] = E[inc n(correct, nmanual)] (3.6)
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where the number of valid instances generated during bootstrapping is given by:

nbootstrap =

N−1
∑

x=1

inc n(valid, x) (3.7)

the accuracy of each of the two systems is approximately equivalent, and the values of eq. 3.4 and 3.5

can be combined according to eq. 3.1 in order to obtain a measure of the expected efficiency of the

bootstrapping process. We use this measure to analyse a specific bootstrapping system in Chapter 6.

3.4 BOOTSTRAPPING PRONUNCIATION MODELS

The scenario depicted in Fig. 3.3 can be applied to the bootstrapping of pronunciation models. In

this case, the base data consists of a word list;A represents an explicit pronunciation dictionary,

each instance consisting of a word and pronunciation pair; and B represents a set of grapheme-to-

phoneme rules. TheA → B mechanism represents grapheme-to-phoneme rule extraction, and the

B → A mechanism grapheme-to-phoneme conversion. Additional verification assistance that can be

provided include automated error detection, and audio support during verification.

3.4.1 ALGORITHMIC REQUIREMENTS

An appropriate grapheme-to-phoneme rule extraction and conversion mechanism lies at the heart of

the bootstrapping process. From the discussion in 3.3.2 it follows that the following are the most

important requirements for a grapheme-to-phoneme formalism to be used in bootstrapping:

1. It should have high predictive ability, even for very small training set sizes.

2. It should be able to represent the word/pronunciation data exactly (in order to prevent conver-

sion loss when switching between representations).

3. It should allow continuous model updating at a low computational cost.

4. Pronunciation prediction should be fast.

5. It should be robust to noise in the training data.

3.5 CONCLUSION

In this chapter we defined a framework and terminology for theanalysis of a bootstrapping system.

We showed how this model applies to the bootstrapping of pronunciation models and defined the

requirements for a grapheme-to-phoneme conversion mechanism suitable for bootstrapping. These

requirements are taken into account in the next chapter (Chapter 4) in the search for such a mecha-

nism. The bootstrapping topic itself is revisited in Chapter 6.
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