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Abstract 
 
This thesis presents work done on the development of a multi-agent system 

architecture that facilitates coordination and a novel social networks based approach 

to coordination. The field of multi-agent system research is undergoing tremendous 

expansion and it would be impossible to address all the issues related to the field. 

Instead, this thesis focuses on the coordination aspect of multi-agent systems.  

 

The architecture presented here is named the INtelligent Distributed Agent Based 

Architecture, INDABA1. INDABA, as a hybrid agent architecture, combines the sub-

symbolic knowledge representation layered architecture with a symbolic layer that 

allows for deliberative reasoning and learning. INDABA also introduces a layer that 

facilitates coordination in a society of agents, namely the interaction layer.  

 

The new approach to coordination was inspired by social networks, as observed in 

higher mammalian societies. Two social relationships were explored, namely kinship 

and trust. Coordination is achieved through team selection. Using characteristics of 

social networks, such as learning and the ability to deal with uncertainties, the best 

team is selected for task execution.  

 

The experiments conducted for the purpose of this thesis were done on three levels. 

Firstly, an abstract simulated environment was created where a society of a large 

number of agents could be observed. Secondly, experiments were done in a more 

realistic simulated robot environment. The last set of experiments was done in a real-

world environment, with the implementation of INDABA in embodied mobile agents 

(robots). The experiments have confirmed the applicability of INDABA as an agent 

architecture, as well as the validity of the social networks coordination approach.   
 

Thesis supervisor: Prof. A. P. Engelbrecht 

Department of Computer Science 

Degree: Philosophiae Doctor 

                                                 
1 INDABA has also another meaning: in the Zulu language, it represents the process of cooperation, negotiation and collective 
problem solving. 
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Chapter 1: Introduction 
 
Until recently, robots have been seen as a novelty. Today, the variety of robotic 

applications is growing at a tremendous rate and the trend will carry on in future as 

the progress in technology opens new possibilities in applications. A single-robot 

system is not an optimal solution for all applications. The growing range of existing 

and envisaged tasks that benefit from applications of multi-robot teams are, for 

example, search and rescue tasks, mapping of hazardous/hostile environments and 

space exploration/colonisation. However, the issue of coordination of multi-robot 

teams is not adequately resolved. To compound the problem, many robot 

architectures do not easily facilitate the implementation of coordination mechanisms. 

This thesis is aimed at contributing towards more efficient multi-robot teams, through 

development of a multi-robot architecture that facilitates coordination, as well as by 

proposing a new coordination mechanism.  

 
1.1 Motivation 

 

In the ‘80s and early ‘90s, robotic research focused on finding optimal robot 

architectures, often resulting in non-cognitive, insect-like entities. In recent years, 

processing power has improved and that, together with improvements in technology, 

has allowed for more complex robot architectures. Focus has thus shifted from 

single-robot to multi-robot teams. The key to the full utilisation of multi-robot teams 

lies in coordination. Unfortunately, many agent architectures are not designed with 

coordination in mind.  

 

Although there are coordination mechanisms applicable to multi-robot teams, not 

one of them views a multi-robot team as a society. If a multi-robot team can be seen 

as a society, then some of the traditional society-based concepts (such as social 

networks) can be utilised for coordination.  

  

Social networks are particularly attractive for application in multi-robot teams due to 

their emergent and self-organising nature. The new, social networks based approach 
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to coordination is envisaged for application to multi-robot teams; it is not robot-

specific, and can be applied to any Multi-Agent System (MAS) without major 

modification.  

 

1.2 The Objectives 
 

There are two primary objectives of this thesis, both aimed at facilitation of 

coordination in multi-robot (and more general, MAS) systems: 

 

•  The development of a new agent architecture framework that facilitates 

implementation of coordination mechanisms. The emphasis is on robotic 

application and the architecture must utilise the best features of various robot 

architectures.  

 

•  The development of a new coordination mechanism that is applicable to multi-

robot teams and MASs that operate in environments with a high degree of 

uncertainty. 

  

Besides these two primary objectives, additional objectives of this thesis can be 

summarised as: 

 

•  The development of a simulated robotic environment, where experiments with 

various coordination mechanisms can be conducted. 

 

•  The full implementation of the proposed agent architecture framework in a 

physical environment, using a cheap, commercially available robotic platform. 

 

 

1.3 The Main Contributions 
 

The research effort that resulted in this thesis has achieved all objectives as stated in 

the previous section. The summary of the main contributions of this thesis can be 

stated as:  
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•  A new flexible architecture framework for embedded agents was developed. 

The new framework, INDABA, can be seen as an extension of the currently 

predominant three-layer hybrid robot architectures with an additional layer 

that facilitates coordination. INDABA was successfully implemented in 

simulated and in real-world physical environments. 

 

•  A new coordination mechanism, through task allocation, was developed based 

on social networks. The agents in a MAS are treated as members of a society 

and social networks were used to determine agents’ affinity to a particular type 

of task.  

 

•  A novel new way of implementing a complex agent architecture, such as 

INDABA, using a readily available, reasonably cheap, robotic platform. The 

novelty is that the architecture was easily split (due to its layered approach) 

into a component that resides in a PC and a component that resides in a 

physical robot. By doing this, the new architecture combined the processing 

power of a PC with a physical, real-world embedded robot. 

 

1.4 Thesis Outline 
 

This thesis is organised as follows. Chapter 2 provides a general background to 

agents, MASs and the origins of the agent paradigm. In addition, related issues such 

as interaction, coordination and cooperation between the agents in a MAS are also 

overviewed in chapter 2. 

 

Chapter 3 focuses on robotics and three main agent architecture models, namely 

symbolic reasoning, reactive and hybrid agent architectures are overviewed. Each 

agent architecture model is firstly considered in a generalised manner, followed by a 

more detailed discussion of a particular, representative, agent architecture. The 

representative agent architectures are implemented in real-world robots.  

 

The overview of agent architectures, given in chapter 3, is extended to multi-robot 

systems in chapter 4. The overview of multi-robot systems follows the format used in 

chapter 3. Two multi-robot architecture models are considered in generalised terms, 
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followed by a more detailed discussion of a particular implementation in a multi-robot 

team.  

 

Chapter 5 introduces a new architecture, INDABA, that is designed for applications in 

multi-robot systems. Although designed with robotic applications in mind, INDABA 

is still general enough to be easily applied to any MAS. INDABA extends the 

currently predominant three-layer robot architectures by adding an additional layer 

that facilitates coordination.  

 

Chapter 6 shifts focus from agent architectures towards coordination mechanisms that 

are used in MASs and multi-robot teams. The chapter starts with a brief overview of 

existing coordination mechanisms, followed by an introduction to the concept of 

social networks. Social networks are then applied as a coordination mechanism in a 

new coordination approach, which forms the main contribution of this thesis. The new 

social networks based approach is then applied to multi-robot teams. 

 

The applicability of the new social networks approach is investigated in an abstract 

simulated environment in chapter 7. The agents in the abstract simulated environment 

were built around the INDABA framework. The results have confirmed the soundness 

of the social networks approach to coordination of abstract multi-robot teams. 

 

The next step in confirming the social networks approach was to implement a more 

realistic multi-robot simulator environment. The results of experiments, together with 

the description of implementation of such multi-robot simulator environment are 

presented in chapter 8. Again, all simulated robots are built around the INDABA 

framework.  

 

The final proof of soundness of any robotic architecture (or any of its components) is 

in its application in a real physical environment. This is achieved using the INDABA 

framework. The results of implementation of INDABA to a real robotic platform are 

presented in chapter 9. Furthermore, a social networks approach was applied to a 

scout selection process, and the results are described in the same chapter. Based on 

the results from application of the social networks approach to simulated 

environments (chapters 7 and 8), the assumption was made that the social networks 
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approach will perform well in a real, physical environment. The social networks 

approach is applied to a scout selection process in chapter 9. The results show that the 

social networks approach performs well in a real, physical environment.  

 

Chapter 10 summarises this thesis and presents some directions for future research.  
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Chapter 2: Background 
 

This chapter presents background on the agent paradigm and necessary definitions of 

what an agent and a Multi-Agent System (MAS) are. The chapter also presents an 

overview of the various origins of the agent paradigm. Current research is then 

described and a comparison is made between current approaches. An introduction 

and rationale for an agent system is given in section 2.1. Section 2.2 provides 

necessary definitions of an agent system as well as various classification methods for 

an agent. Section 2.3 extends agent systems into multi-agent systems and proposes a 

MAS classification method. Section 2.4 discusses problems related to MASs. Origins 

of agents and MASs, together with an overview of current research are given in 

section 2.5. Section 2.6 concludes this chapter with a summary. 

 

2.1 Introduction 
 

The research field of cooperating, embedded, heterogeneous multi-agent systems is 

becoming more mainstream than ever before. Many new MAS applications are 

simulated [173] and built [36]. This is hardly surprising, considering that the 

evolution of the paradigm for the development of computer systems has always lead 

to more independent, loosely-coupled modules. Initially, software development has 

relied on machine dependent, low-abstraction level, assembler programming. 

Procedural programming, as exemplified by 3rd generation programming languages 

(e.g. Pascal, C, etc.), was a major improvement on assembler-type programming 

languages. The onset of the object-oriented programming paradigm (e.g. C++, Java, 

etc.) heralded another qualitative shift towards more independent, reusable 

components. Today, mainstream information technology has fully embraced even 

more independent modules that interact through mechanisms such as CORBA, 

DCOM etc. Many researchers view agents as an extension of Component Based 

Software Engineering CBSE [151][81]. The evolution of CBSE can be illustrated as 

in figure 2.1. 
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Figure 1. Evolution of Component Based Software Engineering 

 

The current paradigm shift is towards independently interacting components that will 

have the property of self-organisation in order to solve a problem that is defined in 

general terms only.  Those components are agents. Indeed, the probability is that most 

new IT development and products will, in one form or another, contain embedded 

agents [83]. The generalisation of agent systems resulted in the appearance of Multi-

Agent Systems (MAS). MASs offer all the advantages of parallel distributed systems. 

The parallelism of MASs allowed application of the agent paradigm to an even 

greater set of problems that exceeded the capabilities of a single agent. 

 

 As the complexity of problems to be solved grew, so did the complexity of the 

paradigms that offer a solution to these complex problems. By introducing parallel 

distributed systems, the need for coordination between agents became obvious. The 

fact is that more and more complex Artificial Intelligence (AI) techniques are applied 

in the implementation of agents and MASs. AI techniques, as a general rule, are 

heuristics. It would be close to impossible to try to test a MAS using a white box 

approach. In other words, traditional tests and models are becoming rapidly obsolete 

as more AI based MASs are being developed and deployed. However, there is a need 

for some kind of model that will allow the computer scientist to design and test more 

complex systems. This has resulted in the recent, radically different approach to the 
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development of such models. As the systems are growing more complex, (nearly) 

approaching the complexity and diversity of simpler biological systems, a possible 

solution to the problem of moving towards the next paradigm is an AI-based MAS 

model using biological, social and organisational models. The idea is not exactly new 

[70][117], but recently it received momentum from the fact that some well-known 

researchers are proposing new MAS models based on social and behavioural models 

[141][53].  

 

2.2 Agents: Definitions and Classifications 

2.2.1 Introduction 

 

Agent systems are rapidly becoming mainstream in the IT industry. The introduction 

to this chapter (see section 2.1) presented a reasoning for agent systems that mainly 

considered software engineering issues such as complexity hiding and the efficiency 

of parallel distributed systems. That is not the only reason for the increasing 

popularity of agent systems. The increase in complexity of tasks that are performed is 

not only imposed on the software systems developer. The complexity of tasks is 

affecting the end-users to an even greater degree, due to the fact that the user often 

has to perform a complicated set-up, and use complex operations in order to solve a 

problem. Considering the fact that computers are no longer viewed as tools for 

specialists only, the drive is to make efficient use of computers, even by 

inexperienced users.  

 

One way of achieving this is to have intelligent helpers (agents) that help users to 

achieve a desired outcome. It is debatable if these intelligent helpers are agents in the 

true sense of agency (as proposed in section 2.2.3), as they have limits imposed on 

their autonomy, and collaboration between intelligent helpers and other agents 

systems (excluding users) is often limited. Nevertheless, proliferation of such agents 

is rapid. Some examples of such agent systems are Microsoft Office Assistant, 

Information Filtering Systems [200], intelligent web search engines [190][192] etc. 
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2.2.2 Agent Definitions 

As is very common in the field of Artificial Intelligence, there is no standard 

definition of an agent. Instead, it seems that almost every major research and survey 

yields yet another definition. For the sake of completeness, some of the definitions are 

presented below. 

 

An agent is: 

  

“a computer system, situated in some environment, that is capable of flexible 

autonomous action in order to meet its design objectives” [197]. 

 

Others define an agent as: 

 

•  “a system that independently handles parts of the problem based on small 

independent knowledge bases” [82]. 

 

•  “an autonomous entity that interacts with the environment, and adapts its state 

and behaviour based on interaction” [139]. 

 

•  “an agent is a computational entity which: 

•  acts on behalf of other entities in an autonomous fashion 

•  performs its actions with some level of proactivity and/or reactiveness, and 

•  exhibits some level of the key attributes of learning, cooperation and 

mobility” [80]. 

 

This thesis does not propose a new definition of an agent. Instead, an effort is made to 

extract the common characteristics of an agent from various agent definitions, as 

given in the next section. 

2.2.3 Characteristics of Agents 

 
As noted in the previous section, there is no common definition of an agent. However, 

it seems that most researchers agree on certain characteristics of agency. For the 
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purpose of this thesis, a computational entity is considered an agent if it possesses the 

following characteristics: 

 

•  Autonomy: An agent has its own beliefs, plans and intentions and it can accept or 

refuse a request. 

•  Interaction: An agent interacts with its environment. The agent can change the 

environment via its actions and the environment can change the agent’s actions. 

•  Collaboration: An agent must be able to collaborate with other agents in order to 

achieve a common goal. 

•  Learning: An agent must have the ability to learn, based on previous experience 

from its interaction with the environment. 

 

It is important to note that some of the quintessential agents and agent architectures do 

not fully have all of the proposed characteristics. Most notably, agents in the 

subsumption architecture [31] do not have full collaboration and learning 

characteristics, while agents in behaviour based architectures [113] do not 

“consciously” collaborate.  The proposed set of characteristics can be seen as the 

result of evolution of the desired characteristics for an agent and represents the current 

mainstream approach to agency. 

 

The prospects of having a standard definition of an agent are as good as having a 

standard definition of an intelligent system.  

 

The next section presents some of the ideas that have contributed to the creation of an 

agent-oriented systems paradigm. 

 

2.2.4 Agent Classification Schemes 

 

Classification schemes for agents are relatively unexplored. Some classification 

schemes are implicitly given in various agent surveys [88][80] and some explicitly 

[138]. This thesis presents classifications based on agent reasoning model, agent key 

attributes [138] and agent paradigm origin. The following sections discuss each of 

these classification models. 
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2.2.4.1 Reasoning Model Classification 

 

Classification based on an agent’s reasoning method is not new. Despite the fact that 

classification based on reasoning method is not new, there is still no consensus on the 

exact naming of the two main paradigms that form the basis of this classification. The 

two main paradigms that form reasoning method classification are symbolic and sub-

symbolic paradigms. Symbolic and sub-symbolic paradigms are respectively referred 

to as traditional and connectionist, or deliberative and reactive paradigms. These are 

all different names for the fundamental division between two different approaches in 

the field of AI.  

 

According to reasoning method, agents can be classified into the following three 

distinctive groups: 

 

•  Symbolic Reasoning Agents, which utilise a traditional AI approach based on 

logic calculus. Traditional AI approaches are exemplified in the majority of expert 

systems. The main characteristic of a symbolic reasoning agent is that it relies on 

symbolic representation of the real-world. Symbolic reasoning agents usually have 

the following components [88]: 

 

o  A symbolic model of the world, usually represented in some form of rules 

such as first-order predicate logic.  

o A symbolic specification of the agent’s actions, usually represented as a 

rule with a condition for its triggering, which consists of an antecedent (a 

conjunction of Boolean conditions) and a consequent (or action).  

o A reasoning algorithm that plans the agent’s future actions. All reasoning-

related computations usually rely on inference rules, expressed in first-

order predicate calculus.  

 

A detailed description and critique of symbolic reasoning agents is presented in 

chapter 3 (section 3.2), together with some examples of such systems. 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRooddii



 

12 
 

 

•  Sub-symbolic Reasoning Agents, which do not maintain a world model, or if 

they do, a non-symbolic representation is used for a world model. Sub-symbolic 

agents are sometimes called reactive agents. The main objective of sub-symbolic 

reasoning agents is to minimise the amount of predetermined behaviour, and to 

create agents that exhibit intelligent behaviour based on the agent’s interaction 

with its environment. In other words, intelligent behaviour should emerge.  

 

The main characteristics of such agents are that they do not maintain a symbolic 

model of the world and usually do not communicate with other agents. The 

consequences are that a sub-symbolic agent’s reasoning is based on interaction 

with the local environment.  

 

Despite the well-documented shortcomings of sub-symbolic agents [84][95], some 

of the sub-symbolic agent implementations have achieved spectacular results, 

albeit in very specific domains [30]. A more detailed description of this 

architecture and its critique is presented in section 3.3. 

 

•  Hybrid Reasoning Agents, which combine the characteristics of symbolic and 

sub-symbolic agents. Shortcomings of both symbolic and sub-symbolic models 

have become apparent fairly early and they are discussed in greater details in 

chapter 3. Various hybrid models were proposed that try to exploit the best of both 

approaches, such as MACTA [11][10], InteRRaP [130][129] and Touring 

Machines [63]. Most hybrid architectures are layered architectures, where lower 

layers are simpler (reactive or behavioural) and upper layers are more complex, 

providing symbolic reasoning capabilities, as well as mechanisms for cooperation 

between various agents.  

 

This thesis assumes agent classification based on reasoning model. 

2.2.4.2 Agent Key Attribute Classification 

 

Nwana presents a typology based on the premise that agents can be classified along 

several ideal, primary attributes that the agent should exhibit [138]. The minimal set 

of identified attributes includes autonomy, learning and cooperation. If compared with 
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the desired characteristics of an agent, as presented in section 2.2.3, it is indicative 

that the characteristic of interaction with the environment is missing. The 

classification according to agent key attributes divides agents into seven distinctive 

groups: 

 

•  Collaborative (Cooperative) agents that are interested in cooperation with 

other agents. According to the agent’s characteristics adopted in this thesis, 

all agents should be collaborative. 

•  Interface agents are agents developed to facilitate user-machine 

interaction. 

•  Mobile agents are agents capable of moving through physical 

environments, for example, robots. 

•  Information/Internet agents are agents mainly used for retrieval and search 

of information on the Internet. 

•  Reactive agents are agents that do not maintain any internal environment 

representation, and simply react on stimuli received from the environment. 

•  Hybrid agents that combine reactive agents with deliberative thinking. 

•  Smart agents were not clearly defined by Nwana but implicitly they should 

be “super-agents” combining collaboration, deliberative thinking and 

learning capabilities. 

 

The shortcomings of the proposed classification are numerous but the classification is 

overviewed here for the purpose of completeness. The presented classification is a 

combination of divisions according to the agent’s tasks and the agent’s architecture 

and as such may lead to confusion as an agent can belong to more than one category 

(classified in one instance as what it does and in another instance as how it does it) 

according to this classification scheme.  

 

Furthermore, some major categories are missing. For example, if the classification 

includes reactive and hybrid agents, it should surely include the symbolic reasoning 

(or deliberative) agents. Another such category is that of self-interested agents, as not 

all agents are collaborative. Due to the above-mentioned shortcomings agent key 
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attribute classification is of limited value for the purpose of this thesis, and it is not 

used in this thesis. 

2.2.4.3 Paradigm Origin Classification 

 

There were many contributing origins to the field of agent systems and MASs. 

Various overviews [88][138][80] have investigated the origins of agent paradigms. 

This section overviews a classification scheme based on a combination of these 

overviews.  

 

Agents can be classified according to their original paradigm background into 

 

•  Artificial Intelligence (AI) agents, which is the main contributor to the field of 

agent systems [88]. Various sub-fields of AI have been incorporated into agent 

systems, such as artificial life, swarm intelligence, distributed artificial 

intelligence, traditional AI approaches and evolutionary computation. The AI 

contribution to current agent research is largely due to the scientific research done 

at academic institutions and various agents have their origins in AI research.  

 

•  Object Oriented Programming (OOP) agents – Many agent architectures are 

developed using the OOP paradigm [88][80]. It is not surprising that OOP is an 

origin of agent paradigm, considering that agents are the natural evolution of 

CBSE, as discussed in section 2.1. Frequently, objects are used as a starting point 

for an agent implementation because both agents and objects have shared 

characteristics, such as encapsulation and data hiding.  

 

•  Machine-Man Interface agents – Machine-man interface research is receiving 

strong impetus, based on industry and consumer demand. This is due to the 

continuous increase in complexity of tasks that today’s and future users will face. 

Complex tasks need to be automated and streamlined. Agents are often used to 

help and guide users  by being adaptive [80]. 
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Artif ical Intelligence Machine Man Interface Object Oriented
Programming

Current Agent Research

 
Figure 2. Origins of Agent Paradigm 

 
 

•  Robotics – Since the early age of civilisation, mankind was obsessed with creating 

tangible, real-world, intelligent, autonomous artefacts. Various explanations for 

such obsession can be given, but certainly some early inspirations, as described in 

literature, can be found in religion (e.g. the creation of golems, powered by the 

word of God [188]). Other reasons were economical (e.g. creation of the 

intelligent labourers as described in Karl Chapek’s novel “Rossum’s Universal 

Robots” [39]) and scientific (as in Mary Shelly’s “Frankenstein” [169]). Today, 

robotics, the science of creating such artefacts, has come a long way from their 

literary and religious origins. Robotics, as a scientific discipline, often assumes a 

holistic approach to agent technology. It combines some of the disciplines above, 

such as software engineering, AI, artificial life, electronics, mechanics and other 

not so obviously related disciplines, such as organisational science, sociology, 

biology, etc. The product of robotics is a robot – the ultimate agent.  

 

The origins of agent paradigm are illustrated in figure 2. 

 

2.3 Multi Agent Systems: Definitions and Classification 
 

2.3.1 Introduction 

 

A system that consists of multiple agents is called a Multi-Agent System (MAS). A 

MAS is a generalisation of an agent system where the main advantages of agents can 

be further exploited, namely an agent’s ability to execute both autonomously and in 
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parallel. A MAS is ideally suited for problems that can be either executed in parallel 

or that can employ multiple problem-solving methods. However, the advantage of a 

MAS approach to problem-solving and parallelism does come at a price: interaction 

problems between autonomous agents exists, including cooperation (working towards 

a common goal), negotiations (coming to an agreement) and coordination (avoiding 

harmful interactions between agents). Some definitions of MASs taken from literature 

are given in the next section. 

  

2.3.2 MAS Definitions  

 

There are various definitions of a MAS. For the purpose of this thesis only a few are 

presented. A MAS can be defined as a loosely-coupled network of problem-solvers 

that work together to solve problems that are beyond the individual capabilities or 

knowledge of each problem-solver [25]. 

 

Other authors keep the definition much simpler: a MAS can also be seen as a society 

of agents [204][80]. 

 

Wooldridge and Jennings propose a rather strict definition of a MAS that is based on 

MAS characteristics [88]: 

 

•  Each agent has incomplete information or capabilities for solving the 

problem, thus each agent has a limited viewpoint. 

•  There is no global system control. 

•  Data is decentralized. 

•  Computation is asynchronous. 

 

2.3.3 Characteristics of MAS 

 
This thesis proposes a slightly relaxed definition of MAS characteristics based on 

[88]: 
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•  Each agent in a MAS can have complete or incomplete information about 

the problem or capabilities to solve the problem. 

•  There is no global rigid control system. However, there can be a global 

coordinating system, such as a supervisor. 

•  A complete set of data can be partially or fully decentralised. 

•  Computations are executed in parallel. 

 

2.3.4 MAS Classification Schemes 

 

Various classification schemes of MASs are in existence [88][138][80][160]. In this 

section, a subset of the existing MAS classification schemes is presented. Some of the 

presented classification schemes are generalised versions of agent classification 

schemes, while others are based on properties applicable only to MASs such as 

communication models.  

 

2.3.4.1 Reasoning Model Classification 

 

As is the case with agent architectures, MASs can be classified according to the 

reasoning module employed by the MAS. Using such a classification scheme, MASs 

can be divided into three classes: symbolic MAS, subsumption MAS and hybrid 

MAS. These classes are presented in chronological order of appearance. 

 

Symbolic MAS 

 

Symbolic architectures were the earliest to emerge as MAS [138]. This is hardly 

surprising if it is taken into consideration that a significant contribution to the agent 

paradigm came from AI planning research, which was a very active research area 

during the 1970s and 1980s. Symbolic MASs are based on premises of the “physical-

symbol system hypothesis” [133]. Newell and Simon, defined a physical symbol 

system as a  
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“…physically realisable set of physical entities (symbols) that can be combined to 

form structures and which is capable of running processes that operate on those 

symbols according to symbolically coded sets of instructions” [133] . 

 

The physical-symbol hypothesis then stipulates that a physical symbol system is 

capable of general intelligent action. 

 

Wooldridge and Jennings define a symbolic architecture as 

 

“[an] architecture that contains an explicitly represented, symbolic model of the 

world, and in which decisions are made via logical (or at least pseudo-logical) 

reasoning, based on pattern matching and symbolic manipulations” [197]. 

 

Symbolic architectures, as any other architecture, have their advantages and 

disadvantages, which are discussed in the section 3.2.2. 

 

Typically, a symbolic MAS is based on a problem-solving method, such as STRIPS 

[65] that employs a symbolic, centralised model of the world. A symbolic MAS is 

based on the cognitive science sense-think-act cycle. The sense-think-act cycle 

assumes that an agent senses a change in the environment, deliberates about the 

change in the environment and decides on an optimal or nearly optimal course of 

action and, lastly, executes an action which may have an effect on its environment. In 

theory this sounds very good but there were problems when implemented in real-

world environments. In practice, problems such as slowness of deliberation and 

accurate real-world modelling were experienced. Systems such as STRIPS [65] and 

General Problem Solver (GPS) [134] have performed extremely well in virtual 

worlds, where the model of the world was static and accurately given.  

 

A more detailed discussion on the advantages and disadvantages of symbolic MAS is 

presented in section 4.3. 
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Sub-symbolic MAS 

 

Once the limitations of symbolic MASs became obvious and theoretically proven 

[88], more criticism followed and the most influential critique came from Brooks 

[28][35]. As a complete opposite to the symbolic approach, an approach where 

knowledge is subsumed was proposed in the seminal work by Brooks [31]. In this 

purely reactive approach, knowledge is subsumed in condition-action pairs. 

Intelligence is treated as a “side-effect” of an agent’s interaction with its environment.  

 

The subsumption architecture employs no symbolic knowledge at all, hence there is 

no model of the world. It assumes that intelligent behaviour emerges from interaction 

between more primitive behaviours represented, essentially, as action-reaction pairs.  

 

The subsumption architecture has been surprisingly successful, despite its apparent 

simplicity, but there are serious disadvantages of this architecture. An obvious 

problem is that, because of the lack of a world model, every agent decides on its 

actions based on information from its local environment. Therefore, there is no 

coordination as such, actions are only locally optimal, and overall behaviour is not 

easily understood.  

 

An additional problem is that there is no effective way for an agent to learn from 

experience, as there is no direct feedback loop from consequences to actions. Details 

on this architecture are presented in section 4.4. 

 

By the 1990s it was accepted that the subsumption architecture may be applicable to 

certain problem domains, such as modelling of insect behaviour [5], but it was not 

suited as a general architecture. An attempt to reconcile symbolic and sub-symbolic 

approaches resulted in the next class of MAS, i.e. the hybrid MAS.  

 

Hybrid MAS 

 

Hybrid MAS is a result of trying to use the best of both worlds, i.e. symbolic and 

subsumption MAS. Two main problems of the symbolic architecture, namely its 

slowness and the problem of accurate world modelling were related to its interaction 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRooddii



 

20 
 

 

with its environment. Most of the strengths of the symbolic approach come from its 

deliberative and planned approach to acting on stimuli from the environment. On the 

other hand, the main strength of the sub-symbolic architecture stems from its efficient 

interaction with its environment and the main weakness is the fact there is no 

efficient, goal-driven interaction between agents. A typical hybrid system uses both 

symbolic and subsumed knowledge and exploits the strengths of each approach. 

 

Typically, a hybrid MAS is a layered system, where different layers use different 

knowledge representations. The higher levels are based on symbolic knowledge 

reasoning, while lower levels are usually implemented using a sub-symbolic 

approach. A layered MAS exhibits symbolic planning and coordination, coupled with 

fast, efficient interaction with the environment. An example of a hybrid MAS is 

Multiple Automata for Complex Task Achievement (MACTA) [11][10] that utilises a 

symbolic planner as a symbolic component, while a sub-symbolic component is 

implemented using the Behavioural Synthesis Architecture (BSA) [106]. MACTA is 

presented in greater detail in section 4.5. 

 

2.3.4.2 Cooperation Level Classification 

 

With the appearance of MASs, the issue of avoiding negative interaction (or conflict) 

by means of negotiation and the issue of cooperation by means of coordination 

became very important. The potential for exhibiting negative interaction is due to the 

autonomy of agents, who may have their own beliefs, desires and intentions that are 

not necessarily shared between all agents. If agents’ intentions are conflicting, a 

conflict may arise between the agents in a MAS. Classification of MASs based on the 

level of cooperation was proposed in the late ‘80s  [24]. The cooperation based 

classification scheme has been adopted by other researchers [160][36]. According to 

level of cooperation between agents, MASs can be divided into: 

 

Cooperative Multi-Agent Systems 

 

Cooperative MASs, historically the first to appear, have their background in early 

Distributed Artificial Intelligence (DAI) [88]. In cooperative MASs, the emphasis is 
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not in optimising the performance of an individual agent, but that of the whole 

system.  This class of MAS roughly corresponds to a symbolic MAS, as symbolic 

MASs often employ symbolic representation and cooperation enabling techniques that 

rely on symbolic representation of the world model. The consequence is that a global 

world model must be maintained.  

 

The main focus of research in cooperative MASs is that of coordination between the 

agents [80]. 

 

Self-Interested Multi-Agent Systems 

 

The emphasis of self-interested MASs is on improving performance of a single agent, 

hoping that improvement in the performance of an individual will lead to 

improvement in performance of the whole system. Unfortunately, agents may be 

openly antagonistic or they may exhibit conflicting behaviours. The problem is further 

compounded if there is no means of direct communication [113] or no communication 

at all [28].   

 

When it comes to interaction between agents, the main areas of interest for self-

interested MASs are that of conflict resolution and negotiation, assuming, of course, 

the existence of a communication channel between agents. 

 

2.4 Problems with Multi-Agent Systems 
 

The MAS paradigm is very promising, but it has its own problems that can be broadly 

divided into theoretical and practical problems. Theoretical problems relate to the 

interaction between the agents, while practical problems are related to the scalability 

to real-world environments and lack of formal methods and frameworks for agent 

development. Theoretical problems related to the interaction between agents are the 

main focus of this thesis and a new approach to coordination is presented in chapter 6 

of this thesis.  
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Although the main focus of this thesis is on a specific coordination approach, the 

practical problem of inadequate frameworks for development of agents (and specially 

robots) is also addressed through the proposed new hybrid robot architecture (chapter 

5).  

2.4.1 Interaction Between Agents in MAS 

 

Agents in a MAS perform their tasks in a shared environment. The agents not only 

interact with the environment, but with other agents as well. A simple example would 

be a robot scout that can detect an obstacle that can, for example, be either a wall 

(environment) or another robot (agent). The interaction between the agents in a MAS 

can be positive (resulting in cooperation) or negative (resulting in conflict). In order to 

address and facilitate cooperation, a MAS needs to have a coordinating mechanism. 

The problem of negative interaction between agents is very serious. To avoid and 

resolve conflicts, a MAS needs to have a negotiation mechanism. This section 

presents an overview of coordination and negotiation mechanisms. 

 

2.4.1.1 Coordination Mechanisms 

 

Cooperation allows agents in a MAS to solve problems that exceed an individual 

agent’s characteristics. Coordination in a MAS is crucial to allow the exploitation of 

one of the main benefits of MASs, namely cooperation. Coordination is a problem not 

unique to computer science. The coordination problem is present in many different 

sciences, mainly in social sciences such as sociology, anthropology, organisational 

sciences etc. Coordination of biological systems such as ant colonies and swarms are 

studied in biological-related sciences [89], but also in certain AI fields such as swarm 

intelligence [61]. Coordination mechanisms can be classified according to their origin 

as follows:  

 

Organisational Coordination 

 

Probably the simplest way of coordinating agents is by establishing a relatively strict 

hierarchical architecture that prescribes roles and protocols for agents to communicate 
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with others within the hierarchy. Examples of organisational coordination 

architectures are MAGMA [181] and to a certain degree SMAK [93]. A shortcoming 

of the organisational coordination approach is that it may prohibit optimal task 

allocation due to extreme specialisation of each agent in the system. The hierarchical 

approach is also somewhat contrary to the idea of autonomous agents as they are 

coordinated from a central system and are not truly autonomous but dependent on the 

central system.  

 

Contracting as Coordination  

 

The contracting approach is based on an agent opening an auction for task allocation 

and other agents bidding for the executing the task. The idea of using an auctioning 

mechanism in AI is not new [79], with one of the most applied coordination 

techniques, the Contract Net Protocol (CNP), based on auctioning [49]. Although the 

authors, Smith and Davis, refer to CNP role as a negotiation tool, the view adopted in 

this thesis and by other researchers [88] is that it is really a coordination tool. The 

CNP assumes that agents fulfil separate roles, the one of bidder and the other of 

auctioneer, which has elements of an organisational coordination approach but the 

roles are not predefined and an agent can assume both roles. CNP offers a simple yet 

powerful, mechanism for coordination. The main critique of this approach is that it 

assumes a market economy [52], where there is an abundance of bidders and that the 

task should be relatively well known.  

 

Society-Based Coordination  

 

In view of one of the proposed definitions of a MAS as “a society of agents” [204] 

and in the recent work of some prominent researchers [141][53], it makes sense to let 

social regulations coordinate a MAS. Social regulations can be divided into social 

rules that regulate an individual agent’s behaviour and social structures that regulate 

interaction between agents.  

 

A more detailed discussion of coordination methods based on the theory of 

organisational sociology is presented in section 6.3. 
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2.4.1.2 Negotiation Mechanisms 

 

The purpose of negotiation mechanisms is to prevent or resolve conflicts between the 

agents in MASs. There is still no consensus in the MAS research community on the 

importance of negotiation. While some architectures ignore negotiation completely 

[28], other researchers propose fairly complicated mechanisms for negotiation [151]. 

The proposed new approach presented in chapter 6 relies on coordination in order to 

prevent a problem instead on negotiation to resolve a problem. As the focus is on 

coordination, only an overview of negotiation techniques is presented in this thesis. 

Based on the classification given in 2.3.4.2, negotiation mechanisms can be divided 

into the following categories: 

 

Competitive Negotiations  

 

Competitive negotiations are particularly applicable to self-interested MASs where 

agents do not necessary cooperate; instead, the agents try to achieve their own goals. 

An example of a competitive negotiations environment is an agent trading in an e-

commerce environment where negotiations (agreeing on a price) are done between 

self-interested, competing, autonomous agents [181][40].  There are various 

techniques used for competitive negotiations, such as game theory-related techniques 

[49], auctioning [181] and contracting [37].  

 

Cooperative Negotiation  

 

Cooperative negotiation mechanisms are applicable to cooperative MASs, where 

agents are willing to collaborate. This approach should be utilised when it is 

absolutely critical to avoid conflict, for example in the domain of air-traffic control 

[104][41]. The majority of systems that utilise cooperative negotiation are based on 

the Belief-Desire-Intention architecture [152], where negotiation is seen as updating 

and changing an agent’s belief.  
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2.4.2 Scalability of MASs 

 

Scalability of MASs to real-world problems can be viewed in many different ways. 

For example, it can be said that scaling up from a simulated stock exchange e-

commerce trading system to a real-world stock exchange, a live e-commerce trading 

system can be a problem. After all, events in a real stock exchange environment are 

usually unpredictable.  

 

Specifically, in the case of embedded agents (robots), scaling of systems that work 

very well in a simulated environment to real-world embedded agents has proven to be 

very difficult [34]. Initially, agents and MASs were built using a traditional symbolic 

approach to artificial intelligence. Although there were some success stories, such as 

STRIPS (Stanford Research Institute Problem Solver) which has been successfully 

tested on a real robot [65], it seems that symbolic reasoning cannot be the sole 

mechanism for the development of complex multi-agent systems  [28][112]. The main 

reason for this is that deliberative, symbolic reasoning takes too much time in real-

world environments due to the combinatorial explosion in potential decision-making 

processes in case of too many variables, which are usual characteristics of real-world 

environments.  

 

2.4.3 Lack of Formalism 

 

Because the agent oriented paradigm is still relatively new, research on standard 

design principles or standard frameworks is still limited [86][204][54]. While these 

approaches have been successful in standardising some of the explored domains, there 

is still no standard framework for the development of a MAS. The main reason why a 

unified framework does not exist is the variety of MASs and their application. Agents 

and MASs are applied in various domains ranging from Internet search agents 

(softbots), emulation of credible creatures in virtual reality [18] to envisaged 

interplanetary exploration [173]. A good example of the lack of formalism is the 

various means of communication mechanisms in MASs, ranging from simple 1Hz 6 

byte broadcast messages [113] to the implementation of recommendations of the 

Knowledge Sharing Effort (KSE) group [132] that has resulted in sophisticated 
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models such as the Knowledge Query and Manipulation Language (KQML) [66][99] 

and Agent Communication Language (ACL) [166]. 

 

2.5 Origins of the Agent Paradigm  
 

The concept of an agent did not appear suddenly. As indicated in the introduction, it 

can be said that agents evolved from the CBSE paradigm. However, CBSE was not 

the only origin of the agent paradigm. In fact, the agent paradigm has evolved from 

four main contributing fields, namely: Artificial Intelligence (AI), Object Oriented 

Programming (OOP), Machine-Man Interface Research and robotics as shortly 

discussed in section 2.2.4.3. Each of these origins is discussed next in more detail.   

 

2.5.1 Artificial Intelligence 

 

The aim of AI research is to produce intelligent artefacts. Intelligence is closely linked 

to the ability to learn. If these artefacts are situated in an environment and can interact 

with the environment, it seems that the natural aim of AI research is to produce 

agents. Nevertheless, agents have been ignored by mainstream AI for a surprisingly 

long period of time. A possible explanation for this anomaly is that AI researchers 

were too busy improving and investigating the AI components of a system (such as 

machine learning, or interaction mechanisms between software and its environment), 

without attempting a synthesis that would deliver a true agent system. An additional 

contributing factor is that AI, until relatively recently (as a point of reference, 

consider the re-emergence of Artificial Neural Networks (ANN) in the early eighties), 

was almost exclusively dominated by the symbolic reasoning paradigm as embodied 

in expert systems.  

 

MASs are closely related, by virtue of being a collection of distributed, intelligent 

agents, to the field of Distributed Artificial Intelligence (DAI). DAI has been 

traditionally divided into two main groups [25]:  
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•  Distributed Problem Solving (DPS), that considered how a problem can be 

solved by a number of modules that cooperate in dividing and sharing 

knowledge.  

•  Traditional MASs that are usually restricted to one type of replicated 

agents, also known as homogenous MASs. 

 

A turning point was reached in 1980 at the first DAI workshop at MIT where it was 

decided that the aim of DAI is not to optimise low level parallelism issues, such as 

distributing workload between numerous processors or how to improve parallelism of 

algorithms, but to find how intelligent problem solvers can interact in order to solve 

problems that cannot be solved by a single intelligent problem solver [88].  

 

2.5.2 Object-Oriented Programming 

 

The similarities between an object and an agent are so obvious that it is not surprising 

that object-oriented programming (OOP) is one of the major origins of agent research. 

Both an agent and an object interact with its environment (via messages in traditional 

OOP), collaborate within the system (either using messages or methods) and, if 

considered learning in loose terms, both can learn (an object can “learn” by 

maintaining its internal state by means of protected and private data). These 

similarities are, however, misleading. There is a significant difference between agents 

and objects. Objects are not autonomous. Objects do not have their own goals, 

intentions and beliefs. In other words, the object represents an ideal body; the agent 

brings the reasoning. In a sense, the agent paradigm can be seen as a further evolution 

of OOP. 

  

2.5.3 Man-Machine Interface  

 

As the tasks that a user needs to perform on a computer become more complex, the 

way that a user interacts with a computer system becomes more time consuming and 

more cumbersome. Ideally, a user should just give the instructions on what he/she 

wants to achieve, without necessarily explaining in minute detail how to do this. For 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRooddii



 

28 
 

 

this to be achieved new ways of interacting with computer systems are necessary. The 

man-machine interface research field is mainly interested in new ways of interacting 

with computer systems. One of the ways to streamline man-machine interfaces has 

lead to development of computer programs that cooperate with the user and that help 

the user to achieve what he/she really wants without explicitly instructing a computer 

system what to do. These computer programs need to be, at least partially, 

autonomous, need to interact, learn and collaborate. Such computer programs satisfy 

most of the characteristics of an agent. These agents are usually referred to as 

adaptive user interfaces or intelligent interface agents [80].  

 

The tasks of intelligent interface agents can be divided into three groups based on the 

roles that the agents perform [80]: 

 

Information filtering agents  

 

The amount of, often unwanted, information presented to a user is increasing daily. 

This phenomenon is referred to as information overload. The role of an information 

filtering agent is to reduce the information overload based on user preferences. 

Filtering rules can be based on rules that the information filtering agents learn by 

“observing” the user’s habits [190]. Alternatively, rules can explicitly be stated by the 

user, although the notion of agency in the second scenario is questionable. An 

example of an information filtering agent is Maxims [105] that manages user’s emails 

and the user interface as implemented on amazon.com [190].   

 

Information Retrieval Agents  

 

The amount of information that is available for retrieval from the Internet is 

tremendous. It is no wonder that agents are employed in a role that allows a user to do 

an intelligent search of that vast amount of available information. Furthermore, agent 

controlled search can be executed in the background, collecting information from 

various sources and presenting results to the user, only when compiled and organised 

in a user-friendly format. An example of an information retrieval agent system is the 

Google search engine [192]. 
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Expert Assistants  

 

The task of expert assistants is to improve user interface efficiency by means of easier 

communication between the user and computer system. Expert assistants can be 

personified or not. Probably the most well known expert assistant is the Microsoft 

Office Assistant.  

 

Adaptive user interfaces are not the only area of man-machine interface research that 

has contributed to the agent paradigm. Far more exotic than user interfaces and expert 

assistants are artificial life agents that populate virtual worlds in virtual reality man-

machine interfaces, for example the Oz project at Carnegie Mellon University [65] 

and virtual worlds created in the MIT Media Lab [21].  

 

2.5.4 Robotics 

 

Wooldridge and Jennings do not consider robotics as an origin [197]. However, the  

description of a robot, as given by Chapek [39] (the author that coined the term 

“robot”), fulfils all four characteristics of an agent. Robots can be seen as agents and 

research in robotic architectures is a significant contributor to the agent paradigm. 

 

The aim of robotics is to develop a machine that can assist humans. Robotics-related 

research of agent systems can be divided into two main groups, namely simulated 

robot systems and physical robots. These two groups are described next. 

 

Simulated Robot Systems 
 

 
Research in simulated robot systems is closely related to the field of AI and 

Distributed Artificial Intelligence (DAI). Distributed Problem Solving (DPS) is a sub-

field of DAI, and in a way, multiple cooperating robots systems can be seen as a 

special case of distributed systems [38]. Simulated robot systems can be divided into 

two classes [113]: those that simulate situated agents and those that simulate abstract 

agents.  
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Simulated situated agents are embedded in simulated environments. One of the roles 

of simulated situated agents is that of a very valuable tool for making decisions on the 

design of physical robots. If the simulation environment accurately caters for physical 

laws and constraints, then design decisions can be made based on the results of 

simulations. Examples of design decisions are choice of sensors, sensor positioning, 

means of locomotion, etc. Other roles of simulated situated agents include accurate 

overall evaluation of a proposed physical robot system and experimentation on large-

scale systems, which include a larger number of agents. A good example of a 

simulated robot system is given in [85]. 

 

Simulated robot systems that simulate abstract agents are useful for experimenting 

with aspects of robotic systems that are not related to robots’ interaction with the 

environment, and as such have a limited role. Simulated robot systems that simulate 

abstract agents usually use a very high level of abstraction when interacting with the 

simulated environment. For example, a simulated robot system would assume that 

tasks such as “recognise-object” are atomic. From a DAI point of view, a simulated 

robot system with a high level of abstraction can be used to test cooperation and 

communications models, and in more general terms any biological and sociological 

aspect of MAS.  

 

•  Physical Robot Systems 
 

Building physical robot systems as a MAS research vehicle is a substantial 

engineering task that, until recently, was attempted by a relatively small number of 

researchers. For the purpose of this thesis an overview, by no means exhaustive, of 

some of the seminal physical robot systems is presented.  

 

Arguably, the earliest agent-related physical robot was Shakey, developed at Stanford 

Research Institute [153][136]. Shakey was equipped with the Stanford Research 

Institute Problem Solver (STRIPS) [65], a symbolic planner system. Various insights 

were gained; probably the most important is that mapping of a real-world 

environment to a symbolic world model is far from trivial. It has been observed that 

not all algorithms that perform well in simulated environments succeed in embodied 

systems. More details on Shakey can be found in [120].  
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In the ‘90s numerous robots based on the work of Rodney Brooks [31] were designed 

and implemented, for example, Myrmix [44]. Myrmix is a simple robot that has only 

three layers; each of the layers representing a simple action such as “collect”, “avoid 

obstacle” and “safe forward”. Genghis, also based on the work of Brooks [30], 

demonstrates how a simple architecture (the subsumption architecture) can achieve a 

relatively complex task, namely walking on six legs.  

 

Behaviour based robotics, which developed from the subsumption architecture, 

addressed some of the shortcomings of the subsumption architecture. The 

shortcomings that were addressed include the lack of learning mechanism and lack of 

communicating mechanisms. Matarić, one of the foremost researchers in this field, 

has developed numerous physical robot systems based on the behaviour based 

robotics paradigm [113].  

 

Another novel approach is that of the robotic ecosystem developed by McFarland and 

Steels [121], where the idea was to observe and facilitate emergence of cooperation 

between robots. Others, such as Aylett et al [11][10], created a hybrid architecture 

where a behaviour based architecture was implemented in robots and a symbolic 

planner component was implemented in a desktop computer. Arguably, the most 

important impetus to renewed interest in robotics research stemmed from the 

establishment of RoboCup [96]. Pfeiefer et al [148] have argued that the impetus that 

RoboCup has given to robotics can be compared to the impetus that the Apollo 

program gave to the exploration of space. 

 

The renewed interest resulted in a large number of robot systems that have appeared 

over the last decade. Furthermore, the public interest in robotics has increased and as 

a result, numerous robotic kits are available today [185][184].  

 

This thesis assumes learning and cooperation to be the key characteristics of an agent. 

One fairly recent physical robot system that emphasises these two characteristics 

deserves mention here, namely ALLIANCE [144] and its evolution, L-ALLIANCE 

[145]. Although its results do not exceed hand-crafted solutions, the system exhibited 

learning behaviour [142].  
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2.6 Summary  
 
This chapter overviewed and discussed the various agent and MAS definitions as well 

as the origins of the agent and MAS paradigm. Some of the problems related to the 

MAS paradigm were also discussed. Various classification schemes were overviewed 

and the reasoning model classification scheme was adopted for the purpose of this 

thesis. 

 

The next chapter provides a more detailed overview of agent architectures, classified 

according to the reasoning model used. 
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Chapter 3: Agent Architectures 
 
Agent architectures can be classified according to various criteria (see section 2.2.4). 

For the purpose of this thesis, agent architectures are classified based on the 

reasoning model. In this chapter, an overview and a critique of each of the main 

classes of agent architectures are presented and discussed. A few definitions of agent 

architecture are given in section 3.1. Section 3.2 presents the historically first agent 

architecture: the symbolic reasoning agent architecture. Sections 3.3 and 3.4 discuss 

sub-symbolic agent architectures and hybrid agent architectures, respectively. Each 

of the presented architectures is initially discussed and criticised in its general form 

and then an example of such an architecture is described in greater detail. Section 3.5 

proposes a hybrid agent architecture that is used in the INDABA agent architecture. 

Section 3.6 concludes this chapter with a comparison between the various presented 

models.  

 
 

3.1 Introduction  
 
The term agent architecture intuitively suggests a framework for the implementation 

of an agent. Agent architecture considers the issues surrounding the development and 

implementation of an agent based on a selected theoretical foundation. An agent 

architecture can be more formally defined as: 

 
“[A] Particular methodology for building [agents]. It specifies how … the agent can 

be decomposed into construction of a set of component modules and how these 

modules should be made to interact…. An architecture encompasses techniques and 

algorithms that support this methodology”  [106]. 

 

An alternative view on agent architecture is given as: 

 

“[A] Specific collection of software (or hardware) modules, typically designated by 

boxes with arrows indicating the data and control flow among the modules. A more 
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abstract view of an architecture is as a general methodology for designing particular 

modular decomposition for particular tasks” [92]. 

 

 

There are various taxonomies proposed for agent and MAS architectures. The reader 

is referred to [38][90][57] for more details. In this thesis, agent architectures are 

classified according to the reasoning model used by agents. 

 

In the remainder of this chapter, different agent architectures are presented and 

discussed.  

 

3.2 Symbolic Reasoning Agent Architecture 
 
Symbolic reasoning techniques are at the core of symbolic reasoning agent 

architectures. Section 3.2.1 presents a historical overview of the evolution of symbolic 

reasoning agent architectures, while section 3.3.2 presents some of the general 

characteristics and shortcomings of the symbolic reasoning approach.  

 

As the representative of the symbolic reasoning agent architecture, one of the first 

implemented robots, namely Shakey [136], is discussed in section 3.2.3.  

 

3.2.1 Introduction and History 
 
Historically, the first agent architecture to appear, the symbolic reasoning agent 

architecture [136], has its roots in traditional artificial intelligence systems. An 

example implementation of a symbolic architecture is the early theorem-prover, 

General Problem Solver (GPS) [134]. Symbolic reasoning architectures are 

sometimes referred to as traditional architectures [87]. Expert systems are based on 

the symbolic reasoning paradigm. Successes of some of the symbolic reasoning 

systems, such as early expert systems (e.g. MYCIN [171]), have given credibility to 

the belief that such a paradigm can be easily extended to agent systems and embodied 

agents (robots). One of the seminal symbolic planning systems was STRIPS [65]. 

STRIPS is applied to agents and even to embodied agents, such as the robot Shakey 

[136]. Although the symbolic reasoning approach has been heavily criticised in the 
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late ‘80s (as discussed in section 3.2.2), the criticism did not stop the development of 

purely cognitive architectures such as SOAR [135] and ACT-R [4]. SOAR [135] and 

ACT-R [4] are both based on symbolic inference mechanisms. Agents systems that 

have utilised a symbolic planner as their main component include Integrated Planning, 

Execution and Monitoring (IPEM) [3] and “softbots” [62]. 

 

In the robotics field, after the initial success of Shakey [136] (which performed the 

required tasks, albeit slowly) and the harsh critique of symbolic reasoning systems 

during the ‘80s, there was not much development of pure symbolic reasoning, single 

agent systems. Similarly, the same applies to multi-robot symbolic systems. However, 

there were some simulated robotic systems based on a symbolic architecture, for 

example HOMER [193]. HOMER’s interaction with users was through commands 

that were given in a subset of the English language. Once commands were interpreted, 

the simulated robot would plan and execute given commands in its simulated 

environment.  

 

It is becoming evident that any long-term artificial intelligence program must re-

integrate some of the traditional AI based symbolic reasoning mechanisms [74]. The 

current trend is to create hybrid agent architectures where the symbolic component 

plays a significant role in agent architecture. An example of such a hybrid agent, 3T 

[22], is discussed in section 3.4.3.  

 

The general characteristics of the symbolic reasoning agent architecture are presented 

in the next section.  

 

3.2.2 General Characteristics of Symbolic Reasoning Agent 
Architectures 

 
Symbolic reasoning agent architectures (also known as rational or deliberative) agents 

are based on a symbolic, abstract representation of the world and have an explicit 

knowledge base, often encompassing beliefs and goals [151]. Goal-oriented 

intelligent behaviour is explicitly coded into the agents, usually in production rule 

form. Typically, an agent can exploit many different plans to achieve its allotted 

goals. A plan is chosen on the basis of the current beliefs and goals of the agent. The 
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selected plan can be dynamically modified if these beliefs and/or the goals change. 

Rational agents can be considered advanced theorem-provers that manipulate symbols 

in order to prove some properties of the world. Implementing an agent as a theorem-

prover allows the re-use of well-known techniques developed in the AI field, for 

example, the inference engines of expert systems.  

 
The first obstacle that any symbolic reasoning architecture needs to overcome is that 

of an accurate implementation of the world model. The task of translating real-world 

entities and the often complex relationships between those entities into adequate 

symbolic representations is by no means a trivial task. Furthermore, there is no 

universal widely-accepted model for encoding the symbolic knowledge of the real-

world. There are numerous methods in use, ranging from first order logic and 

production rules [87] to network representations, for example semantic nets [101].  

 

The next problem that needs to be solved is which external stimuli, as sensed from the 

environment, can be ignored. Even for real embodied agents in real-world 

environments, information received via sensors is just a subset of all possible stimuli. 

For example, a robot may have a collision detector, but not a light sensor. The 

question that arises is whether a deliberative process will be different if a robot has 

more information about its environment. In other words, the choice of sensors that 

will influence the deliberative process is not always intuitive, and requires further 

research.  

 

In real-world environments, symbolic reasoning suffers from the “real-time 

processing problem”. To illustrate, consider that for real-world problems an optimal 

or nearly optimal solution is found based only on observation of the environment at 

initial time t. Most symbolic reasoning algorithms use a heuristic search of the 

problem space. However, because of a usually huge search space associated with real-

world problems, an action executes during time t to t+k, where k is the time spent on 

finding an optimal or nearly optimal solution. In the meantime, during time k, the 

environment can change so that the optimal solution at time t may no longer be the 

optimal solution at time t+k.  
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Symbolic agent systems invariably have a lack of robustness to noise and inaccurate 

information [94]. In other words, symbolic agent systems do not degrade gracefully. 

This problem is common to most of the systems based on symbolic knowledge 

representation, for example, expert systems. As a result, symbolic systems usually 

perform well in simulated environments, but when implemented in a real-world 

environment, symbolic systems often fail to perform to their specifications.  

 

One of the limitations of symbolic agents is that they execute sequentially. The 

sequential nature of a symbolic agent occurs due to the (essentially) sequential nature 

of the planning system that is at the core of symbolic reasoning architectures. 

Sequential execution of tasks may be acceptable for single agent systems, but in a 

MAS it is a serious shortcoming, due to the parallelism of MAS not being fully 

utilised.  

 

Due to the shortcomings of pure symbolic reasoning approaches it is somewhat 

unlikely that pure symbolic reasoning architectures, on their own, will be predominant 

architectures of the future. However, symbolic reasoning techniques are widely used 

in the currently predominant architecture model, namely hybrid architectures (section 

3.4).  

 

3.2.3 Symbolic Reasoning Agent – Shakey the Robot 
 

One of the first attempts at building a robot was a collection of hardware and software 

that was known as “Shakey the robot”[137]. Shakey used a symbolic planner, STRIPS 

[65], at its core. The next few sections discuss Shakey as an example of a purely 

symbolic reasoning agent. 

3.2.3.1 Shakey – an Overview 
 
Shakey was developed in the early ‘70s at Stanford Research Institute. The objective 

of the project was to incorporate vision, planning and the ability to learn into a single 

mobile robot. The main tasks that Shakey was designed to execute was to navigate 

from room to room and to push boxes, while avoiding obstacles.   
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Commands were given as “action routines” that operated at a very high level of 

abstraction. For example, the command Go_Thru (D1, R2, R1) meant “go from room 

R1 to room R2 via doorway D1”.  

 

Shakey used three sets of sensors: 

 

•  Bump detectors, implemented as touch sensors. The bump detectors were 

designed as antennas so that touch could be detected before the body of the 

robot touched an obstacle. 

•  An optical range finder, to provide Shakey with the distance from an object. 

•  A television camera together with image recognition software capable of 

recognising simple objects. 

 

In addition to these sensors, Shakey also had a radio/video link to a stationary, off-

board computer where the majority of processing was done.  

 

Shakey was large by today’s standards, having the size of an average-sized 

refrigerator and yet it had very little onboard intelligence [137]. Almost all processing 

was done on a mainframe using a radio link as a communication channel. 

 

3.2.3.2 Shakey’s Architecture  
 
Intuitively, Shakey’s architecture was well designed as it separated the actions 

performed into three groups based on “urgency” of the actions. Three action levels 

were implemented in Shakey’s architecture, as illustrated in figure 3: 

 

•  Fast low-level actions (LLAs) that are represented by black lines on the figure 

3. There are two types of LLAs. First type of LLAs are triggered by inputs 

from sensors without deliberation, similar to reflexes. Second type of LLAs 

are retrieval of rules and world model representation into a planner.  

•  Intermediate-level actions (ILAs), represented by broken grey arrows. ILAs 

represent simple, symbolic knowledge based actions. 
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•  High-level actions (HLAs), represented by grey arrows. HLAs represent 

complex symbolic knowledge based reasoning, such as plans. 

The soundness of Shakey’s architecture was confirmed by the fact that Shakey could 

execute all of the envisaged tasks. Shakey could perceive its environment, plan and 

“reason” about its actions, and communicate. However, all of these tasks were 

executed excruciatingly slowly [35].  

 

Image Processing Touch Sensor Detecting

STRIPS Planner

Rules

Library of Plans

Plan Generaliser

World Model

Motor Control

Intermediate Level
Actions(ILA)

Low Level Actions (LLA)

 
 

Figure 3. Shakey’s Architecture, based on the description in [137] 
 

 

The architecture is based on symbolic reasoning. All ILA and HLA actions are based 

on symbolic knowledge. However, it is interesting to note that the architecture 

included a sub-symbolic component as well. The creators of Shakey acknowledged a 

need for fast action-reaction couplings that are considered as reflexes. These 

“reflexes” are implemented as an LLA. An example of an LLA is that if touch sensors 

detect the proximity of an object, the touch sensor instantly sends a message to 

actuators (motors) to stop, without going through a symbolic reasoning deliberation 

process.  
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Although LLAs are executed without any deliberation, the symbolic representation of 

an actual situation is still created. The reason for creating a symbolic representation is 

to maintain a complete symbolic world model. For this purpose, the symbolic 

representation is sent to the upper levels that could deliberate upon the updated model. 

 

Nilsson, one of the researchers that was involved in the Shakey project, refers to 

Shakey’s architecture as a three-level architecture. Although the division of tasks is 

very similar to three-layer hybrid architectures that are described later in this chapter 

(section 3.4), Shakey’s architecture should not be confused with hybrid three-layer 

architectures. In hybrid three-layer architectures there is a strong element of sub-

symbolic based reasoning at lower layers, while Shakey’s architecture is very much 

symbolic-oriented.  

 

3.2.3.3 Shakey – Conclusion  
 

Despite its limitations, such as slowness of its execution cycle, Shakey was a success. 

It performed the required tasks. More importantly, it gave significant insights on 

future development of robotic architectures. 

 

The Shakey project has proven that: 

 

“You could not, for example, take a graph-searching algorithm from a chess program 

and a hand-printed character-recognizing algorithm from a vision program and having 

attached them together, expect the robot to understand the world” [120]. 

 

Shakey has created a deeper understanding of problems associated with mobile, 

embodied agents. Shakey’s approach to perceiving the world through its vision 

recognition software that could distinguish between boxes, walls and doorways was 

very advanced, especially considering the time period when Shakey was created.  

 

One of the most important lessons learnt was that the creation of comprehensive 

world models was prohibitively computationally expensive. The majority of 
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computation was consumed in the transformation of sensor inputs to symbolic 

representations.  

 

Other symbolic reasoning based robots were created, such as CART [127] and Hilare 

[78], but they all suffered from similar shortcomings, despite very simplified 

environments and the use of “state-of-the-art” symbolic reasoning mechanisms. 

 

 

3.3 Reactive Agent Architecture 
 
Not many papers have created such a reaction as the series of articles by Brooks 

[28][35][32] published in the early ‘90s. In these articles, Brooks delivered a harsh 

critique of the traditional AI approach to robotics. Brooks did not just criticise the 

traditional approach but also proposed, implemented and tested an alternative 

approach that has since become known as the subsumption architecture.  

 

The subsumption architecture and its derivatives are often referred to as reactive 

architectures [130], a terminology adopted for the purpose of this thesis. Section 3.3.1 

presents a historical overview of the evolution of reactive agent architectures, while 

section 3.3.2 presents some general characteristics of this approach. As the 

representative of reactive agent architectures, the original subsumption architecture 

[31] is discussed in section 3.3.3. A discussion of reactive agent architectures is given 

in section 3.3.4. 

 

3.3.1 Introduction and History  
 
Although a radical departure from then mainstream AI techniques, the subsumption 

architecture can be traced to another experiment from the mid-‘80s. Braitenberg [26], 

as an experiment in cognitive science, proposed the development of 14 simple 

vehicles of varying characteristics. The first six vehicles had a very simplistic 

coupling of sensors to actuators and in a sense were very similar to the simple layers 

of the subsumption architecture. The subsumption architecture was proposed in 1986 

[31] and it has been the inspiration for many other attempts and implementations 

[33][44][159][113]. Some implementations improved on the subsumption architecture 
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[44][159], while others used the subsumption architecture as the foundation that has 

led either to behaviour based robotics [113] or to hybrid systems such as [6].  

 

Despite the fact that well-founded criticism had been levied against reactive agent 

architectures relatively soon after their appearances [84][95], further research in 

reactive architectures did not stop. Example applications of reactive architectures are 

that of Altenburg [2] (which is of special interest to this thesis as it is based on the 

same robotic platform as used in chapter 9), and Cog [33], again a project by Brooks 

and his team. 

 

Although Cog initially exhibited some sophisticated behaviour, achieved through a 

basic reactive architecture, the Cog architecture had to incorporate some learning 

mechanism (implemented using neural networks) in order to achieve coherent 

behaviour [148].  

 

Today, pure reactive architectures are not used in isolation due to the shortcomings 

that are presented in section 3.3.4. Reactive architectures have been superseded by 

behaviour based architectures, such as [113][68], not only in single agent systems, but 

also in hybrid systems [22][129].  

 

3.3.2 General Characteristics 
 

3.3.2.1 Origins of Reactive Architectures 

 

Notwithstanding the similarity between Braitenberg vehicles [26] and their cognitive 

science approach, the major contributing origins of purely reactive architectures can 

be traced to two distinctive sources: biological sciences and engineering sciences.  

 

From the biological sciences, the inspiration was drawn from the fact that the 

traditional notion of intelligence (i.e. the cognitive notion of intelligence) in biological 

systems has appeared very recently in evolutionary terms. The emergence of 

intelligent and cognitive thinking was preceded by millions of years of improving on 
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the interaction of biological systems with their environment. This gradual approach, 

which eventually results in emergent intelligent behaviour through interaction with 

environment and agents, was an inspiration to Brooks. Brooks focussed his research 

on the development of environment interaction mechanisms. Brooks states that: 

 

“…mobility, acute vision and the ability to carry out survival-related tasks in a 

dynamic environment provide a necessary basis for the development of true 

intelligence” [28]. 

 

This view has been shared by other researchers [126][112]. From a biological 

perspective, the objective behind reactive architectures is then to create complete 

creatures that can exist in a dynamic people-populated world [34].  

 

As such, creatures are dependent on efficient interaction with their environment. On 

the other hand, from an engineering point of view, it is imperative to develop efficient 

coupling between sensors and actuators, and the methodology that facilitates the  

development of such couplings.  

 

The approach adopted for such couplings was uncompromisingly designed for speed 

and robustness. Unfortunately, the adopted approach was not sufficiently flexible and 

it has become the main reason for the limitations of reactive architectures, as 

discussed in section 3.3.3.3.  

 

3.3.2.2 Underlying Concepts 

 

Reactive architectures are based on the following fundamental underlying concepts: 

 

•  Situatedness: An agent is situated in its environment and directly interacts with the 

environment, without building a world model. This elegantly solves the problem 

of accurate world modelling and symbol grounding (as discussed in section 3.2.2). 

The agent is using the world as its model. In extreme interpretations of this 

architecture, the world is used even as a communication channel between the 

different layers of a reactive agent. 
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•  Embodiment: Brooks argues that the only way to make sure that an agent can 

function in the real-world is if it has a physical body [28][35]. This view is shared 

for the purpose of this thesis.  

 

•  Intelligence: Reactive architectures adopt a bottom-up approach for intelligence 

modelling. Bottom-up approach means that basic layers are created first and then 

combined into more complex layers. Reasoning is also deemed unnecessary as it 

relies on a symbolic world model.  

 

•  Emergence: The main objective of a reactive agent architecture is that, through the 

agent’s interaction with its environment, intelligent behaviour will emerge. It is 

very important to note that relatively simple agents that are not “aware” of their 

intelligence (they do not maintain any reasoning mechanisms) can exhibit 

emergent intelligent behaviour.  

 

Brooks derives four ideas from each of the above concepts as an inspiration for the 

subsumption architecture [35]: 

 

•  “The world is its best model” – inspired by situatedness; 

•  “The world grounds regress” – inspired by embodiment; 

•  “Intelligence is determined by the dynamics of interaction with the world” – 

inspired by intelligence; and  

•  “Intelligence is in the eye of the observer”. 

 

The subsumption architecture is implemented as a set of layers that define agent 

behaviour. These layers are described next. 

 

3.3.2.3 Layering in Reactive Architectures 

 
The reactive architecture proposes building of simple layers based on augmented 

finite state machines. These layers are implemented as couplings between sensors and 

actions. All the layers execute in parallel and all the layers interact with the 
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environment. In other words, the reactive architecture is a horizontally-layered 

architecture.  

 

The layering concept is demonstrated in figure 4. Three complex layers (the “collect” 

layer, “avoid obstacle” and “safe forward” layers) are implemented in the example. 

Only the simplest layer (the “safe forward” layer) is presented in detail. Layers that 

collect objects and avoid obstacles are abstracted.  

 

Collect Layer

Avoid Obstacles

Move Forward

Move Backward

S
ensors

A
ctuators

I I

Safe Forward Layer

 
Figure 4. An example of the layers of a reactive agent 

 
To illustrate the layering in reactive architectures, consider the simple actions 

implemented as layers “move forward” and “move backward”. These two simple 

layers are directly coupled to actuators and sensors (see figure 4). In the reactive 

architecture, more complex actions are achieved through manipulation (inhibiting and 

enabling) of inputs and outputs of the appropriate layers. Examples of such layers are 

“avoid obstacle” and “collect” layers. The “avoid obstacle” and “collect” layers can 

enable and disable simpler layers such as “move forward” and “move backward”.  

 

Brooks advocates that the layering of a task-specific control can be achieved through 

this mechanism but it is unclear how this can be achieved without the decision on 

behaviours made at the time of design. 
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The inhibit and enable control mechanism is far from modular. More complex layers 

are tightly coupled with simpler layers. The consequence is that even a minor change 

at a simpler layer can have a severe consequence for the behaviour of a more complex 

layer and of the robot as a whole. Information-flow from the simpler layer to the more 

complex layer is non-existent. 

  

The “safe forward” action is illustrated as follows: if the sensor input from the 

proximity detector is below the threshold (which is an indication that there are no 

obstacles), move forward is maintained and move backward inhibited. The moment 

the obstacle is detected, the situation gets reversed; move forward is inhibited and 

move backward initiated. The upper layer can influence lower layers as indicated in 

the figure. 
 

3.3.2.4 Is a Reactive Agent Truly an Agent? 

 
According to the definitions given in section 2.2.2, a straight answer cannot be given 

to this question. A reactive agent conforms to definitions as given in [197] [139], but 

not according to the definitions given in [82][80]. More importantly, considering the 

characteristics of agency as given in section 2.2.3, the answer is no. The first three 

characteristics of agency (autonomy, interaction and collaboration) can be (arguably) 

satisfied by a purely reactive agent, but the last characteristic, learning, cannot be 

satisfied. 

 

In a purely reactive architecture there is no provision for any world model or internal 

state and therefore reactive architectures lack the basic fundamentals necessary for 

learning. Pure reactive agents do not learn. 

 

3.3.3 Reactive Agent – Subsumption Architecture 

 

Although it is arguably not a true agent architecture, the subsumption architecture is 

of such seminal importance, not only to the field of agent systems, but to the whole AI 

field, that it is discussed as an example of reactive architectures. Many robotic 
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systems were built based on the subsumption architecture and most of them were very 

successful [33][27][43].  

 

Layers are implemented as finite state machines with four possible states: 

 

•  Output state. If a layer is in the output state, the layer outputs a message 

according to a computational transition and then switches to a predetermined 

state. 

•  Conditional Dispatch state. When a layer is in the conditional dispatch state, 

the layer tests the value of a function and then switches to one of the 

predetermined states. 

•  Self state. When in a self state, the layer performs a computation that affects 

the internal state (albeit limited to a few variable registers). 

•  Event Dispatch state. In the event dispatch state, a layer waits for event(s). 

Once an event occurs, the layer switches to a predetermined state. 

 

Each layer has input and output that can be affected by suppressor and inhibitor 

connections respectively. If the inhibitor is active (a message going through the wire) 

then the outputs of the corresponding layer are suppressed. If the suppressor is active, 

then the input is disregarded. A typical black box representation of a layer is given in 

the figure 5. 

 

Layer

Inputs Outputs

Supressor Inhibitor

 
Figure 5. Black Box Approach for a Reactive Agent Layer 

 
 

Suppressing inputs and inhibiting outputs of simpler behaviour achieves more 

complex layers. The whole methodology for building agents based on the 

subsumption architecture is based on the iterative approach as described next. 
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Simple layers are built and tested in the real-world environment. Once successfully 

tested, the simple layers serve as building blocks for more complex layers that are 

then tested in the real-world environment. Again, these layers now serve as building 

blocks for even more complex layers and the whole process is repeated until the 

desired behaviour is achieved.  

 

A reactive architecture that are implemented according to the above described 

methodology conforms to the goals that are stipulated by [28]: 

 

•  The capabilities of the agent are built up in small incremental steps and at 

every step there is a complete system that can be tested. 

•  At each step, the embodied agent is tested in the real-world environment. 

 

As indicated at the beginning of this section, there were some notable successes of 

this architecture. The reactive architecture has probably reached its pinnacle in the 

implementation of the robot, Herbert [29]. Herbert incorporated mobility, image 

recognition and robotic arm coordination. Its tasks were to wander around offices and 

to collect soda cans. According to Gat [74], Herbert has never reliably performed the 

desired task.  

 

3.3.4 Subsumption Architecture - Conclusion 

 

The subsumption architecture deviated from the traditional AI (symbolic reasoning) 

systems. The traditional AI systems usually implemented the symbolic reasoning 

mechanism, the Sense – Think  - Act cycle [148]. 

 

There were many problems with the symbolic reasoning approach as discussed in 

section 3.2.2. The core of the problem lies in the drastic simplification of the symbolic 

model of the world, which is necessary to reduce the search space of the planner. 

Reactive architectures have eliminated this problem. Reactive architectures do not 

maintain a world model; instead, reactive architectures indirectly use the world as its 

own model.  
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Although the reactive architecture approach is good for simple agents and behaviours, 

it is, unfortunately, inadequate for more complex tasks mainly due to the lack of any 

world model. The lack of world model in the subsumption architecture has introduced 

the following problems: 

 

•  Agent reasoning is based purely on sensor readings from the local 

environment. This can lead to a local optimum solution (a course of 

action) that is not the global optimum solution (the best possible action).  

•  It is difficult to see any possibility for learning from experience or from 

other agents. 

•  The idea of emergence is valid, but reactive architectures do not provide 

mechanisms for recognition and incorporation of such emerging 

behaviour. Instead, all layers are handcrafted, so any new layer 

(behaviour) would require reprogramming. 

•  Interdependencies between the layers can become unmanageable in case of 

many layers, due to the numerous couplings between layers.  

•  With MASs in mind, the lack of direct communication between the agents 

(even between the lower layer to the upper layer) can lead to negative 

interaction, i.e. conflict. The lack of communication (except through the 

world itself) prevents implementation of any coordination mechanism. 

 

Although the shortcomings of the subsumption architecture are numerous, the 

subsumption architecture, and reactive architectures in general, played a major 

influential role in today’s embedded agent predominant architectures, namely the 

hybrid architectures. Due to the reactive architectures’ superb interaction capabilities 

with the real-world, reactive architectures (or their derivatives) are often used as the 

simplest layer of hybrid architectures.  

 

Reactive architectures should also be considered in relation to the time period when 

they appeared. The computational cost in terms of hardware has dropped 

tremendously in the last 20 years and computational power has increased almost 

exponentially.  This development can influence the validity of the “do not think 

(because it is costly and time consuming) – act!”  premise of reactive architectures.  
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Many robots [33][27][43][29] have been built based on the subsumption architecture, 

some of them very successful. In a sense, these early successes have created a 

renewed interest in robotics.   

 

The root of the shortcomings of the subsumption architecture can be found in the 

definition of the subsumption architecture, as given by Brooks. Brooks defined the 

subsumption architecture as a parallel and distributed computation formalism for 

connecting sensors to actuators in robots [34]. The strong engineering influence in the 

development of the subsumption architecture is evident from this definition. In other 

words, the subsumption architecture is mainly concerned about hardware efficiencies 

without much concern for higher concepts such as models, learning capabilities and 

sociality between agents.  

 

It can be claimed, with confidence, that without the subsumption architecture and the 

pioneering work done by Brooks and his team, robotics would be far from the 

capabilities that are demonstrated today. 

 

 
3.4 Hybrid Agents  

 

As discussed in sections 3.2 and 3.3, purely reactive and symbolic agent architectures 

have different shortcomings and benefits. It was natural that further research led to the 

emergence of hybrid agents which attempt to exploit the strong points of each 

approach.  

 

Purely reactive architectures have been criticised for their inability to perform 

complex tasks [88]. Reactive architecture-inspired approaches, such as behaviour 

based robotics  [81][109], have replaced purely reactive architectures. Section 3.4.1 

tracks some of the hybrid agent history, and section 3.4.2 overviews the typical three-

layer architecture that has become almost standard for hybrid agent architectures. 

Section 3.4.3 describes an example of hybrid agent architecture in greater detail.  
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3.4.1 Introduction and History  
 

Once the critique of purely non-symbolic architectures appeared [84][95], various 

attempts were made on improving on non-symbolic architectures [159][165]. By the 

early nineties at least three teams of researchers [73][45][23] had independently 

proposed true hybrid architectures, consisting of three layers.  

 

These early hybrid agent architectures have evolved over time, being continually 

improved. For example, Bonasso’s work has evolved into the three-tier architecture, 

3T [22] and Gat’s has evolved into an architecture called ATLANTIS [73]. Both of 

these architectures have been successfully applied in robotic systems. 3T has been 

used as the core architecture for NASA Johnson Space Center’s Robotic Architecture 

robot that was able to recognise people [22]. ATLANTIS was also implemented in a 

number of robotic systems [73][71].  

 

InterRAP [129], another important hybrid agent architecture, combines not only 

reactive and symbolic planning aspects of agents but also the social aspects. It is also 

interesting to note that ATLANTIS and 3T have their origin in robotics, while 

InterRAP has its origins in DAI [90].  

 

The more recently proposed hybrid architectures is Jet Propulsion Laboratory’s (JPL) 

CLARAty [194]. The importance of CLARAty is that it proposes the use of existing 

methodologies, software and approaches such as open source software libraries and 

object-oriented design methodologies (e.g. the Unified Modelling Language (UML)).  

 

In addition to the aforementioned architectures, there are also various design tools that 

support hybrid architectures. Two of the design tools that support hybrid architectures 

are mentioned here for the sake of completeness. DESIRE [58] is a methodology that 

provides basic modularisation techniques that can be used for building hybrid agent 

systems. DESIRE provides for horizontal and vertical layering approaches (as 

described in the next section). Task Description Language (TDL) is a software 

development tool [173] that is implemented in the C programming language as an 

extension, and can be used for the development of three-layer architectures. 
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3.4.2 General Characteristics of Hybrid Agent Architectures 
 
In this section, some of the general characteristics of hybrid agent architectures are 

overviewed and briefly discussed.  

3.4.2.1 Layered Architectures 
 

Most hybrid systems are implemented using layered architectures. Architectures can 

be layered horizontally or vertically. In the horizontal layering approach all layers are 

at the same level and execute independently. Vertical layering means that there is a 

number of layers between the sensors and actuators, while in horizontal layering there 

is only one layer that has as inputs sensor inputs and as outputs actions. Brook’s 

original subsumption architecture follows a horizontal layering approach [31]. An 

illustration of a horizontally-layered  architecture is given in figure 6. 

 

Layer

Layer

Layer

Layer

IN
P

U
TS

A
C

TIO
N

S

 
Figure 6. Horizontal Layering Agent Architecture 

 

In the vertical layering approach layers are hierarchically ordered with the complexity 

of layers increasing with their level. Interaction between layers is defined as 

hierarchical. In other words, interaction between the bottom layer and the top layer 

cannot be direct. The interaction has to be done through intermediate layer(s), 

whereas in the case with horizontal layering, all layers execute in parallel. An 

illustration of a vertically layered architecture is given in figure 7. 
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Figure 7. Vertical Layering Agent Architecture 

 

Section 3.4.1 gave frequent reference to three-layered architectures. It seems, 

especially in the autonomous embodied agents field (robotics), that most researchers 

[22][73][173] have standardised on the use of three vertical layers. The reason for this 

is not so much theoretical, but based on a pragmatic approach and on the results of 

experimenting with various numbers of layers. Most hybrid agent architectures 

consist of a deliberative layer, a reactive layer and an interface between them. It is 

noted that, although the CLARAty architecture is a two-layer architecture, it is 

logically very similar to a three-layer architecture. An example of a typical three-

layered architecture is given in figure 8 (modified from [22]). 
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Figure 8. A Typical Three-Layer Agent Architecture 
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There are numerous, sometimes confusing naming conventions of these three layers. 

For the purpose of this thesis the adopted terminology is that of the ATLANTIS 

architecture [74]. The layers in the ATLANTIS architecture are called the controller, 

the sequencer and the deliberator layers. Each of these logical layers is described in 

greater detail in the next few sections. Naming conventions for the different 

architectures are summarised in Table 1. 

  

Architecture Top Layer Middle Layer Bottom Layer 

ATLANTIS Deliberator Sequencer Controller 

3T Planning Layer Sequencing Layer Skill Layer 

TDL Planning Layer Executive Layer Behaviour Layer 

 

Table 1. Overview of Three-Layer Architecture Terminology 

3.4.2.2 Controller Layer 
 
The main purpose of the controller layer is to react dynamically, in real time, to 

changes in the environment. It can be seen as the implementation of fast feedback 

control loops, tightly coupling sensors to actuators [74]. The controller layer is usually 

implemented using a behaviour based robotics approach [109], as a set of behaviours. 

Behaviours (in behaviour based robotics terms) can also be seen as control laws that 

encapsulate sets of constraints in order to achieve specific behaviour [113].  

 

Behaviours are usually implemented as handcrafted, simple, conditional rules. The 

behaviours take, as conditions, sensor readings and as action the behaviours provide 

motor actuation. The need to handcraft the behaviours is one of the challenges of 

behaviour based robotics that needs to be overcome. Because the behaviours interact 

with the real-world environment in real time, it is of crucial importance that these 

behaviours are fault-tolerant (or at least fault-aware) and that behaviours are bound by 

a maximum deliberation time. Behaviours are usually stateless; they do not maintain 

any local or global environmental models. Behaviours at this level are basic 

(primitive) behaviours.  Basic behaviours are often combined into more complex 

behaviours by the next layer, the sequencer layer. Basic behaviours can be selected 
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either based on researchers’ experience or according to a methodology such as that 

described in [113].  

3.4.2.3 Sequencer Layer 
 
The job of the sequencer layer is to manipulate basic behaviours into more complex 

behaviours that are closer to the symbolic layer, i.e. the deliberator. The sequencer 

layer achieves this task by enabling or disabling behaviours and/or by providing 

parameters for behaviours’ execution. The storage mechanism for more complex 

behaviours is usually a library of plans for implementation that use basic behaviours. 

The task of breaking down a complex behaviour into basic behaviours is by no means 

trivial.  

 

There are two main approaches to transform complex behaviours into basic 

behaviours:  

 

•  The universal plan approach, where all of the states and hard-coded complex 

behaviours are enumerated as a combination of basic behaviours, usually in 

table format [165]. 

 

•  The conditional sequencing approach, where only the conditions that trigger 

behaviours are stored. Conditional sequencing can be implemented using 

either special, purpose-designed languages such as RAP [68] or as an 

extension of more traditional programming languages such as C, as was the 

case with TDL [173].  

 

The sequencer layer can be seen as the interface between symbolic knowledge 

representation (as implemented in a deliberative layer) and sub-symbolic knowledge 

representation (as implemented in a controller layer).  

 

3.4.2.4 Deliberator Layer 
 
Knowledge representation in the deliberator layer is symbolic in nature. All reasoning 

is done using a symbolic world model. The symbolic reasoning approach and the 
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problems associated with this approach were discussed in section 3.2. The deliberator 

layer is the most abstract layer as it does not have direct interaction with the 

environment. However, the deliberator layer performs some of the crucial tasks in a 

hybrid agent architecture. The task of the deliberative layer is to perform the 

following functions:  

 

•  to build and maintains the world model, 

•  to deliberate (reason) on the course of action in symbolic terms, and 

•  to interface with the sequencer layer. 

 

Being based on symbolic knowledge representation for its deliberation, the deliberator 

layer usually uses traditional artificial intelligence techniques such as planning and 

inference [197][72]. These techniques are traditionally computationally demanding 

and thus the deliberative layer does not respond to changes in the environment in real 

time. The controller, and to a lesser extent the sequencer layer, operate in real time. 

The deliberator expresses medium to long-term goals to the sequencer layer.  

 

The deliberator layer interfaces with the sequencer layer either through plans that are 

presented to the sequencer layer, or responds to queries from the sequencer layer [74].  

 

The deliberator layer is usually implemented in a standard, high level programming 

language, or using an inference engine (e.g. an expert system shell).  

 

3.4.3 Hybrid Agent Architecture – 3T 
 
In this section, an example of a hybrid agent architecture is presented and discussed in 

greater detail. The name 3T is derived from the three layers used by the architecture.  

An introduction to the 3T architecture is given in section 3.4.3.1, followed by an 

overview of the layers of the 3T architecture in sections 3.4.3.2 to 3.4.3.4. Section 

3.4.3.5 provides a summary of the 3T architecture. 
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3.4.3.1 Introduction and an Overview 
 

Most of the team members that created the 3T architecture [22] were involved with 

NASA and some of the 3T applications were related to space research programmes 

[22].  

 

The 3T architecture was built upon various earlier research efforts [67][73] done by 

the same team, and designed with applications in embodied agents (robots) in mind. 

The three layers of the 3T architecture correspond to the layers that are described in 

sections 3.4.2.2 – 3.4.2.4.  

 

For the purpose of the 3T overview, the original 3T terminology is used when 

describing the layers. 

 

3.4.3.2 Skills Layer 
 
The task of the skills layer, being the bottom layer of the 3T architecture, is to interact 

with the environment. A skill corresponds to a behaviour and its purpose is to achieve 

or maintain a particular state. Because the skills are dependant on the robot’s physical 

implementation, any hard coding would seriously limit the architecture’s flexibility. 

The approach was thus taken to implement a robot-independent skill representation 

based on work by Yu et al [202]. The representation consists of: 

 

•  Inputs and outputs, that are declarative descriptions of expected inputs and 

produced outputs. Outputs of one skill can be linked to inputs of another 

skill, thus allowing for chaining of skills. 

•  A computational transform, which forms the core of a skill, and which 

produces outputs according to computational rules, from inputs.  

•  An initialisation routine, that allows for skill initialisation in a secure and 

expected manner. 

•  An enable/disable function, that provides a sequencer with a mechanism to 

suppress and to enable a skill. 
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The enabled skills are executed in parallel. All skills interface with a skill manager 

that in turn interfaces with a sequencer, providing the sequencer with a single entry 

point to the skill layer. The skill manager handles all communications, asynchronous 

events handling and the enabling/disabling of skills. 

 

3.4.3.3 Sequencing 
 

The sequencing layer in 3T is implemented as a Reactive Action Packages (RAP) [67] 

interpreter. RAP is a LISP-based structure that is simply a description of the desired 

task to be achieved. It is important to note that a task is not unconditionally described 

in minute detail. The task description relies on the robot’s perception of its 

environment. In other words, depending on the environmental perception (model), the 

task might be executed in a different manner. Each RAP has a sequence of skills that 

is either activated or deactivated in order to achieve an allocated task. This 

mechanism provides a sequencer to the skills layer communication mechanism. 

Specialised skills, called events, provide a communication channel from skills to 

sequencer layers. Events provide a feedback by communicating the perceived state of 

the environment. The sequencer layer uses this information to determine if a 

particular set of skills have been completed.  

 

3.4.3.4 Planning  
 

The sequencer layer of the 3T architecture does not perform optimised resource 

allocation nor does it organise the sequence of routine tasks that perform more 

complex and more useful tasks. These are the tasks of the deliberator layer. The 

planning layer operates on a higher level of abstraction than the sequencing layer. 

There are a few reasons for this level of abstraction. Firstly, a higher level of 

abstraction is more understandable by humans and the planning layer can often serve 

as a system-user interface. Secondly, a higher level of abstraction reduces the size of 

the search space.  
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The Adversarial Planner (AP) [60] is used in 3T. The planning takes the form of 

higher level RAP that are then decomposed into more elementary RAPs by the 

sequencer layer.  

 

AP has two features that are considered very useful in robotic applications: it has the 

ability to control more than one agent at the same time and it can reason with agents 

that exhibit negative interaction (adversary attitude), for example agents that are not 

controlled by 3T (uncontrolled agents in 3T terminology). 

 

Since the focus of this thesis is an architecture for cooperation between agents, the 

first feature is covered in more details. The multi-agent coordination mechanism in 3T 

allows for coordination between robots, but its usefulness is questionable. All 

coordination must be done through a central system. In other words, instead of having 

agents cooperate through consensus or some other coordination mechanism, it 

imposes a centralised, hierarchical control on otherwise autonomous agents. This 

severely restricts the potential of novel, self-organising multi-agent applications. 

Therefore, this thesis treats the 3T architecture as mainly a single-agent architecture. 

 

3.4.3.5 3T – Conclusion 
 
3T is a comprehensive architecture with some interesting features, for example the 

deliberator layer adversarial planning and its (albeit limited, as discussed in the 

previous section) provision for the coordination of multiple agents. Coupling between 

layers is coherent from the top to the bottom layers, but the upward flow of 

information is very limited.  

 

The sequencing and deliberator layers are implemented in LISP. Although LISP has 

been one of the most commonly used programming languages in AI research, its 

applicability to real-world embodied agents is questionable. LISP has relatively large 

resource requirements (it is usually implemented as an interpreter) and its speed of 

execution is usually slower than that of compiled programming languages. Portability 

to different hardware, e.g. lower-end platforms (such as a cheap, swarm like robotic 
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system [185][184]) might also present a problem, due to the relatively high 

computational demands of  a LISP interpreter.  

 

 

3.5 Summary  
 

The focus of this chapter was the application of various agent architectures to robotic 

applications. This chapter overviewed three types of agent architectures, namely 

symbolic, reactive and hybrid. These architectures were initially discussed in general 

terms. The general discussion was followed by a detailed review of representative 

examples of the three architectures.  

 

The next chapter naturally follows this chapter by extending the discussion and 

overview to MAS architectures. 
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Chapter 4: Multi-Robot Architectures 
 

Multi-robot architectures can be seen as a special case of multi-agent systems, where 

agents are embodied in their environment. This chapter focuses on multi-robot 

architectures specifically, since a more complete overview of MASs architectures is 

outside the scope of this thesis. Section 4.1 enumerates some of the early MASs 

together with a taxonomy for multi-robot teams. A behaviour based robotics approach 

to multi-robot teams is discussed in section 4.2. A hybrid multi-robot architecture, 

MACTA, is overviewed and discussed in section 4.3.  

 

4.1 Introduction 
 

In this section, some of the general MASs are overviewed. The first MAS 

architectures and related techniques have their origin in the Distributed Artificial 

Intelligence (DAI) field. The Contract Net Protocol (CNP) [49][175] can be 

considered as one of the first illustrations of the concept of agency. CNP is used to 

divide a task between multiple agents and it is a widely used protocol with many 

variations [161][46].  

 

One of the first models to have actually implemented agents (albeit very simple 

agents) is ACTORS [1]. Since then many MASs have been implemented in fields as 

diverse as air traffic control [41], distributed vehicle monitoring [59] and more 

recently, Intrusion Detection Systems (IDS) [7]. As stated previously, the emphasis of 

this thesis is on embodied agents (robots) and from the next section, all classifications 

and examples are robotics-related. The reader is referred to [88][138] for more detail 

on general MASs.  

 

With robotic MASs in mind, it is useful to consider a robotic MAS taxonomy. The 

chosen taxonomy for the purpose of this thesis is that of Dudek et al [56]. According 

to Dudek et al , robot teams are classified according to the following characteristics: 
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•  Size of the team. Based on the size of robot teams, teams can be divided into 

classes ALONE, PAIR, LIM and INF, denoting one, two, multiple (but with a 

finite limited number of robots) and an unlimited number of robots respectively. 

•  Communication range. The teams are classified based on the communication 

range into NONE, NEAR and INF classes, denoting no communication, local 

communication (limited to the distance between robots) and unlimited distance 

communication (for example softbots, that can communicate using the Internet). 

•  Communication topology. According to the communication topology, multi-robot 

teams are classified as: BROAD, where a broadcasting mode of communication is 

used; ADD, where each agent has an address; TREE, where communication is 

done through a hierarchical network; and GRAPH, where communication links 

are defined as a graph. 

•  Communication bandwidth. Based on the cost of the communication, robot teams 

are divided into four classes: INF, where communication is free; MOTION, where 

the cost of communication is the same order of magnitude as the motion of the 

robot; LOW, where the cost of communication is greater than the cost of moving 

the robot; and ZERO, which indicates that no communication is possible. 

•  Collective reconfigurability. The collective reconfigurability indicates the rate at 

which the robot team can re-organise itself spatially. It divides the robot collective 

into three distinct classes: STATIC, where the topology is fixed; COMM, where 

members coordinate to achieve the reorganisation task; and DYN, where the 

spatial relationship can change arbitrarily. 

•  Processing ability of each collective unit. Robot teams are divided into classes 

based on the computational model of each robot. The view adopted in this thesis is 

that classification based on computational model is too limited, as it does not take 

in consideration the real processing power or complexities of the adopted world 

model representation (if any). However, for the sake of completeness, the four 

classes are enumerated next: SUM, where processing power is equivalent to that 

of a non-linear summation unit (i.e. a neuron in artificial neural networks); FSA, 

where processing power is equivalent to a finite state automaton; PDA, where 

processing power is equivalent to a push down automaton and TME, where 

processing power is that of a Turing machine equivalent. For more detail, the 

reader is referred to [56].  
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•  Collective composition. A robot team can be classified according to the physical 

attributes of robots: IDENT, where all agents are identical; HOM, which indicates 

homogenous MAS where agents essentially have the same characteristics; and 

HET, where agents are heterogeneous with different physical characteristics. For a 

formal approach to measuring robot group diversity, reader is referred to [12][14]. 

 

In the remainder of this chapter, two multi-robot architectures, the Behaviour Based 

Robotic (BBR) and Multiple Automata for Complex Task Achievement (MACTA) 

are overviewed and discussed. Note that the BBR has evolved over time, but for the 

purpose of this thesis the first, original, version as described in [113] is considered. 

 

Using the adopted taxonomy, these two architectures can be described as given in 

table 2. 

 

Robot Team Characteristic BBR MACTA 

Size of Team LIM PAIR 

Communication Range NEAR NONE 

Communication Topology BROAD Not Applicable 

Communication Bandwidth MOTION Not Apllicable 

Collective Reconfigurability DYN STATIC 

Processing Power of a Team Member TME TME 

Collective Composition HET/HOM HET/HOM 

Table 2 Comparison of BBR and MACTA architectures 

 

 

4.2 Behaviour Based Robotics 
 
There were various efforts to improve on reactive architectures capabilities. Some of 

these effort were mentioned in section 3.3.3. The behaviour based robotics 

architecture, as developed by an MIT team headed by Matarić [109], is discussed to 

illustrate the ideas behind a behaviour based approach for MAS.  
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4.2.1 Introduction 
 
 

Behaviour based robotics can be seen as an extension of purely reactive architectures 

[108]. Behaviour based robotics has the concept “behaviour” as its foundation. In 

addition to the definition of behaviour as given in section 3.4.2.2, a behaviour can also 

be defined as a piece of code that produces behaviour when it executes [74].  

 

BBR provides mechanisms for cooperation, coordination, communication and 

planning [109]. In general, BBR are decentralised systems of autonomous agents. Cao 

et al  [38] consider BBR to be a swarm-like architecture. This view can be accepted to 

a degree, but BBR is certainly more advanced than a classical swarm system such as 

ANT [119N, 181] as it allows for explicit communication and learning.  

 

BBR adopts a building block approach, similar to that used by the subsumption 

architecture (see section 3.3.3), that relies on developing basic behaviours first. Once 

basic behaviours are thoroughly tested, the basic behaviours are then combined into 

more complex behaviours.  

 

Behaviour based agents can become quite complex when basic behaviours are 

combined in more complex ways, or when the side effects of its behaviour and 

interaction with the environment can yield some useful characteristics, such as 

emerging behaviour [178].  

 

The concept of intelligent emerging behaviour is a paramount premise of reactive and 

behaviour  based architectures. The belief that intelligent behaviour will emerge 

through the interaction of a system with its environment is based on the observation of 

natural systems, for example ant colonies [178]. However, there is still no 

formalisation of a process that will allow new intelligent behaviours to emerge in 

multi-robot teams.  In this thesis, proposed emergent behaviour is exhibited on a 

higher level of abstraction – the social level, thus the topic of emergent low-level 

behaviours through interaction with an environment falls outside the scope of this 

thesis. 
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BBR uses a decentralised approach where all robots are fully autonomous with sparse 

communication between robots. Furthermore, knowledge representation is not 

symbolic. Hence there is no high level planner nor any symbolic learning mechanism. 

 

4.2.2 Basic Behaviours 
 
 
The building block approach of BBR assumes that simplistic basic behaviours can be 

combined into more complex ones at a higher level of abstraction. BBR also proposes 

a methodology for choosing such basic behaviours. That being said, the process of 

choosing basic behaviours is still a heuristic process, without a fixed metric for 

selecting an “optimal” set of basic behaviours. Matarić proposes two criteria for 

defining the set of basic behaviours [113]: 

 

•  Necessity. The set of basic behaviours must contain only behaviours that are 

necessary to achieve the desired goals in a given domain.  

•  Sufficiency. The set of basic behaviours must contain behaviours that will be 

sufficient to achieve the desired goal in a given domain. 

 

Benchmark tasks for robot teams that must be achieved by combining basic 

behaviours are foraging, flocking, herding and surrounding. To achieve these tasks  

(assuming a two-dimensional spatial domain) the following basic behaviours have 

been identified [110][113]: 

 

•  Safe wandering, which refers to the ability of a robot team to move around 

while avoiding obstacles and collisions with other agents. This behaviour is 

the basis for any exploration or mapping task. 

•  Following, which refers the ability of an agent to follow another agent (the 

leader) and maintaining a following distance from the leader. 

•  Dispersion, which refers to the ability to spread out and to maintain a 

minimum distance between agents. 

•  Aggregation, which is the opposite of dispersion, i.e. the ability to gather and 

maintain a maximum distance between the agents. 
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•  Homing, which refers to the ability to find a particular region or location. This 

ability is necessary for tasks such as sample collection, foraging and self-

preservation. 

 

BBR has been designed as an architecture that can be easily extended by 

implementing more complex behaviours. This characteristic is desired and required 

for an emergent behaviour approach.  

 

The strength of a behaviour based architecture also lies in the fact that incorporation 

into more complex hybrid architectures is easy without any significant modifications. 

The behaviour based architecture is used in some well known hybrid MAS such as 

MACTA [11][10] and InterRap [129]. 

 

4.2.3 Learning in BBR 
 
The goal of any learning mechanism is to optimise system performance. There are 

various applications of learning mechanisms that can improve the performance of the 

system [91]. Applied to BBR, learning can be divided into learning new behaviours, 

learning new facts about the environment and learning to improve behaviours. It is 

important to note that learning in BBR is not based on symbolic reasoning. In BBR, 

learning uses behaviours that are in their nature sub-symbolic structures.  

 

There has been significant improvement in the learning capabilities of BBR MASs 

over the past few years. Initially, research focused on learning behaviour policies, in 

other words on improving the behaviour selection process through learning [113]. 

More recent research has complemented the behaviour policies learning with learning 

from environment models and from interaction with other agents [115]. An overview 

of learning in BBR is given next. 

 

4.2.3.1 Learning Behaviour Policies 
 
The behaviour policies determine which behaviours are selected for execution. The 

goal of learning behaviour policies is to improve on the selection of appropriate 
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behaviours for specific tasks and environment conditions. Reinforcement learning 

[91] is one of the most frequently used mechanisms in AI. In BBR, the reinforcement 

learning is used to learn behaviour policies. Reinforcement learning relies heavily on 

stimuli-response coupling, and it has been used in robotics, for example in [25]. 

 

Most reinforcement learning models that were successfully applied to computational 

learning are based on Markov Decision Process (MDP) models [113]. Unfortunately 

MDPs, when applied to embodied, situated agents, assumes that interaction between 

an agent and its environment can be viewed as synchronised finite-state automata that 

are deterministic and predictable. This is not always the case, due to uncertainty in 

sensing of the environment. For MDP to be applicable to learning of behaviour 

policies, the following modifications have been made [113]. These modifications are 

described next. 

 

•  In robotic applications of MDP, the state space defines sensor inputs of the 

robot, together with the set of internal parameters of the robot. The first 

modification is that the state space has been defined by conditions instead of 

full state descriptions. The space of conditions is generally much smaller than 

the complete state space and allows for faster computations.  

 

•  The reward function is focused on achieving pre-determined sub-goals of 

concurrent  behaviour. This is a very important departure from the original 

MDP model that prefers a sequential process. At any moment, in BBR robotic 

applications there are many active behaviours, contributing by their actions 

towards a completion of a high-level goal. Concurrent reward functions can 

then focus on improving each behaviour. The improvement in behaviours 

leads to the improvement of overall system performance.  

 

•  A progress estimator function is introduced as a part of the learning 

mechanism. The role of the progress estimator function is dual: instead of 

rewarding only after a specific goal has been achieved, an intermittent reward 

allocation is used. The progress estimator function uses a mechanism for a 

termination of a specific behaviour [113]. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRooddii



 

68 
 

 

The MDP was further modified, by using reward sharing mechanism that punishes 

greedy behaviour of agents [116][118]. 

 

4.2.3.2 Learning Environment Model 
 
One of the main characteristics of BBR is a decentralised approach and a lack of 

symbolic representation of its environment. Modelling of the environment in BBR is 

reduced to creating a world map, based on exploration. Even learning of such a 

simplified environmental model presents a challenge to BBR architectures. The 

problem of learning a world map was solved through the mapping based on location 

of landmarks [112]. In BBR there is no provision for storing traditional symbolic 

knowledge that can describe a world map. Instead world map information is stored by 

creating behaviours that store landmark information, as described next. 

 

The mapping based on location of landmarks proposes that once a landmark is 

detected, a new behaviour is created. The newly created behaviour has the following 

parameters: landmark type, direction (orientation) and distance from the previous 

landmark. Each new behaviour is linked to the previous one, in effect creating a map 

that consists of a set of linked landmarks. Navigation then consists of traversing from 

one landmark to another. 

 

More details about the landmark navigation approach to mapping can be found in 

[112][50].  

 

4.2.3.3 Learning Behaviour Patterns from Behaviour History 
 

The BBR architecture incorporates a mechanism to learn behaviour patterns from the 

history of behaviour dynamics [124]. Each robot maintains a tree-like topological 

structure for the duration of task execution, wherein occurred behaviours are stored. 

 

The tree topology represents the robot’s behaviour space, where each node represents 

an executed behaviour. The tree topology is the representation of a behaviour 
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sequence in a robot’s behaviour space. The links were weighted statistically, 

according to link-usage frequency.  

 

For the different goals, patterns in behaviour activations are identified using the tree 

of behaviours. If a pattern in behaviours activation has led to the fulfilment of the 

identified goal, the identified pattern is used in subsequent behaviour selection of 

similar tasks. The approach was successfully tested on robot systems. More details on 

these experiments can be found in [124]. 

 

4.2.3.4 Other Learning Methods in BBR 
 
Various other learning methods were tested in the BBR architecture, some using 

innovative approaches. For example, to facilitate learning of interaction models 

between agents, the authors have developed Augmented Makarov Models (AMM) 

[119]. In order to provide a higher level of abstraction, necessary for more complex 

deliberation, an abstract behaviour was introduced in [135] that have provided BBR 

with reasoning tools almost equal to those of the best deliberative, symbolic systems.  

 

4.2.4 Cooperation Model 
 

Cooperation does exist in BBR but it is not obvious, as there is no intentional 

cooperation. Instead, cooperative behaviour can emerge as a side-effect. At this stage 

it is important to note a view firstly expressed by Matarić [114] that cooperative 

behaviour based on negotiations require direct communication between the agents. 

Communication is also a prerequisite for distributed cooperative problem solving 

[80]. With these views in mind, the cooperation model used in BBR has limited 

capabilities, mostly because of the limitations of the communication method.  

  

Firstly, BBR is a highly decentralised architecture with fully autonomous agents. 

There is no central system or knowledge repository that can store the data that was 

acquired by multiple agents. Instead, each agent is dependant on its local environment 

for the knowledge it acquires. In other words, the knowledge is not shared. 
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Secondly, the communication method is capable of broadcasting only short messages. 

This further limits the amount of information that can be transferred between the 

agents (note that the communication protocol transmits only simple messages, not 

knowledge).  

  

Thirdly, there is no symbolic knowledge information. The symbolic knowledge is 

easy to exchange and modify, using some of the more advanced approaches such as 

KQML [66][99] or the XML [186].   

 

Initially, communication was used for the simple task of detecting another robot 

[113]. At a later stage, a robot could “agree” on team interaction based on information 

received from another agent [119]. Limited social behaviour was modelled using the 

same, limited communication mechanisms [117]. Despite the above-mentioned 

limitations, cooperation was investigated in [174] with a limited success. 

 

Social behaviour is a way of resolving conflicts that arise in teams of autonomous, 

uncoordinated robots. Conflicts in BBR do not arise because of the competitive nature 

of agents but due to the unintentional interference between the agents. Agents do not 

have conflicting goals but the interference may lead to negative interaction.  

 

Out of the three coordination mechanisms that were discussed in section 2.4.1.1, the 

BBR architecture was modified to use social coordination. Social coordination is the 

predominant approach to coordination in BBR [117][116].  

 

4.2.5 BBR - Conclusion 
 
As a successor to purely reactive architectures, BBR has continued the tradition of 

revolutionising the field of mobile embodied agents.  

 

BBR has retained all positive characteristics of reactive architectures. BBR is 

characterised by fast execution time, due to simplistic couplings between sensors and 

actuators. BBR also lends itself to relatively simple robot implementations that 

provide an efficient environment for multiple robot team experiments. 
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BBR has significantly improved over purely reactive architectures by providing 

mechanisms for the internal representation of the environment [50], learning and 

improving on existing behaviours [118], communication [119] and even social 

behaviours [117]. 

 

One of the main characteristics of BBR is its limited communication model, which 

may seem to be a major limitation. However, considering the limited knowledge that 

is maintained by each agent, the limitations of its communication model are not so 

severe.  

 

Cooperation, internal representation of the environment and even social behaviours 

are implemented in a very efficient manner, but all of them have limitations, as 

described in previous sections.  

 

It is interesting to note that BBR has evolved from reactive architecture characteristics 

toward characteristics that are traditionally associated with symbolic architectures 

(e.g. planning, social interaction and environment modelling). 

 

One of the main reasons for the appearance of reactive architectures and subsequent 

improvements of the reactive architecture (such as BBR) was the fact that the 

execution of traditional symbolic reasoning based systems was slow. Today, 

processing power is easily and cheaply available and this approach should be 

reconsidered. It seems that the future of behaviour based systems lies in its 

incorporation with hybrid systems as an environment-agent layer.  

 
 

4.3 Hybrid MAS (MACTA) 
 

This section presents an overview of a hybrid architecture, Multiple Automata for 

Complex Task Achievement (MACTA), developed at the University of Salford 

[11][10]. 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRooddii



 

72 
 

 

4.3.1 Introduction 
 

 MACTA combines a symbolic planner with a behavioural architecture, the 

Behavioural System Architecture (BSA) [17][15]. MACTA is referred to as a MAS 

with a reflective agent that supervises multiple behaviour architecture agents (robots) 

[11]. MACTA is not only a hybrid in the sense that it combines sub-symbolic and 

symbolic reasoning, but it also consists of embedded agents (robots) and a non-

embedded agent (reflective agent). MACTA has been successfully tested on tasks 

such as docking, cooperative relocation of objects and tracking using two robots. 

MACTA consists of two main components, namely BSA and the reflective agent.  

 

Although it consists of two main components, MACTA is a three-layer hybrid 

architecture because it also contains an interface layer, referred to as the mission 

organiser.  

 

4.3.2 Behavioural Synthesis Architecture 
 

BSA [17][15] extends and improves earlier reactive architectures such as the 

subsumption architecture [31]. BSA allows for single and multiple robot systems. 

Within BSA, two types of robotic behaviour are identified:  

 

•  Egoistic, or self-interested behaviour where a robot pursues only its goals, 

without taking into consideration the goal of the whole multi-robot team. 

•  Altruistic, where a robot might not pursue its optimal state, in order to allow 

the whole multi-robot team to achieve its optimal state. 

  

Egoistic (or self interested) behaviour is a typical characteristic in a single robot 

system. Altruistic behaviour is often desired in case of multi-robot systems.  

 

BSA defines four layers, namely the self, the environment, the species and the 

universe layers (refer to figure 9):  
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•  The self-layer contains strategies concerned with internal resources (e.g. 

battery levels). 

•  The environment layer contains behaviours that relate to the agent’s 

interaction with the environment (such as obstacle avoidance).  

•  The species layer contains strategies for the interaction between agents (such 

as cooperation).  

•  The last layer, the universe layer, contains strategies for achieving tasks (such 

as object reallocation).  

 

BSA agents have no representation of the world. Instead, the BSA agents are aware 

only of their local environment. BSA, in the tradition of many reactive and 

behavioural architectures, is horizontally layered, where each layer can receive inputs 

from the environment and each layer can produce actuator commands.  

 

Where BSA departs from reactive architectures is that the actuator command is 

synthesised from all actuator commands and only the resulting command is sent to the 

physical actuator.  This process is illustrated in figure 9. The actuator commands 

produced from a single behaviour are represented in a form of vectors in two-

dimensional space. The synthesised output, represented as a vector on the right hand 

side of figure 9, is then the result of summing all individual vectors.  
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Figure 9. BSA Architecture illustrated (modified from [16]). 
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The synthesis mechanism is not the only coordination mechanism available to BSA. 

For example, coordination can be achieved by creating complex behaviours scripts 

with predetermined coordination rules. The complex behaviours can enable and 

disable simpler behaviours according to these coordination rules, thus preventing 

conflicting interaction between the behaviours.  

4.3.3 Behaviour Scripts 
 

Behaviour scripts serve as an interface between the behavioural architecture and the 

reflective agent. Behaviour scripts in BSA are in the form of a triplet (sensor-pre-

conditions, set of enabled behaviours, sensor post-conditions). 

 

The behaviour script can be seen as a set of enabled behaviours that are activated 

when sensor pre-condition is satisfied and remains active until sensor post-conditions 

are satisfied. It is important to note that scripts do not contain behaviours. The 

behaviours are contained in the BSA and organised in four layers, as explained in the 

previous section. The behaviours are activated or deactivated by appropriately setting 

the active flag associated with every behaviour, irrespective of the layer in which it is 

stored. The actuator output is then synthesised from the outputs of all active 

behaviours.  

 

The process is illustrated below in Algorithm 1 (from [9]): 
 
If (sensor-pre-conditions TRUE) then 
 
 While NOT (sensor-post-condition) 
  Synthesise(activebehaviours) 
 Endwhile 
 
endif 
 

 
Algorithm 1. BSA behavior algorithm 

 
 
Behaviour scripts correspond to the sequencer layer of hybrid architectures (see 

section 3.4.2.3). The original MACTA implementation used handcrafted behaviour 

scripts [11][16].  
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4.3.4 Reflective Agent 
 

MACTA defines a fifth layer, the reflective agent, to maintain the symbolic world 

model and to perform symbolic reasoning. Although, logically, the reflective agent 

forms another layer of the MACTA architecture, the MACTA terminology refers to it 

as a reflective agent. In order to avoid possible confusion, the MACTA terminology is 

used from now onwards. The reflective agent has two main components: the mission 

organiser and the planner, both of which are described in this section. The planner 

creates a partial order plan (consisting of numerous sub-goals), using the symbolic 

reasoning mechanism, which is then passed to the mission organiser. The mission 

organiser then translates the symbolic sub-goals into behaviour scripts that are, in 

turn, passed to the agents (robots). A high level overview of the reflective agent is 

illustrated in a figure 10.  
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Figure 10. Overview of MACTA Reflective Agent 

 

Interaction of a reflective agent with BSA agents is via behaviour scripts. The 

feedback from BSA agents to a reflective agent is very crude: the feedback is reduced 

to an indication as to whether the execution of a task has been successful or not.  The 

planner and mission organiser are discussed next.  
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4.3.4.1 Planner 
 

MACTA uses a standard symbolic planner [9], namely a modified UCPOP [146]. The 

UCPOP is modified as follows:  

 

•  Provision is made for multi-robot teams. Actions are, however, manually 

handcrafted.  

 

•  Task allocation is done in a simple way that uses all the available robots for a 

task. While this approach worked well for the experiments using the MACTA 

architecture (where only two robots have been used), it is unclear how (and if) 

this approach can be scaled up to robot teams consisting of a larger number of 

robots. An alternative task allocation mechanism using a market inspired 

approach, such as CNP [49], was considered but not implemented.  

 

•  The planner does not maintain a full world model. It contains only pre-

programmed information about stationary objects, for example, walls.  

 

The planner subdivides goals into a partially ordered plan that cannot be decomposed 

further. The partially ordered plan is then presented to the mission organiser. 

 

4.3.4.2 Mission Organiser 
 

The mission organiser’s responsibility is to translate the symbolic representation of 

the user’s desired goal (obtained via an user interface) and pass it to the planner. The 

planner then generates a hierarchical non-linear plan. The mission organiser translates 

the primitive (but still represented in symbolic terms) actions of a plan into behaviour 

scripts (that are represented in sub-symbolic terms), which are then propagated to 

appropriate agents. The role of the mission organiser is illustrated in figure 11. 
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Figure 11. Role of the Mission Organiser in MACTA (adapted from [10]) 

 

4.3.5 Coordination Model 
 
MACTA caters for coordination between agents in a very elementary fashion. 

Coordination is achieved through behaviours only, without exchanging any 

information and without maintaining a world model. In the experiments that were 

performed, MACTA was successfully applied to tasks such as cooperative object 

relocation and cooperative object tracking [11][10]. For each task, the reflective agent 

initiated coordination. 

 

There are two modes of interaction between robots: interaction between close-coupled 

robots and interaction between loose-coupled robots. In MACTA, a close-coupled 

scenario assumes physical coupling, i.e. robots are physically attached to each other. 

In loose-coupling, robots are reliant on remote sensing equipment such as cameras. 

 

The coordination model used in MACTA has numerous shortcomings. Firstly, the 

reflective agent is always the initiator of coordination behaviour. This is not ideal in a 

highly distributed environment where agents are complex because resource usage is 

inefficient. Secondly, all behaviours for coordination are handcrafted. It is improbable 

that handcrafted solutions can be scaled to large robotic teams. Thirdly, interaction 

between robots is done purely through sensing of the local environment. This is a 

characteristic of reactive and behaviour based architectures and a critique of these was 

presented in section 3.3.4. 
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In MACTA, although agents are autonomous, the coordination model used indicates 

that all planning is done centrally. MACTA can therefore be seen as a centralised 

architecture. 

 

4.3.6 MACTA - Conclusion 
 

The MACTA architecture is a promising hybrid architecture that combines the best 

characteristics of a symbolic planner with an efficient behaviour architecture. 

However, there are some aspects that need improvement. For example, all behaviour 

scripts are handcrafted, which is clearly not feasible for a large number of 

heterogeneous agents. The mission organiser component of the system can also be 

improved. The current system uses one-to-one mapping of a primitive action (the 

output of a planner component) to a behaviour script. Intuitively, an one-to-many 

mapping would potentially be more powerful (and abstract), but it would introduce 

additional complexity. In other words, a desired task could be achieved through 

different behaviours, depending on the conditions and inputs from other agents or the 

environment.  

 

MACTA does not provide any learning mechanisms, which is another serious 

shortcoming. However, the primary problem with MACTA is that the majority of the 

model is either handcrafted or it caters for a team of only two robots, without a clear 

indication of how it could scale to larger teams of robots. 

 
 

4.4 Summary 
 

Two MAS architectures, together with a representative example, were overviewed 

and discussed in this chapter. Particular consideration was given to the coordination 

model employed by both architectures, as the coordination model is seen as the key to 

successful MASs.  

 

The next chapter presents a new MAS architecture, INDABA, which addresses one of 

the most important aspects of MAS architectures, namely the ease of implementation 

of the coordination mechanism.  
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Chapter 5: New INtelligent Distributed Agent Based 
Architecture 

 

As seen in chapters 3 and 4, agent architectures are almost as diverse as agent 

applications. Currently there is no architecture that will suit all applications. The new 

proposed INtelligent Distributed Agent Based Architecture (INDABA) is designed 

with the goal of constructing an architecture for cooperative, embodied agents 

(robots) in multi-robot teams. The architecture presented in this chapter is mainly a 

conceptual framework that is not too prescriptive in implementation technique. 

Instead, INDABA should be seen as a guideline for designing cooperative agents. An 

overview of INDABA and rationale behind INDABA are given in section 5.1. Section 

5.2 presents the first layer of INDABA, the controller layer, together with an example 

that illustrates a potential implementation. The second INDABA layer, the sequencer 

layer, is presented in section 5.3, again together with an example that illustrates a 

potential implementation. Section 5.4 presents the concept of deliberator layer with 

an example that illustrates its workings. The last INDABA layer, the interaction layer, 

is presented in section 5.5. The example used to illustrate the interaction layer and 

associated concepts is based on a cooperative problem-solving approach that consists 

of five steps, as described in section 5.5. Section 5.6 summarises INDABA and 

outlines possible future developments.  

5.1 Overview of INDABA  
 
Based on the investigations of agent architectures that were presented in chapters 3 

and 4, the following was observed: 

 

•  The hybrid architectures have clear advantages over pure symbolic and 

reactive architectures as they have the best characteristics of both 

approaches and they address the weaknesses of both approaches. 

•  Due to the various agents’ (and robots’ in particular) technology platforms, 

as well as the numerous possible applications, it is not possible to have a 

unified, general-purpose architecture that will satisfy all requirements. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRooddii



 

80 
 

 

•  The coordination mechanism in the majority of existing architectures is not 

flexible enough or virtually non-existent.  

•  The coordination mechanisms often ignore uncertainty about a task by 

assuming the ideal environment where details about the task are complete 

and accurate.  

 

With these findings in mind, the new proposed conceptual architecture, INDABA, 

was designed and developed. INDABA is a layered architecture. It appears that most 

researchers, i.e. Brooks and Barnes [31][15] agree that agent architecture should be 

layered [106]. Furthermore, in the field of autonomous robots, it seems that most of 

the researchers [22][73][173] have standardised on hybrid architectures, consisting of 

three vertical layers.  

 

As discussed in section 3.4.2.1, architectures can either be vertically or horizontally 

layered. INDABA provides for a hybrid between these two approaches, albeit more of 

a vertical layering approach than horizontal. The layers of INDABA are illustrated in 

figure 12. In INDABA, the main interaction between the layers is between the vertical 

layers, while less frequent interaction between the agents is done through the 

horizontal layers.  The lack of interaction between layers was one of the main 

critiques of many horizontal-layering architectures, such as the subsumption [31] and 

behaviour based architectures [113].  

Deliberation

Sequencing

Reactive Skills

Deliberator Layer

Sequencer Layer

Controller Layer

Deliberation

Sequencing

Reactive Skills

Environment

Interaction Interaction

Interaction Layer
Team Formation

Task Instatiation

Behaviour Sequencing

Interaction with
Environment

 
Figure 12. INDABA Layers 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRooddii



 

81 
 

 

 

In comparison with more common three-layer architectures such as 3T [22] and 

ATLANTIS [73], INDABA introduces an additional layer; the interaction layer, that 

facilitates coordination through task allocation.  

 

INDABA is designed with ease of coordination between the agents in mind. Ease of 

coordination between agents was achieved through introduction of a coordination-

oriented layer that encapsulates the selected coordination mechanism.  

 
INDABA is also a hybrid architecture. Currently, the most common approach to 

design robots is to use a hybrid approach (as described in 3.4) that combines the best 

characteristics of reactive and symbolic architectures (see sections 3.2 and 3.3 

respectively). As indicated in table 1, different architectures use different layer 

naming conventions. INDABA adopts the layer names deliberator, sequencer, 

controller and interaction layers.  

 

Each of the INDABA layers is discussed next, starting with the lowest level layer, i.e. 

the controller layer. 

 

5.2 Controller Layer 
 

The main purpose of the controller layer is to react dynamically, in real time, to 

changes in the environment. The controller layer can be seen as the implementation of 

fast feedback control loops, tightly coupling sensors to actuators [65]. In hybrid 

architectures [22][73], the controller layer is usually implemented as a set of 

behaviours using a behaviour based approach.  

 

INDABA also implements the controller layer using behaviours. Behaviours 

implemented in the controller layer are basic (primitive) behaviours.  Basic 

behaviours can be combined into more complex behaviours. Basic behaviours can be 

selected either according to the researcher’s experience or according to a 

methodology such as described in [113].   
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Implementation of the behaviours in INDABA follows the guidelines given by 

Matarić [113]. Generation of simple behaviours such as move_forward, turn_left, 

turn_right and other simple behaviours, precedes the synthesis of more complex ones 

such as avoid_obstacle, go_to etc. 

 

An example of a simple behaviour, move_forward, is given in algorithm 2 for a 

simple differential drive robotic platform, such as Lego Mindstorm [185]. 

 

behaviour move_forward 

   while true 

      LeftMotor(On) 

      RightMotor(On) 

  end while 

end behaviour  

 
Algorithm 2. move_forward behavior 
 

 

Most of the simple behaviours have no limit on duration of their execution. As such,  

simple behaviours are controlled by more complex behaviours. More complex 

behaviours can start and stop simpler behaviours. 

   

Complex behaviours usually have an associated completion condition. If the 

completion condition is satisfied, then the complex behaviour terminates. 

Alternatively, a complex behaviour might have a resource restraint that governs its 

execution. For example, a complex behaviour can be allowed to execute only for a 

limited period of time. In other words, behaviours can stop their own execution if 

stopping criteria are defined and the stopping criteria are met.  

 

To illustrate a complex behaviour, consider an implementation of the avoid_obstacle 

behaviour. The avoid_obstacle behaviour in this example is activated if touch sensors 

detect an obstacle. The value for the wait function has been arbitrarily set to 50 (the 

parameter value indicates the hundredth part of a second, so a value of 50 indicates 

0.5 seconds). The avoid_obstacle  behaviour has a limited duration of its execution. 

The behaviour is implemented as a combination of simpler behaviours move_forward, 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRooddii



 

83 
 

 

move_backward, turn_right, turn_left, detect_left_touch and detect_right_touch, as 

illustrated in algorithm 3. 

 

behaviour avoid_obstacle 

   if detect_left_touch  

      start move_backward  

      wait (50) 

      stop move_backward 

      start turn_right 

      wait(50) 

      stop turn_right 

  else  

      if detect_right_touch  

        start move_backward  

        wait (50) 

        stop move_backward 

        start turn_left 

        wait(50) 

        stop turn_left 

   end else if  

end behaviour 

 
Algorithm 3. avoid_obstacle behaviour  

 

It is important to note that INDABA does not prescribe specific implementations of 

behaviour. Implementations usually depend on the robotic platform, and INDABA’s 

goal is to provide a platform independent architecture. Each behaviour is treated as a 

black box and as an autonomous, self-contained object. Using such approach, a 

multitude of various platforms, some of them with existing comprehensive libraries of 

behaviours, can be easily encapsulated into an INDABA agent architecture. 

 

While higher layers can be interchangeable between various hardware and software 

platforms, the controller layer is platform-dependent, because it executes on a specific 

robot platform. The implementation of the controller depends on a physical suite of 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRooddii



 

84 
 

 

sensors and actuators. Chapters 7, 8 and 9 discuss specific implementations of 

INDABA. The first two implementations runs as a set of algorithms in a simulated 

robot environment, and the third as a set of behaviours executing on a robotic 

platform. 
 

5.3 Sequencer Layer 
 

The job of the sequencer layer is to further combine behaviours into more complex 

behaviours that are closer to higher level goals. The sequencer layer achieves this task 

by enabling or disabling behaviours and/or by providing parameters for the execution 

of behaviours. The complex behaviours in the sequencer layer are seen as sub-tasks, 

used by a symbolic reasoning mechanism implemented in the next layer, the 

deliberator layer.  

 

As discussed in section 3.4.2.3, there are different ways in which the sequencer layer 

can be implemented. For the initial implementation of INDABA, the universal plan 

approach [165] was adopted. The sequencer layer is based on a universal plan in the 

form of a table that is loaded from a text file. Each sub-task has a set of corresponding 

active behaviours and a condition or set of conditions that will satisfy its goal. The 

conditions are usually represented as a combination of completions of simpler 

behaviours. 

 

Table 3 illustrates an implementation of a sequencer layer. Behaviours safe_wander, 

detect, collect and home are complex behaviours that are implemented in the 

controller layer, while sequencer layer behaviours Find, Collect and Home are 

implemented as a combination of these complex behaviours in the controller layer 

(refer to table 3). 

 

Sub-task    Active Behaviours               Goal 
    safe_wander   detect  collect  home   

Find  1  1  0  0  detect 
Collect  0  1   0  0  collect 
Home   0  0  0  1  home 
 

Table 3. Illustration of INDABA sequencer layer 
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For the example illustrated in table 2, it is important to note that the detect, collect and 

home behaviours do have completion conditions, while safe_wander does not. 

 

The sequencer layer can be seen as a higher abstraction of basic behaviours. The 

result is a group of sub-tasks that can now be instantiated from the deliberator layer. 

 

5.4 Deliberator Layer 
 

The next layer of INDABA is the deliberator layer. The deliberator layer is the first 

INDABA layer that uses symbolic reasoning based on a symbolic world model. 

However, the deliberator layer performs crucial functions in INDABA (as for any 

other hybrid agent architectures):  

 

•  Builds and maintains the world model.  

•  Deliberates (reasons) on a course of action in symbolic terms. 

•  Interfaces with the sequencer layer, by starting s in the sequencer layer. 

 

The initial INDABA implementation uses a simple backward chaining inference 

engine and a rule database to implement the deliberator layer.  

 

To illustrate the working of the deliberator layer, consider a simple foraging problem. 

For this purpose, the sufficient set of rules are: 

 

Task: FORAGE 

Rule1: IF Find THEN Collect 

Rule2: IF Collect THEN Home 

 

The rules are loaded from a text file. The process start by pursuing the goal Home. 

Simple backward chaining leads to goal Find . 

 

Goal Find  is then sent to the sequencer layer. The sequencer layer then performs a 

table look-up to determine the active behaviours associated with goal Find and the 

stopping criteria. From table 2, the active behaviours for goal Find are safe_wander 
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and detect. The stopping criterion for goal Find is that the behaviour detect is 

completed. 

 

If the detect behaviour is completed, an object is detected and the sequencer layer 

reports to the deliberator layer that it has achieved its given goal, i.e. Find. The 

deliberator layer then, from Rule 1, inferences that the Collect behaviour needs to be 

satisfied. The Collect goal is then passed to the sequencer layer, and the execution 

continues. 

 

The above example is simple, but sufficient to describe basic execution of a task in 

INDABA. It is important to note that in the implementation of INDABA, as presented 

in this thesis, the deliberator layer does not build its own world model.  

 

5.5 Interaction Layer 
 

The interaction layer encapsulates mechanisms that facilitate the coordination 

between agents in INDABA. The interaction layer maintains its own internal state by 

means of maintaining multiple variables. The variables in INDABA are divided into 

sets that are referred to as mental states.  In INDABA, each agent maintains its own 

set of mental states. There are three separate sub-sets of mental states, namely: self-

related, task-related and society-related mental states.  

 

Mental states can be changed by the agent itself, based on the agent’s own experience, 

or they can be changed through interaction with other agents. Each of the mental 

states implemented in INDABA are described next. 

 

5.5.1 Self-Related Mental State 
 

The self-related sub-set of mental states consists of the agent’s beliefs about its own 

capabilities. The initial application of INDABA is in robotics, where this sub-set 

consists of a robot’s enumeration of its own sensors and actuators and their 

characteristics. In INDABA, the self-related mental state is used to determine the 

agent’s own suitability to a task. For the purpose of this thesis, a simple hard-coded 
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data structure was used to represent the self-related mental state. An example of such 

data structure is discussed in chapter 7, where a particular INDABA implementation 

is presented in detail. 

 

5.5.2 Task-Related Mental State  
 

Once allocated a task, the agent must store the task information. All information 

related to a task is stored in the agent’s task-related mental state. A task is described 

by a set of attributes. For the purpose of this thesis, task-related mental state was 

implemented as a simple data structure, as discussed in chapters 7, 8 and 9.  

 

It is important to note that a simple data structure is not the ideal implementation. A 

simple hard coded data structure implies prior knowledge about the problem domain. 

INDABA is not a prescriptive framework, but allows implementations using more 

flexible mechanisms, such as KQML [66][99] and XML [186]. 

 

5.5.3 Society Related Mental State  
 

The implementation of a society related mental state depends on the selected 

coordination mechanism. For example, in a pure auctioning coordination mechanism, 

the society mental state consists of only one parameter, namely the cost of an agent. 

On the other hand, other approaches such as the hierarchical approach (described later 

in section 6.3.2) and a social networks based approach (refer to section 6.6) require 

more complex data structures.  

 

For the purpose of the experiments presented in this thesis, the society related mental 

state was implemented with a social networks based approach in mind. The 

implementation provides for the creation and maintenance of two distinctive types of 

social relationships between the agents (described in greater detail in chapter 6), 

through array-type data structures.  
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5.5.4 Coordination 
 

Coordination in INDABA is achieved through a cooperative problem-solving process. 

Neches et al. [132], Wooldridge et al [198] and Genesereth et al [75] divided the 

cooperative problem-solving process into four main stages:  

 

•  Potential Recognition: where an agent investigates which agents are capable 

of executing the task and tasks are allocated. 

•  Team Formation: where agents start to share a common goal and self-

organise to form teams to achieve this common goal. 

•  Plan Formation: where an agent or a whole team decides on the division of a 

goal into sub-tasks and on the allocation of those sub-tasks. 

•  Plan Execution: where an agent or, in the case of a team, agents execute their 

allocated sub-tasks. 

 

In addition to the four stages above, INDABA introduces an additional stage: 

  

•  Task Success Evaluation: where awards are distributed to successful team 

members and penalties are distributed to the unsuccessful team members. 

These awards are then utilised by a coordination mechanism to increase the 

affinity of an agent towards the allocated task. 

 

To illustrate the cooperative problem-solving process as implemented in INDABA, an 

example that uses a social networks based approach for coordination through task 

allocation is given next. It is important to note that the social networks based 

approach is purposefully just briefly described as it is presented in greater detail in 

section 6.6. The emphasis of this example is to illustrate the five stages of the 

coordination process in INDABA, not the social networks based approach. 

 

This thesis assumes that all members of the team execute the same task. Therefore, in 

the current implementation of INDABA, the plan formation is omitted as there is no 

breakdown of a task into sub-tasks. In the illustration of the role of coordination in 

INDABA, the emphasis is given to the potential recognition, team formation and task 
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success evaluation steps. The rest of this section overviews these as implemented in 

INDABA.  

5.5.4.1 Potential Recognition  

The potential recognition and task allocation functions are implemented as a simple 

auctioning mechanism. The auctioning mechanism awards a task to the highest 

bidder, i.e. the agent with the highest score. INDABA does not prescribe the 

mechanism to calculate the score, but for the purposes of this example it is assumed 

that the score is calculated using the social networks based approach (refer to chapter 

6). An alternative approach, based on CNP [175] was also implemented for the 

purpose of simulations that are discussed in chapters 7 and 8.   

 

During the potential recognition phase, the known task details are propagated to all 

agents in INDABA. For the purpose of this illustration, consider task details that 

consist of three parts:  

•  ENVIRONMENT_DETAILS, where known environment details are 

propagated.  

•  CONSTRAINT, which represents a time constraint as the maximum number 

of steps that each robot is allowed to execute. 

•  TASK TYPE, namely scout or forage. 

 

In the initial stages, when social networks are not yet established, INDABA uses a 

random selection of team members. When social networks are established, INDABA 

caters for more complex problem domains where there is uncertainty about tasks and 

the suitability of each agent for a specific task. This is achieved by maintaining social 

networks that are based on trust and kinship, as described in chapter 6.  

 

By means of developing and maintaining social networks, INDABA provides a 

mechanism for team selection optimisation, based on historical performance and trust 

as described in the following sections. Social networks also provide for specialisation 
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amongst the agents, as opposed to other frameworks that require that all agents’ 

capabilities be known and determined upfront.  

To illustrate the propagation of task details, consider that a contracting agent sends 

task details, as described above, to available robots, with a request to bid. If an agent 

is busy executing a task or prevented from executing a task (i.e. due to a malfunction), 

the agent will not respond to the bid. Each of the available robots evaluates its own 

suitability (affinity) to the task, based on its mental states.  

 

The evaluation of task affinity is a two-step process, based on each robot’s history. 

Firstly, the environment, as given by ENVIRONMENT_DETAILS is identified. 

Identification is done by encoding the environment according to its known attributes 

to produce an environment identifier. Secondly, the environment identifier and 

TASK_TYPE are used to identify the robot’s previous experience in the environment 

identified by the environment identifier, related to the task identified by 

TASK_TYPE. The experience quantifier, expressed as a ratio between successful task 

executions and total number of task execution attempts, is then returned as the 

corresponding robot’s bid. After all the available agents have entered a bid, teams are 

formed as explained in the next section. The potential recognition stage is summarised 

in algorithm 4. 

Potential recognition 

If not Auctioning agent 

   Receive task attributes 

   Identify environment 

   Send bid based on history and availability 

Else 

  Send all agents task details 

  Collect bids 

  Award task to the highest bidder (team leader) 

End 

 
 
Algorithm 4. Potential recognition 
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5.5.4.2 Team Formation 

The team formation algorithm has two parts, each consisting of a bidding process. 

The first bidding process is for selection of team leader. The robot with the highest 

bid is selected and awarded the responsibility of seeing the task to completion. This is 

either done by the team leader itself, or by a team, selected by the leader. If there are 

more than one robot with the same highest bid, one robot is randomly selected as the 

team leader.  

 

The second bidding process is used for selection of additional team members. The 

additional team members are chosen according to the strength of the social link 

between potential team member and the team leader. In this example, the strength of 

social links (based on trust and kinship) in relation to the team leader is used as the 

bid. The team is formed by selecting the agents with the strongest bids. In a foraging 

example, if the carrying capacity of the agent with the highest bid is not sufficient, or 

there are multiple items to be collected within limited time period (as in experiments 

used throughout this thesis), a foraging team is formed and each member of the team 

has the same task to collect food (forage). The team formation process is described in 

p-code in algorithm 5.  

 

Team Formation  

 Collect bids for team leader 

 Select team leader as the highest bidding agent 

 For all agents  

     Evaluate strength of the social links between agent and team leader  

 End For 

 Select the team members according to the strength of social links  
 

Algorithm 5. INDABA potential recognition and team formation 

Once the team is selected, the task is executed. Upon completion (successful or 

unsuccessful), the performance of the team is evaluated. 
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5.5.4.3 Task Success Evaluation 

The task success evaluation stage is implemented as a function that awards agents that 

have successfully completed their allocated tasks, with or without the help of other 

agents. Once task execution is completed, all the successful robots (the robots that 

have completed the task) are rewarded. The strength of the social links between 

successful agents that have participated in the team are reinforced by raising the level 

of trust between the successful team members. For each successful robot in the team, 

its affinity to the task is improved by means of increasing the ratio between the 

number of successful task executions and the number of attempts of task execution. 

The exact reward function is not prescribed, and will be problem dependent. 

 

The next chapter explains how trust is calculated. For the purpose of illustrating the 

task evaluation process, let trust between two robots Ri and Rj in relation to a task T 

be defined as trust (Ri , Rj ,T). The task success evaluation process is then described in 

algorithm 6. 

 

Task Success Evaluation 

  For all Robots Ri in team   

      If Task T successfully executed 

           For all remaining Robots Rj  in team that have successfully executed Task T 

               Increase trust (Ri , Rj ,T) 

          EndFor   

      Else  

          For all remaining Robots Rj  in team that have not successfully executed Task T

              Decrease trust (Ri , Rj ,T) 

         EndFor 

     EndIf 

 EndFor 
 

Algorithm 6. INDABA Task success evaluation 
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5.6 Summary 
 
INDABA, the new MAS architecture, was presented in this chapter. INDABA 

consists of four layers, each of which was discussed in detail, with the emphasis on 

the interaction layer that encapsulates coordination mechanisms in INDABA. 

 

The next chapter discusses the main approaches to coordination. A new approach to 

coordination using social networks is also presented in the next chapter.  
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Chapter 6: Coordination Approaches 
 
This chapter provides an overview of the most commonly used coordination 

mechanisms, classified according to the paradigm of their origin. In section 6.1, 

definitions of cooperation and coordination are given, as well as clarification of the  

scope of this thesis with respect to coordination. Coordination approaches inspired 

by biology are presented in section 6.2, followed by approaches inspired by 

organisational sciences, described in section 6.3. Basic concepts of social networks 

are introduced in section 6.4, together with a brief discussion on the applicability of 

social networks to MASs. An overview of social networks-related research in the field 

of MASs is given in section 6.5. Lastly, the new coordination approach, based on 

social networks, is presented in section 6.6.  

 

6.1 Introduction   
 
Agents in a Multi-Agent System (MAS) can exhibit cooperative or competitive 

behaviours. While competitive behaviour can be encouraged in some computational 

intelligence approaches, such as evolutionary computing, in robotic applications it is 

not often desired. In robotics the cost of building a robot is relatively high, thus the 

evolutionary approach where undesired specimens are discarded, is often not 

desirable  (however, the evolutionary approach can be used in simulations and only 

the final optimal solution can be implemented physically). It is important to note that 

cooperative behaviour does not exclude market-based competitive approaches, such 

as the auctioning coordination technique [175].  

 

The key to a successful MAS is to prevent negative interaction (conflict) and to 

promote positive interaction (cooperation). In order to promote these two goals, it is 

necessary to implement a coordination mechanism.  

 

Coordination mechanisms can be broadly divided onto two distinctive groups: 

 

•  Emergent - where each agent pursues its own goals, but a coordination-like 

behaviour emerges through interaction within an environment.  This is often the 

case in swarm robotics [189][177].   
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•  Intentional - where agents actively and intentionally communicate in order to 

avoid conflict [144]. 

 

For the purpose of this thesis, the intentional approach [77] to coordination is 

followed.  

 

Furthermore, a specific intentional coordination method, task allocation, is the focus 

of this thesis and emphasis is on task allocation methods as a coordination technique 

for multi-robot teams.  

 
 

6.2 Biology-Inspired Approaches – Coordination 
Perspective  

 

The main advantage of investigating a biology-inspired approach for coordination 

mechanisms is the existence of coordination in biological systems. In fact, there is an 

abundance of insects and animals that successfully coordinate, for example ants in an 

ant colony and wolves in a wolf pack. Biology-inspired coordination mechanisms 

range from simplistic mechanisms that rely on very limited communication channels 

(as seen in insect societies) to sophisticated mechanisms that utilise multi-channels of 

communication  (i.e. gestures, sounds and “body language”) as observed in 

mammalian societies.  

 

The diversity of coordination mechanisms requires a clear separation of biology-

inspired approaches into two main categories: insect society-inspired and higher 

mammalian society-inspired. An overview of the main differences between the two 

approaches follows next.  

 

6.2.1 Overview of Differences Between Insect and 
Mammalian Societies (Coordination Perspective) 

 

Before considering multi-robot systems inspired by insects (commonly referred to as 

swarm robotics systems) or mammalian societies, it is useful to consider the 
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fundamental differences between real, biological agents in insect colonies and those in 

higher mammalian societies. The differences are discussed from cognitive and social 

perspectives. A full comparison is outside the scope of this thesis and only the 

characteristics related to cooperation and coordination are considered: 

 

•  Ability to learn. Insects have a much lower level of self-awareness and their 

individual learning ability is often non-existent. Insects typically do not 

develop memories and do not learn from past experience, whereas mammals 

do learn from past experience.  

 

•  Communication methods. Insects have much simpler communication 

mechanisms that prohibit the exchange of complex messages. Mammal 

societies usually employ complex means of communication. Another 

communication-related issue is the localised nature of insect communications. 

Insects usually communicate by touch and/or chemical reactions [19]. 

Mammals often use sound. Using sound as a communication method, 

mammals can communicate over greater distances. 

 

•  Individualism. Most agents are homogenous in insect colonies. In other 

words, insect colonies are anonymous societies where agents of the same type 

are indistinguishable. In contrast, kinship and other social relationships are of 

extreme importance to mammalian societies. 
 

Cooperation is a form of positive interaction between agents. It is a process of 

working together to achieve a common goal. The requirement for cooperation is the 

existence of a coordination and/or negotiation mechanism.  A view expressed by 

Matarić [114] is that cooperative behaviours (such as task allocation) based on 

negotiations require direct communication between the agents.  

 

Direct communication, i.e. when a specific agent is identified and addressed, is not 

possible in insect societies due to the lack of individualism and insects’ limited 

communication mechanisms. It is important to note that insects do communicate (for 
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example bees have a dance based communication mechanism), but the 

communication is limited in range and it is limited in the number of messages that  

can be communicated. However, it would be wrong to say that insects do not 

cooperate; they do, but through much simpler mechanisms based on interaction with 

their environment, using the principle of stigmergy [19]. The stigmergy principle is 

derived from observations of social insect colonies, such as bees and ants. The 

process of stigmergy is described as: 

 

“The production of a certain behaviour as a consequence of the effect produced in the 

local environment by previous behaviour” [19]. 

 

Due to the lack of individualism, hierarchies and social relations between agents in 

insect colonies are virtually non-existent. In mammalian societies, hierarchies and 

social relations play a fundamental role in the organisation of such a society. 

Cooperation models are often based on hierarchical and role-based models. Insect 

colonies, as a cooperation model, were and still are very attractive for applications in 

robotics [5][98]. The main advantages of swarm robotics are that the insect-like 

robots are fairly simple to construct; cooperation between such robots should be an 

emergent property of such a system. Swarm robot teams are usually fault-tolerant (to 

a degree, because if a sufficient number of agents fails then the whole team might 

fail). 

 

Coordination in insect-like multi-robot systems was initially done through interaction 

with the environment, using the principle of stigmergy [19]. The stigmergy-based 

coordination mechanism is very limited and although emergent cooperative behaviour 

was observed [168], it has imposed limitations on cooperation methods. The need for 

a more capable communication mechanism, even in insect-like societies, has been 

recognised relatively early in research and it has lead to various communication-

capable behaviour based multi-robot systems [113]. A summary of the differences 

between the agent models is given in table 4. 
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Agent Characteristic  Insect Colonies Mammal Societies 

Communication Sparse, localised Complex 

Individualism  No  Yes 

Learning ability No Yes 

 Table 4. Differences between two biology-inspired agent models 

 

6.3 Organisational Sciences-Based Approach 
 
 

Since the emergence of more complex work-related structures, it has become a 

necessity to better organise such structures. This necessity for better organisation gave 

birth to a range of disciplines under the research field of organisational sciences. 

Researchers in organisational sciences have concentrated mainly on the two most 

popular approaches, namely the market-based approach and the hierarchical approach.  

 

Each of these two approaches has its own advantages and disadvantages and each of 

them has been tried as a coordination technique in the field of MASs. The remainder 

of this section overviews market-based and hierarchical approaches. 

 

6.3.1 Market-Based Approach 
 
Markets are based on the voluntary exchange of commodities between parties at an 

agreed price. Market-based coordination is based on the same premise. Markets have 

many properties but from the point of view of its applicability to robotics, the 

following properties are of primary interest: 

 

•  Self-organisational property: Markets are self-organising through a pricing 

mechanism. This property is highly desirable as it helps with the social approach 

to MAS design, where agents are viewed as a self-organising society. 

 

•  Demand-supply relationship: Supply and demand are inseparable and self-

regulating. This relationship assumes the existence of two entities: a buyer and a 

seller.  
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•  Scalability: Theoretically there is no limit to the number of participants in a 

market. 

 

Ideally, when the market functions properly, there is an equilibrium price. The 

equilibrium price is the fairest cost of the transaction and coordination is nearly 

optimal. The idea of using market-based coordination, in MAS in particular and in AI 

in general, has lead to the development of various auction based algorithms. One of 

the most widely used coordination mechanisms used in AI is the Contract Net 

Protocol (CNP) [175]. CNP assumes the existence of a buyer, a seller and a price.  

 

With regard to robotics, auction based coordination has mainly been applied to 

simulated multi-robot teams. An example of such an application is given in [51]. 

Recently, the first real embodied agent systems that use auction based coordination 

have appeared [77]. It may be too early to judge the success of such coordination 

based MASs in real embodied agent applications, but there are concerns with the 

future of a purely auction based approach.  

 

Firstly, the method for awarding a bid must be determined. It is usually a metric or 

fitness function that is used to determine a winning bidder. In the case of a task that 

has not been done before, it is uncertain how to determine a winning bidder.  

 

Secondly, the auctioning mechanism relies on accuracy of the task details that is used 

by bidding agents to calculate the bid. The information that is submitted to bidding 

agents is not necessarily accurate or complete.  

 

Thirdly, it is unclear how a purely auction based approach can handle a scenario when 

a task exceeds the capabilities of each individual bidder. One of the main strengths of 

MASs is the ability to solve problems that exceed the capability of individual agents.  

6.3.2 Hierarchical Approach 
 
Probably the simplest way of coordinating agents is by establishing a relatively strict 

hierarchical architecture that prescribes the roles for each agent. Such an approach 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRooddii



 

100 
 

 

often assumes a globally coordinated and optimised multi-robot system. The 

coordination task is done either by a specialised agent [10] or by an agent that has 

been temporarily assigned the coordination role [103]. The hierarchical approach 

often uses a symbolic based planner that can provide the optimal solution based on its 

symbolic environment model.  

 

The hierarchical approach has a number of problems including: 

 

•  The inability to create an accurate world model performance  [197], and  

•  it is somewhat contrary to the idea of autonomous agents. Instead of being 

fully autonomous agents, the agents in a hierarchical approach system are in 

effect controlled from a central agent. 

 

The hierarchical approach also leads to easier specialisation of agents as agents can 

have different physical and logical characteristics, adjusted to their specific tasks. 

Agent specialisation can prohibit optimal load balancing. One of the extreme 

specialisations is that of MACTA [11][10], where the deliberative (or central 

planning) coordination agent is a desktop PC, while the  team members are physical 

robots. The side effect of specialisation is that redundancy is reduced. A team member 

cannot easily replace another team member that has failed because they have different 

physical and reasoning characteristics. 

 

Specialisation has a positive side: agents can be designed according to the role they 

are assigned to perform. Specialisation in this context can lead to lowering an agent’s 

complexity and cost as only the required functionality is implemented.  

 

If a centralised coordination mechanism is employed, the role of a reliable 

communication channel is crucial. In the case of failure of either the global 

coordinating agent or the communication channel, the hierarchical multi-robot system 

will fail. The single point of failure characteristic is not desirable. In certain 

environments (e.g. deep level mining, underwater exploration, electronics emissions 

saturated battlefield etc.), communication channels can be limited and unreliable. In 
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such environments, it is improbable that a hierarchical approach would be an effective 

approach to coordination, as it requires reliable communication channels.   

 

6.4 Social Networks 
 

Traditionally, societies are organised according to socio-economic structures such as 

markets, hierarchies and networks.  Only relatively recently, social networks have 

been identified as social organisational structures, with one of the first formal 

definitions of social networks given by Mitchell: 

“A (social) network is generally defined as a specific type of relation linking a defined 

set of persons, objects or events” [125]. 

 

Using social networks analysis, social networks can be used to explain why a society, 

as an entity, functions the way it does. From a social network analysis point of view, a 

society can be expressed as patterns of relationships between interacting units [195].  

Social network analysis can also give insights into emergent patterns, relationships 

and their implications to a society.  

 

Societies with well-developed patterns of social networks have many advantages. 

Before exploring these advantages, an introduction to the field of social networks and 

its terminology is necessary.  

 

6.4.1 History of Social Networks Analysis as a Science 
 

It is outside the scope of this thesis to give a full detailed history of the development 

of social networks analysis as a science. The reader is referred to [167] for more 

details. For the purpose of this thesis, only a brief overview is presented next. 

 

Social network theory did not appear suddenly as a unified, complete theory. Instead, 

social network theory has evolved from the works of various scientists over a period 

spanning almost a century. Initially, mainly behavioural and organisational scientists 

were interested in it. At the beginning of the 20th century behavioural scientists have 
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posed the question “how much do we preconceive objects and concepts and how 

much do we really perceive them” [167]. One of the answers to this question was the 

gestalt theory by Kohler [97]. Kohler proposed that our perception is defined by 

organised patterns through which humans interpret the real-world. Kohler’s gestalt 

theory was positively accepted and a number of researchers have expanded on his 

work, albeit mainly in the field of social psychology. 

 

One of the scientists that has embraced the gestalt theory was Moreno [167]. 

Moreno’s research focus was to determine the influence of structures, what he has 

termed “social configurations”, on the psychological well-being of an individual. 

Examples of such social configurations are concepts of friendship, attraction, 

repulsion, etc. Moreno’s main contribution to the field was the introduction of the 

concept of “sociometry”. Sociometry is a metric function for social relations. 

Furthermore, he has introduced a “sociogram”, which is basically a directed graph 

representing “social configurations”. The improved versions of sociogram are still 

frequently used to describe social relations. In fact, the sociogram has provided a 

foundation for graph theory applications to sociological sciences [195]. One way of 

representing social networks is through such graphs.  

 

Almost at the same time, a group of scientists at Harvard started their work on 

defining cliques, clusters or blocks within a society in the late 1920s. The most 

prominent amongst the researchers were Mayo and Werner [167]. Their research 

focus was different from that of Kohler and Moreno. While, as sociologists, Kohler 

and Moreno were interested in the application of social networks (or their humble 

beginnings) to social psychology, Mayo and Werner were interested in applying 

social networks to anthropology. This diversity of origins of modern social networks 

analysis emphasises the fact that from the early beginnings, social networks analysis 

was seen as an interdisciplinary technique.  

 

The Harvard group proposed communities within societies and often informal 

mechanisms that govern them [167]. By the late 1930s, basically all components of 

modern social networks analysis were in place, namely relationships, actors, cliques 

etc. However, a unified social networks theory was still decades away. 
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In 1969, a Manchester University researcher, J.C. Mitchell, published his work that is 

widely seen as the foundation of modern social network theory [125]. The majority of 

concepts introduced by Mitchell are still applicable and in use. Concepts and 

notations related to social networks, and relevant to this thesis, are defined next. 

 

6.4.2 Social Networks Analysis Concepts 
 
For the purpose of this thesis, only a selection of social networks analysis concepts is 

presented here. The selected concepts are relevant to the research presented in this 

thesis and sufficient to support the work done. The selected concepts are used in 

comments on results presented in chapters 7, 8 and 9. 

 

The selected concepts and definitions are: 

 

•  Actors that act semi-independently. Actors are autonomous, yet they are 

defined and embedded within the society through the existence of social 

networks. Actors can be seen as nodes in a graph that represents social 

networks. In MASs in general, and in INDABA in particular, actors are 

agents. Therefore, the remainder of this thesis uses the term agent instead of 

the term actor. 

•  Relationships that link agents to each other. The relationships can either be 

positively or negatively weighted, and are directed. The social relationships 

can be seen as indices of a graph that represents a society.  

•  Social network. A social network is a set of agents and a distinct relationship 

among the agents. 

•  Agent society. A society is a representation of a complete set of social 

networks. 

•  Cliques or clusters, that are sets of agents defined by existence of strong 

relationships. A clique is a sub-set of a society, or in graph terms, a sub-graph. 

 

To illustrate the described concepts, consider a society with only one type of 

relationship, namely the frequency of cooperation between individuals A, B, C, D and 
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E on a specific project. Table 5 summarises the frequency of cooperation between the 

agents in the society.  

Cooperated A B C D E 

A 0 27 25 5 0 

B 27 0 31 0 3 

C 25 31 0 8 7 

D 5 0 8 0 35 

E 0 3 7 35 0 

Table 5. Matrix representing a social network 

 
Based on the relationships given in table 4, figure 13 illustrates a graph that describes 

the resulting society.  

A D
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Figure 13. An illustration of a social network representation 

 

Individuals A, B, C, D and E are agents, represented as nodes in the graph. The 

indices associated with links represent the frequency of cooperation between the 

agents on the project. The existence of strong relationships between certain members 

is an indication that those members form a cluster (or a clique). Figure 13 illustrates 

two clusters (as indicated by bold lines): one consisting of individuals A, B and C and 

the other consisting of individuals D and E. 
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Membership to a social cluster or a social relationship is not exclusive: a member can 

be linked to other members through multiple social relationships. The agents that are 

linked through a social relationship can be seen as the members of a social group. 

Examples in human society abound: a person can be a member of a sports club, a 

university study group and a family. In human societies, social networks are present 

in everyday interactions but they are not always simple to express and quantify. Key 

questions applicable to social networks are how the social relationships that define the 

social networks are formed and how they are maintained [180]. In more complex 

animal societies, concepts of kinship and trust form a fundamental, but not exclusive, 

role in the creation of social networks.  

 

It is important to note that this is a simplified representation of social networks in 

comparison with social networks as observed in the real-world. Real-world social 

networks are often more complex and have attributes such as direction, durability and 

intensity [102].  

 

6.4.3 The Importance of Uncertainty in Multi-Robot Teams 
 
Uncertainty about task details is unfortunately one of the realities of implementing 

any MAS and specifically multi-robot teams in real-world environments. The problem 

of uncertainty is more evident in robotic applications operating in previously 

unexplored environments. Those environments are difficult to model, due to the 

uncertainty about the environment attributes. Furthermore, there is often no previous 

history of similar applications. Interplanetary robotic exploration is an example of 

such environments.  

 

The majority of “robots” that were used for interplanetary exploration, starting with 

the early Soviet Lunokhod series [191] up to the recent NASA’s Mars Rovers [187], 

are not agents or robots in the true sense of the definition of an agent (refer to section 

2.2.3). These vehicles are not autonomous, but tele-operated from Earth, leaving just a 

basic interaction with its environment to their internal mechanisms. 
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While “robots” within the inner Solar system can be tele-operated due to the fact that 

the delay caused by the finite speed of radio signal propagation is within (barely) 

acceptable limits, the same method of exploration will not be possible for the further 

reaches of the Solar system and beyond. Interplanetary exploration is just one of the 

problem domains that will benefit from the evolution of more autonomous, self-

organising robotic systems.  

 

On other hand, biological systems, such as teams of animals or humans, generally 

cope with uncertainty. In other words, teams of animals or humans, when put in 

different environments and faced with unfamiliar tasks, generally achieve their goals. 

The view proposed in this thesis is that one of the contributing factors is the existence 

of social networks that define a team and the structures within it.  

 

6.4.4 The Applicability of Social Networks to Multi-Robot 
Teams 

 

A major advantage of societies with multiple, well-established social network is that 

they are flexible enough to allow the best team for the task to be selected by using the 

most appropriate social relationship that in turn defines the social group. For example, 

if a task involves participation in some sport, the member belonging to the sports club 

that practices that sport should be used to form a team. Affinities between social 

groups can also play a significant role. If there is uncertainty about the task and no 

social group satisfies the demands of that task, then the group with the highest affinity 

for the task should be selected. The existence of such affinity relationships between 

social groups is very important. Affinity between social groups is especially important 

when there is uncertainty (lack of detailed information) about the task or in the case 

where the best candidates for a task are already allocated to another task. In the case 

that the best candidates are not available, the “next best” candidates must be selected. 

The “next best” candidates are the members of the social group with affinity to the 

optimal social group.  

 

It has been noted in section 6.4.2, that social networks are sets of agents and 

relationships between them. Agents are members of a society and robots in multi-
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robot teams can be viewed as members of a society. Zini, for example, defines a MAS 

as a society of agents [204].  

  

With the previous definition in mind, a multi robot-system can be defined as: 

“…a social and cognitive entity with a relatively identifiable boundary, that functions 

on a relatively continuous basis through the coordination of loosely interdependent, 

cognitive and autonomous agents” [22]. 

 

By considering a multi-robot team as a society, social networks between robots can be 

identified and analysed. The knowledge obtained from the social networks analysis 

can then be used to describe multi-robot teams, as well as to predict and coordinate 

the behaviour of the team as a single entity.  

 

Social relationships within a society are often very complex and can be 

multidimensional. More often than not, there can be more than one social relationship 

between two agents. In human societies, it is easy to grasp the wealth of relationships 

with all members of societies being linked to others. 

 

For the purpose of this thesis, the approach taken is to initially consider higher 

mammalian societies and to isolate only a few applicable relationships. This is by no 

means an exhaustive approach, but rather an exploratory approach. The social 

network-based approach, as presented in this thesis, is by no means limited to the 

number of relationships that each agent can have. However, the implementation of the 

social networks based approach developed for the purpose of the simulations 

presented in this thesis is limited to two social relationships only, namely kinship and 

trust.  

 
 

6.5 Related Work 
 
Higher mammalian societies, and specifically human societies, have inspired research 

related to the applicability of the coordination mechanisms in MASs. During the 

1990s, a number of researchers were involved with various society-inspired MAS-

related research.  
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Social networks are an integral part of such societies and although there is no directly 

related work done on utilising social networks for task allocation as presented in this 

thesis, it is important to overview existing research efforts.  

 

The social network-related research efforts can be broadly divided into three main 

categories: 

 

•  Research interested in social hierarchies as coordinating mechanisms. 

•  Research in modelling higher mammalian societies in order to better 

understand the subtle relationships that exist in them, with a view to be 

possibly used as coordination mechanisms. 

•  Research into the use of social networks for trust propagation in MASs. 

 

6.5.1 Social Hierarchies and MAS Applications 
 
Social hierarchies have been of interest to researchers from the early days of DAI 

research. The early work related to decentralised AI with application to multi-robot 

teams can be traced back to the work of Luc Steels in 1990 [177], although Steels was 

mainly interested in societies which were less complex than mammalian societies 

(insect societies).  

 

The higher mammalian societies, such as packs of wolves and troops of chimpanzees, 

have also been investigated [149]. The hierarchies within these societies have inspired 

research at MIT [69] to explore the benefits of hierarchies in MASs for the purpose of 

tasks such as streamlining inter-agent negotiations and forming alliances between 

agents. 

6.5.2 Modelling Societies  
 
 
Using agents to model societies is becoming increasingly popular. Agent systems 

have been used to model the societies of primates [149], using tools such as 

MACACA [100], and even early human societies [55]. 
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Modelling of social relationships between agents in a MAS, specifically between 

robots in multi-robot teams has been the focus of research headed by Dautenhahn 

[47][48]. A survey of socially interactive robots can be found in [69]. 

 

6.5.3 Social Networks for Trust Propagation In MAS  
 
 
The concept of trust is very important in interaction between agents in a MAS. If 

coordination and/or cooperation is required, an agent makes a decision based on its 

perception of other agents’ capabilities. The ideal situation is that each agent in a 

MAS is fully aware of all other agents’ capabilities and their current status. More 

often than not this is not possible and in these situations an agent must trust the other 

agents’ estimates of their own capabilities. For a detailed survey of trust-related 

research in the field of MASs the reader is referred to [163].   

 

One of the methods for establishing trust in an agent’s capabilities is through trust 

propagation via the process of querying trusted agents about the capabilities of the 

agent whose credentials need to be established. Social networks provide a mechanism 

for trust propagation. More on utilisation of social networks in trust propagation  can 

be found in the work of Yu  et al  [201] and Schillo et al [164]. It is important to note 

that trust as defined in work of Yu is related to information systems security issues, 

while in this thesis the trust is related to agent capabilities.  

 

6.6 Social Networks Based Approach 
 

The new social networks based approach to coordination presented in this thesis uses 

task allocation as a coordination mechanism. The basic concepts and origins of the 

social networks based approach for coordination are discussed next. 

 

6.6.1 The Biology Origin  
 
The social networks based approach has its foundations in the observed similarities 

between higher mammalian societies and multi-robot systems. In both biological (e.g. 
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a wolf pack) and artificial (multi-robot team) systems, there is often the need for 

cooperation. In this section, a conceptual comparison is given between a multi-robot 

team and a pack of wolves.  

 

Wolves are social animals that are organised into packs, governed by strong male and 

female animals (alpha male and alpha female) [133]. A wolf pack is characterised by 

the existence of a strong social hierarchy [133]. A wolf pack is usually a family unit, 

reflecting the existence of a strong kinship relationship between the pack members. A 

wolf pack is a very effective hunting team and can bring down prey much bigger than 

an individual wolf could. 

 

The comparison between a wolf pack and INDABA will be made in relation to the 

five steps of the cooperative problem-solving approach as proposed in INDABA 

(refer to chapter 5), namely potential recognition, team formation, plan formation, 

plan execution, task evaluation and recognition. 

 

In terms of the adopted robotic MAS taxonomy (refer to section 4.1), a wolf pack and 

INDABA can be compared as in table 6 (note that the characteristics of INDABA are 

described as the upper limit, not as a particular implementation, as INDABA is only a 

framework): 

Team Characteristic Wolf Pack INDABA 

Size of Team LIM INF 

Communication Range NEAR INF 

Communication Topology BROAD GRAPH 

Communication Bandwidth MOTION INF 

Collective Reconfigurability DYN DYN 

Processing Power of a Team Member TME TME 

Collective Composition HET HET 

Table 6. Comparison of a wolf-pack and INDABA 
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6.6.1.1 Potential Recognition  
 
When successful task completion requirements exceed the capabilities of an agent, a 

need for cooperation is recognised by members of the society. In the case of a wolf 

pack, wolves often hunt prey that is too big to be hunted by a single member. The 

need for cooperation is recognised and a wolf pack hunts as a team.  

 

In the case of multi-robot teams, tasks that exceed the capabilities of a single robot 

abound.  Box pushing [199][107] is one of the well-known problems, as well as 

foraging under a time constraint, where a single robot cannot complete the task in a 

prescribed time period, while a multi-robot team can.   

 
For both biological (wolf pack) and artificial systems (multi-robot team), the need for 

cooperation is recognised. The potential recognition leads to the next step, i.e. team 

formation. 

 

6.6.1.2 Team Formation   
 
In a society a team is formed according to the relationships between its members. 

Considering a wolf pack, the distribution of labour is according to the hierarchical 

structure of the pack. The hunt is lead by the alpha male and alpha female, as they are 

the most efficient hunters.  

 

If neither the alpha male nor the alpha female is capable of leading the hunt, the next 

most capable members will lead the hunt (a beta male or beta female will assume their 

position).  

 

Considering heterogeneous multi-robot teams, similarities with a wolf pack are many. 

The most capable members of a multi-robot team are selected for a task. When the  

most suitable robots are not an acceptable choice (they might be cost-prohibitive or  

unavailable or malfunctioning etc.), the next most suitable robot will be selected, 

according to a social network relationship (e.g. “next of kin” or another member of a 

social group).  
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6.6.1.3 Plan Formation and Plan Execution 
 
The plan formation step is not always applicable to packs of animals and multi-robot 

teams, and is largely ignored for the purpose of this comparison. It is sufficient to note 

that members of a society can have a specialised role that they perform and that a plan 

formation should take such specialisation into account.  

 
The same applies to the plan execution step of a cooperative problem-solving process. 

Plan execution is not relevant to this comparison of similarities between biological 

and artificial societies as the focus is on task allocation. 

 

6.6.1.4 Task Evaluation and Recognition   
 
It might not be obvious, but a form of reward and punishment mechanism can be 

found in both a wolf pack and multi-robot teams (if it is so designed and 

programmed).  

 

Considering a wolf pack, if the hunt was successful, the social hierarchy will be 

updated by strengthening the existing relationships. Furthermore, because the feeding 

order is dictated by the social hierarchy, the alpha male and female will eat first and 

eat the best parts of the hunted animal, in turn maintaining their physical supremacy 

over the rest of the pack.  

 

In a multi-robot team (if so programmed) the agents that succeed in task execution 

will be rewarded and their affinity to the task will be increased. The team leader will 

strengthen its affinity to the task and maintain its team leader status.  

 

However, if the hunt fails, probably nothing will happen immediately for the wolf 

pack. However, if the alpha male fails to feed the pack for extended periods of time, 

its social position can deteriorate to the extent that it is challenged by a beta male.  

 

The same principle is applied to multi-robot teams. If a team leader repeatedly fails, 

its affinity to a task is decreased. It can happen that at a certain point in time the team 

leader is no longer the top-scoring agent in the team and it stops being the team 
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leader. In other words, it may happen that over time, the team leader’s bid to secure a 

task may be insufficient, in which case a different robot may win the bid and select a 

new team. 

 

6.6.2 Comparison to Other Task Allocation Coordination 
Mechanisms 

 
Approaches other than INDABA have been developed to use task allocation as a 

coordination mechanism, for example MURDOCH [77] and BLE [196]. 

 

BLE is based on the subsumption architecture and uses a port-inhibiting strategy for 

task allocation, where a robot can decide that it is the best eligible for a task. If a robot 

is eligible for the task, the robot can inhibit a communication port, effectively seizing 

control. MURDOCH, a market-based approach, uses a more traditional approach, an 

auctioning mechanism that governs task allocation, again based on a robot’s own 

estimate of its capabilities. An extensive review of multi-robot task allocation 

mechanism can be found in [76].  

 

While each robot is an autonomous agent in MURDOCH and BLE, the agents are 

basically unaware of other members of the society. The social networks approach 

presented in this thesis is different, because it relies on agents to belong to social 

groups and that agents maintain social links among themselves. 

 

Task allocation in INDABA consists of selecting a team leader. This can be done by 

either using an auctioning mechanism or agent’s historical performance on same or 

similar tasks. Once a leader is selected, a team is formed based on the strength of 

agents’ relationships to the team leader and the task. A team is formed using a scoring 

system which takes into consideration all applicable relationships to the task in 

question. Based on relationships and task affinity each agent is given a score. The 

society members with the highest scores form the team together with a team leader. 
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6.6.3 Definitions and Notification  
 
To describe the social networks based approach to task allocation in more formal 

terms, the following definitions are necessary. 

 

Let Tk be a task that needs to be allocated, where k = 1,..,K with K the number of 

tasks. If there are n known attributes of task Tk , then task Tk can be represented by an 

n-tuple, (Tk1, Tk2,…, Tkn ), where Tk1, Tk2,…, Tan  are the n attributes that define task Tk .  

 

The value of attributes Tk1, Tk2,…, Tkn  can either be binary, discrete or continuous 

valued.  

 

Let Ax be an agent, whose suitability to task Tk  needs to be evaluated, where x = 1,..,X 

with X the number of agents in the society. If there are m known attributes of agent Ax, 

then agent Ax can be represented by an m-tuple (Ax1, Ax2,…, Axm ) where Ax1, Ax2,…, Axm  

are the m attributes that define agent AX .  

 

The value of attributes Ax1, Ax2,…,Axm can either be binary, discrete or continuous 

valued.  

 

Let Alk be the agent whose applicability to task Tk is the highest. Then agent Alk is a 

team leader. Each leader has m known attributes, Alk1, Alk2,…, Alkm. The leader is 

represented by a m-tuple (Alk1, Alk2,…,  Alkm ) where Alk1, Alk2,…,  Alkm are the m attributes 

that define agent Alk . 

 

Let there be I relationships between agents in the society. Then relationships between 

agents Alk and Ax in relation to task Tk are denoted as Ri (Alk , Ax, Tk) for i = 1,.., I. Ri  is 

a function normalised to the interval [0,1], that is,  Ri :(Alk , Ax, Tk) → [0,1].  

 

It is important to note that not all functions that model relationships require Tk as an 

input. For example, kinship is independent of a task under consideration, and 

therefore the kinship relationship depends only on the two agents involved. 
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With these definitions in mind, it is possible to define a fitness2 (or scoring) function 

for an agent AX and the team leader Alk  in relation to given task Tk as   

 

Fxk (Alk , Ax, Tk) = Σi = 1...I (1-ki) Ri (Alk , Ax, Tk).  (6.1) 

 

where Σi = 1...I ki = 1. It is interesting to note that if Alk is omitted from equation (6.1), 

then the remaining function Fxk
 ‘ , given as  

 

Fxk
 ‘ (Ax) = Σi = 1,..,I (1-ki) Ri (Ax, Tk)    (6.2) 

 

is used by agent Ax to estimate its own eligibility to task Tk. 
  

6.6.4 The Social Network Task Allocation Algorithm 
 

The social networks task allocation algorithm is outlined below in general terms. A 

specific implementation that uses two social relationships is presented in greater detail 

in section 7.1. The social networks task allocation algorithm can be seen as an 

enhanced or augmented auction based task allocation algorithm. The bid is a function 

of the strength of social networks. The algorithm itself is surprisingly simple, and the 

key to its efficiency is in keeping the relationships up to date. The relationships can be 

stored either in a central repository or they can be distributed, with each agent 

maintaining its own social networks.  
 

The advantage of a central repository system is that it is simpler to implement, but on 

the other hand it does require reliable communication channels between all the agents 

in the society and the central repository.  

 

The distributed model is more applicable to robot teams and, in general, closer to the 

true notion of an agent. It does, however, require more complex implementation than 

a central repository system. 
 

                                                 
2 Please note that in the context of this thesis, the notion fitness function is different from the concept 
of fitness function as used in evolutionary computing, i.e. it does not influence the survival of the 
agents in the society. 
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In the new proposed architecture, INDABA (refer to chapter 5), each agent maintains 

its own relationships data. The relationships data is created, stored and maintained in 

the interaction layer. From the robotic application point of view, the advantage of this 

approach is that an agent can rely on its internal social network to find the best 

candidates in its local environment, even if there is no complete and reliable 

communications with the rest of the agents.  

 

The algorithm consists of four main steps:   

 

•  task detail propagation component 

•  the selection of a team leader most suitable to the task 

•  selection of the remaining team members 

•  task evaluation and social network maintenance  

 

Each of these steps is described next. 

 

6.6.4.1 Task Details Propagation Component 

 
Once the task details are known, they are propagated to all available agents in the 

society. An external party, such as a user of the system, can either give the details of 

the task, or the task details can be obtained through the agent’s exploration of its 

environment. 

 

An example of the latter approach is a heterogeneous robot team where a specific 

robot performs the role of a scout and collects the information about the environment. 

The scout collects all the details about the environment using its own sensor suite and 

sends the details to the rest of the team for task allocation.  

 

The task details Tk, represented as the n-tuple, (Tk1, Tk2,…, Tkn ), needs to be 

propagated to all participating members of the team.  The propagation of task details 

may utilise any available communication protocol or method. The implementation of 

task propagation is not prescribed by INDABA and can take any form, from a simple 
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binary coded string of predetermined length (where values correspond to the sensor 

readings of a scout) to much more flexible approaches such as KQML [66][99] or  

XML[186].   

 

For truly unknown environments, where even metadata about the environment is  not 

available, KQML together with a semantic descriptive language, for example 

Knowledge Interchange Format (KIF)  [75], would be an advised approach. To 

illustrate, consider a scout in an unknown environment. If the scout discovers new 

concepts, those newly discovered concepts (metadata) can be described using KIF and 

propagated to the rest of the agents in the society using KQML.  

 

Propagation of task details can be done either by a centralised entity (such as an 

external supervisory program, an approach similar to a supervisor in MACTA) or an 

agent can initiate the propagation of task details, in which case the agent becomes a 

managing agent. While the agent-initiated approach is advisable, it is more complex 

to implement. The implementation of propagation of task details is made according to 

the environment requirements and agent capabilities. 

 

6.6.4.2 Team Leader Selection  
 
Team leader selection can again proceed in at least two ways: either an agent can 

submit its own task affinity evaluation or an agent can be evaluated by an external 

supervisory entity. Considering leader selection, once the task details Tk are received, 

scoring takes place based on agent attributes and scoring function  Fxk
 ‘  (refer to 

equation (6.2)). The agent with the highest Fxk
 ‘ is selected as the team leader.  

 

Team leader selection is not social network related in its true sense (links with the 

other members of the society are not examined or utilised in selection), but it can rely 

on either direct matching of attributes to the task details (if possible) or to historical 

data (if available). If direct matching is not possible nor historical data available 

(which is the case when the task is executed for the first time), then an alternative 

selection method must be used, using a different scoring function.  
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As an example of an alternative team leader selection method, the leader can be 

selected randomly. The main advantage of a random selection method is that all 

agents are given an equal chance for task selection. However, using a random 

selection method, there is no guarantee that the selected team leader is capable of 

executing task of team leader. Alternatively, the cheapest member, determined using a 

cost function (if implemented), can be selected.  

 

Both the social networks team leader selection method and an alternative team leader 

selection method can be combined in a single algorithm. If there is no historical data, 

an alternative selection method that uses a different scoring function Fxk
 “ (Ax) can be 

utilised, otherwise social networks selection based on scoring function Fxk
 ‘ (Ax) is 

used, as illustrated in algorithm 7.  

Alk = A1 

If historical data available or direct matching possible 

   Fxk (AX) = Fxk
 ‘ (AX) 

Else 

   Fxk (AX) = Fxk
 ‘’ (AX) 

End If 

For all agents Ax  in society S 

        If  Fxk
  (Ax) > Fxk

  (Alk)  

           Alk = Ax  
EndFor 

Algorithm 7. Team leader selection in social networks based approach 

 

6.6.4.3 Team Selection  
 
Once a team leader has been selected, the rest of the team is selected. At this stage 

social networks play a crucial role.  

 

The team member candidates are not only evaluated in relation to the task, but also 

based on their relationships to the team leader. This may look counter-intuitive, but it 

is not enough that a team member has an affinity to the task, the candidate must also 

be capable of working together with the team leader. 
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The relationships to the team leader are the crucial part of the algorithm and form the 

premise of the whole social networks-inspired approach. Agents are not individual, 

independent entities, but are defined in relation to the other members of the society. 

For team selection, team member candidates are also evaluated according to their 

ability to cooperate with the team leader, based on previous history (trust) and 

similarity to the team leader (kinship). In analogy to human societies, an agent is 

evaluated on how good it is as a “team player”.  

 

Team selection can be done by a team leader either according to its existing 

relationships to the other team members or the relationships can be recalculated prior 

to team selection. For both cases the algorithm is basically the same as summarised in 

algorithm 8.  

 

While team T less than TeamSize 

    AN = A1  

   For all agents Ax  in society S 

      If  Ax  not allocated to team T and Fxk (Alk , Ax, Tk)  > Fxk (Alk , AN, Tk) 

        AN = Ax 

   EndFor 

   Add AN to team T 

EndWhile 
Algorithm 8. Team selection in social networks based approach 
 
 
 

6.6.4.4 Social Networks Maintenance  
 
Once task execution finishes (successfully or not), the social networks need to be 

updated. Each member of the team needs to be evaluated and its relationships 

updated.  

 

The exact method of updating the relationships is not prescribed by INDABA and can 

take the form of simply increasing a counter of successful or unsuccessful executions 

related to a particular task, or towards a particular team member. More complex 

methods can also be implemented.  
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Assuming that methods of updating agent relationships are given as strengthen and 

weaken, the social networks maintenance algorithm is summarised in algorithm 9. 

 

For all agents Ax  in team T  

   For all Ri (Alk , Ax, Tk) 

      If  Tk completed  

          strengthen Ri (Alk , Ax, Tk) 

      ElseIf  

         weaken  Ri (Alk , Ax, Tk)  

      EndIf 

   EndFor 

EndFor 
Algorithm 9. Social network maintenance  
 
 
 

6.7 Summary 
 
This chapter started with an overview of biologically inspired approaches to 

coordination. This discussion was followed by an overview of the two main 

approaches to coordination in MASs, which are based on organisational sciences, 

namely the market-based and hierarchical approaches.  

 
The remainder of the chapter introduced the concept of social networks and presented 

a new approach to coordination in MASs. The new approach was based on social 

networks, and a modification for application in multi-robot teams was presented.  

 
The next chapter presents the implementation of the social networks based approach 

within the INDABA framework, applied to simulated robots in an abstract simulated 

environment.  
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Chapter 7: Experiments in an Abstract Simulated 
Environment 
 
The focus of this thesis is on an architecture for robotic systems and on the use of 

social networks as a coordination mechanism. The development of a realistic multi-

robot simulated environment is not a trivial task and a decision was made to verify 

the validity of the INDABA architecture and coordination mechanism through a 

simpler, abstract multi-robot simulator. The abstract simulator set-up and its scope 

limitations are presented in section 7.1. The abstract simulator has two main 

algorithmic components. The first of the two is the task allocation and team formation 

algorithm, presented in section 7.2. The second algorithmic component is the task 

execution and task evaluation algorithm, presented in section 7.3. The simulations of 

uncertainties about task details are presented in section 7.4.  The majority of 

simulations that were conducted for the purpose of this thesis are presented, together 

with the results and a discussion of these results in section 7.5. A summary of the 

results, as presented in section 7.6, concludes this chapter.  

 

 
7.1 Scope Limitation and Simulation Set-up 

 
While previous investigations focussed on social networks and coordination in 

abstract terms [154][156], this chapter the focuses on an abstract simulator. The main 

purpose of the abstract simulator used in this thesis is to provide a platform for 

simulations to explore the proposed social networks based approach to task allocation. 

The simulated environment implements only the two upper layers of the INDABA 

framework (see chapter 5), namely the interaction and the deliberator layers. The 

other two layers, sequencer and controller, are grossly simplified in this simulation. 

Such approach is justified since only the upper two layers of INDABA are relevant to 

coordination in general and to the task allocation problem in particular. In the 

experiments presented in this chapter, a population of fifty agents was randomly 

created. All agents are defined by the same set of attributes, with the attribute values 
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randomly selected from the domain of each attribute. The agent attributes and 

possible attribute values are given in table 7. 

 

AGENT ATTRIBUTE  POSSIBLE VALUES 
LOAD_SMALL LOAD 
LOAD_NORMAL 
PRESENT FALSE FOOD SENSOR 
NOT_PRESENT 
DRIVE_WHEEL 
DRIVE_TRACK 

DRIVE 

DRIVE_LEG 
SPEED_LOW 
SPEED_MEDIUM 

SPEED 

SPEED_FAST 
DETECTION_NORMAL 
DETECTION_LIGHT_ONLY 

DETECTION RANGE 

DETECTION_ADVANCED 
POWER_TETHERED 
POWER_SOLAR 

POWER 

POWER_BATTERY 

Table 7.  Simulated agent attributes and possible attribute values     

 

Environments are defined in a similar manner to agents. Each environment is defined 

by the same set of attributes that represents physical characteristics of the 

environment. Environments were also created randomly, by assigning random values 

to the environment attributes. The environment attributes and valid attribute values 

are given in table 8.  

 

ENIVRONMENT ATTRIBUTE POSSIBLE VALUES 
TERRAIN_NORMAL  TERRAIN 
TERRAIN_ROUGH_AREA 
NO_SHADED_AREAS LIGHT 
SHADED_AREAS 
FOOD_FAR FOOD_DISTANCE 
FOOD_CLOSE 
FOOD_LIGHT 
FOOD_HEAVY 

FOOD_TYPE 

FOOD_MIXED 

Table 8.  Simulated environment attributes and possible attribute values     

 
The following rules define interactions that may occur between the environment and 

agents: 

•  If the robot LOAD attribute is LOAD_SMALL, it cannot load food that 

has FOOD_WEIGHT attribute FOOD_HEAVY. 
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•  If the robot has as a POWER attribute value of POWER_SOLAR, it 

cannot move in an environment area that is in the shade.  

•  If the robot has POWER attribute POWER_TETHERED, it is limited in 

range. 

•  The detection range is reduced in the shaded area and if the robot 

DETECTION_RANGE attribute has value DETECTION_LIGHT_ONLY, 

the robot cannot detect objects at all. 

•  The number of steps required for robot movement is a function of the 

environment terrain (if it is in TERRAIN_ROUGH_AREA), drive and 

speed. For example, if a robot is in rough terrain area, and if the robot’s 

drive attribute is track or wheel, then the number of required steps is 

increased by 30% and 60%, respectively. The values of 30% and 60% are 

arbitrarily chosen. In future work, these values will be changed according 

to observed decrease in performance of a real robot. 

•  If a robot is not equipped with FALSE_FOOD_SENSOR and the 

environment FOOD_TYPE is FOOD_MIXED, it has a 30% chance of 

picking up false food and failing the task. 

 

For the purpose of simulations in the abstract simulated environment, two types of 

social relationships were implemented. The implemented social relationships were 

based on the concepts of trust and kinship, which are the fundamental concepts in the 

formation of social networks in complex animal societies. These concepts are defined 

next. 

 

7.1.1 Kinship 
 
Kinship is defined as the similarity between the simulated robots. A simple metric that 

quantifies kinship, d(R1, R2),  between robots R1 and R2 is calculated as  

 
       d(R1, R2) = Σi = 1,..,N di (A1i, A2i) / N       (7.1) 
 
 
where N is the number of robot  attributes, di (A1i, A2i) is a  normalised metric function 

in the range [0, 1] between the i-th attribute of robots R1  and R2, and A1i and A2i  are 
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the values of the i-th attribute of  robots R1  and R2  respectively. Function di (A1i, A2i ) 

quantifies the difference between the attributes A1i and A2i. 

7.1.2 Trust 
 

Let task T be defined by attributes T1,…, Tm, where m is the total number of attributes 

that define task T.  Trust is then defined as a 3-tuple,  t (R1 ,  R2 , T),  where R1  and R2  

are robots, and T is a particular task. Tuple (R1 ,  R2 , T) quantifies the reliability of 

robot R1 in relation to  R2, based on the historical performance related to task T that 

has involved both robots; in other words, how much trust R1 has in R2 in helping to 

complete task T. Trust is calculated as a ratio between the number of successful task 

executions and the number of task execution attempts. Note that in the approach 

presented in this thesis, trust is a symmetric function, i.e. t (R1, R2, T) = t (R2, R1, T). 

The value is normalised to the range [0, 1]. Note that t (R, R, T) represents the  

historical performance of robot R in relation to task T; in other words, the trust that 

robot R has in its own abilities.  

 

For the purpose of simulations presented in this chapter, the strength of a social link,  

s (R1, R2, T), between two agents is defined as : 

 

s (R1, R2, T) = kd (R1, R2) + (1-k)t(R1, R2, T)  (7.2) 

 
where k ∈  [0,1].  

 

7.2 Task Allocation and Team Formation Algorithm 
 

The algorithm starts with task details propagation. During this phase, the known task 

details are propagated to all agents. For the purpose of this thesis, task details for the 

simulations presented in this chapter consist of three parts:  

•  ENVIRONMENT_DETAILS, where known environment details are 

propagated. The environment details are implemented as a set of attributes. 

The attributes have discrete values, as given in table 6.  

•  TASK TYPE, namely scout or forage. 
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•  CONSTRAINT, which represents a time constraint, as the maximum number 

of steps that each robot is allowed to execute. 

The first task to be executed is that of scouting. To illustrate the propagation of task 

details, consider that a contracting agent sends task details, as described above, to all 

available robots with a request to the bid for a scouting task. If an agent is not 

available, the agent will not respond to the bid. Each of the available robots evaluates 

its own suitability (affinity) to the task, based on task attributes and previous 

experience (as explained below). This part of algorithm is based on general team 

leader selection algorithm 7.  

 

The evaluation of task affinity is a two-step process, based on each robot’s history. 

Firstly, the environment, as given by ENVIRONMENT_DETAILS is identified. 

Identification is done by means of encoding the environment according to its known 

attributes to produce an environment identifier. Secondly, the environment identifier 

and TASK_TYPE are used as indices in a table that stores the robot’s previous 

experience in the environment identified by the environment identifier, related to the 

task identified by TASK_TYPE. The experience quantifier, expressed as a ratio 

between successful task executions and total number of task execution attempts, is 

then returned as the robot’s bid. After all available agents have entered a bid, the 

scouting task is allocated to the agent with the highest bid.  

 

The role of a scout is to explore the environment and to determine the values of the 

environment attributes as given in table 6. It is important to note that the scout might 

not be able to get accurate information about the environment. For example, if a path 

from the start point to the food concentration area does not cross a “shaded” area, the 

scout will not set the LIGHT environment attribute to SHADED_AREAS.  

 

Once the scout completes its task, task details based on the observed environment are 

then propagated to all agents and the algorithm repeats the bidding process as 

described above and in more general terms, as given in section 6.6.4.2. The robot with 

the highest bid is selected as the team leader and given the responsibility of seeing the 

task to completion. If a number of robots have the same bid value, one is randomly 
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chosen. If the task exceeds the capability of the team leader, then the team leader 

selects a team that can execute the task. The team selection algorithm is based on 

algorithm 8.   

 

The team leader forms a team according to the social relationships between the team 

leader and members of the team. Team selection starts by calculating all social 

relationships (trust and kinship). Trust is obtained by using a trust function, as 

described in section 7.1. Kinship can be obtained either by requesting a full set of 

attributes from a potential team member and calculating the kinship value, as given in 

equation 7.1, or by using the values that were predetermined and stored in each 

robot’s kinship table. For the purpose of this thesis, predetermined kinship values 

were used.  Once trust and kinship are calculated, the team is then formed by selecting 

those agents with strongest social relationships to the team leader. The task allocation 

and team formation process is described in algorithm 10. 

Potential recognition 

If not Auctioning agent 

   Receive task attributes 

   Identify environment 

   Send bid based on history and availability 

Else 

  Send all agents task details 

  Collect bids 

  Award task to the highest bidder (team leader) 

End 

Team Formation  

 If team leader 

   For all agents  

      Evaluate strength of social link between agent and team leader  

   End For 

   Select the team members according to the strength of social links  

EndIf 
Algorithm 10.  Potential recognition and team formation processes 
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The foraging task is a loosely coupled task, in the sense that each robot can execute its 

own task without relying on other robots, and each member of the team executes the 

same task in parallel. 

 

Once the team is selected, the task is executed. Upon completion (successful or 

unsuccessful), the success of the task is evaluated. The implementation of the task 

execution and evaluation algorithms is discussed next. 

 

7.3 Task Execution and Task Evaluation Algorithm 
 

Task execution is simulated in this chapter. For the purpose of this simulation, tasks 

were simulated and evaluated according to the rules outlined in section 7.1. The 

simulated task execution is discussed next. 

 

7.3.1 Task Execution  
 
In order to simulate interaction with the environment, each robot is provided with a 

full set of environment attributes (not the potentially inaccurate set of environment 

attribute values as observed by the scout) and simulated execution takes place using 

the full environment set of attributes. Each robot action requires a number of steps. 

The number of steps that it will take the agent to execute a task is calculated, based on 

the robot’s attributes and environment and interaction rules (as described in section 

7.1.). For example, the number of steps for a robot to move from coordinate (x,y) to 

coordinate (x+1, y) is dependent on the robot’s attributes SPEED and DRIVE, and the 

environment at coordinate (x+1,y). An execution cycle is the completed simulated 

execution of an allocated task, after which the success of the task is determined. The 

number of allowed steps limits the lifetime of an execution cycle. If a robot has not 

yet completed the task when the number of allowed steps is exceeded the robot is 

considered to have failed in its task.  
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7.3.2 Task Evaluation  
 

As mentioned, if a robot exceeds a predetermined threshold, then the robot fails in its 

allocated task. The threshold is selected as the average number of steps required for 

successful task executions, averaged over a randomly chosen observation period (10 

simulations, each consisting of 100 execution cycles) and a team of five robots, 

randomly chosen from the population of fifty robots.  

 

If the execution of a task was successful, all the successful robots are rewarded. The 

strength of the social links between the successful agents that have participated in the 

same team will be reinforced, by raising the level of trust between the successful team 

members. For each successful robot Rj in the team, its trust rating t (Rj ,  Rk , T) are 

improved by means of increasing its ratio between number of successful task 

executions and number of attempts of task execution. The increase is an additive 

increase. In other words, the number of successful task executions is increased by one. 

The trust rating t (Rj ,  Rk , T) is related  to task T and other successful members of the 

team Rk , where k = 1,.., n, and n is the number of successful team members. Task 

success evaluation is a function that awards agents that have successfully completed 

their allocated tasks, with or without the help of other agents. Each agent Rj also keeps 

its own trust t (Rj ,  Rj , T) which represents its own historical performance, relative to 

a particular task’s  details. This in turn tracks an agent’s affinity to a particular task 

type.  

 

 

7.4 Simulating Task Details Uncertainty 
 

The view adopted in this thesis is that uncertainty is unavoidable in real-world robotic 

applications. All experiments done for the purpose of this thesis include varying 

degrees of uncertainty. Basically, there are two causes of uncertainty that affecti the 

experiments, namely uncertainty due to environment variations and uncertainty due to 

the initial robot positioning. These causes of uncertainty are described next. 
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7.4.1 Uncertainty due to Environment Variations 
 

As described in section 7.1, each environment is defined by a set of attributes. It is 

important to note that even if two environments have the same attribute values, as 

defined in ENVIRONMENT_DETAILS (section 7.1), the two environments are not 

necessarily the same. Even though environment attribute values may be the same, the 

location of rough terrain, shaded areas and food may differ due to random creation of 

these aspects. Random creation of environments brings a level of task uncertainty. 

Uncertainty due to environment variations is the main contributor to uncertainty in the 

experiments that are presented in section 7.5. 

 

7.4.2 Uncertainty due to Initial Robot Positioning 
 

Uncertainty due to initial robot positioning has a lesser influence on task execution 

than uncertainty due to environment variations. Uncertainty due to the initial robot 

positioning is caused by randomly initialising each robot’s position on different 

coordinates of the home area (which is defined as the lower right corner of the 

environment). Random initial positions have an influence on the number of steps 

required to reach the food area and also contributes to uncertainty about task 

execution.  

 

To illustrate the influence of uncertainty due to initial robot positioning to successful 

task completion, two simulations were done. The first simulation was done with a 

constant initial position for all robots, while the second simulation was done with 

variable initial robot positions but within the limits of the home area.  Each simulation 

consisted of 100 execution cycles.  The team size was limited to six team members. 

 

The results are presented in figure 14. In the case of a constant initial position for 

robots, optimal team selection was achieved early in the simulation - in the first 20 

execution cycles. In the case of variable initial robot positions, team selection was 

achieved later in the simulation. The results were never as good as in the case of the 

constant initial position. However, in case of variable initial robot positions, once a 
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team was selected, the selected team was more resilient to change in the initial 

positioning.  
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Figure 14. The Effect of Uncertainty due to the Initial Robot Positioning 

 
 

 
7.5 Experimental Results 

 
 
In order to verify the validity of the social network based approach for task allocation, 

various experiments were performed. When interpreting the experimental results, 

various aspects of the social network based approach were considered, ranging from 

learning to interpretation of the results in the light of social sciences.  

 
The effects of uncertainty are visible in the results presented in this section. Even 

when the team is stable (consisting of the same team members), there are some 

fluctuations in the results. The fluctuations are there because of the introduced 

uncertainty, as described in section 7.4.  

 
 
The experiments are divided into the following categories: 
 
•  Experiments that compare the social networks based approach to an auction based 

approach in relation to a single environment type. 
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•  Experiments that compare the social networks based approach to an auction based 

approach in relation to multiple environment types. 

•  Experiments that explore the specialisation ability of robots with regard to a 

particular task.  

•  Experiments that explore learning capabilities of the social networks based 

approach to coordination.  

•  Experiments that explore the influence of changes in ratio between trust, kinship 

and history on the selection process. 

•  Experiments that explore the effects of probabilistic selection on the overall 

performance. 

•  Experiment that investigates formation of subgroups within a social network. 

 

In all of the above enumerated simulations the same population of fifty randomly-

created agents was used. The population, with its attribute values, is given in table 9. 

Each row represents one of the agents in the population. 

 

LOAD DRIVE SPEED DETECTION AUTONOMY FOODSENSOR 
        
SMALL WHEEL FAST NORMAL TETHERED YES 
NORMAL WHEEL LOW LIGHT ONLY SOLAR ONLY NO 
SMALL LEGS FAST LIGHT ONLY SOLAR ONLY NO 
SMALL WHEEL FAST NORMAL SOLAR ONLY YES 
SMALL TRACK LOW LIGHT ONLY BATTERY YES 
NORMAL TRACK LOW LIGHT ONLY SOLAR ONLY YES 
NONE TRACK LOW LIGHT ONLY TETHERED YES 
NONE WHEEL LOW NORMAL BATTERY YES 
NONE LEGS MEDIUM NORMAL SOLAR ONLY NO 
NORMAL TRACK FAST NORMAL BATTERY NO 
NONE LEGS FAST LIGHT ONLY SOLAR ONLY NO 
NONE WHEEL MEDIUM LONG RANGE TETHERED YES 
NORMAL LEGS FAST LONG RANGE BATTERY NO 
NONE LEGS LOW LIGHT ONLY TETHERED YES 
NORMAL LEGS FAST NORMAL BATTERY YES 
NORMAL WHEEL MEDIUM NORMAL BATTERY NO 
NONE WHEEL FAST LONG RANGE SOLAR ONLY NO 
NONE TRACK LOW LONG RANGE TETHERED NO 
NORMAL TRACK LOW LONG RANGE TETHERED YES 
SMALL LEGS FAST LONG RANGE TETHERED NO 
NONE LEGS FAST NORMAL BATTERY NO 
NONE LEGS MEDIUM LIGHT ONLY SOLAR ONLY NO 
NORMAL LEGS MEDIUM NORMAL SOLAR ONLY YES 
NORMAL LEGS FAST NORMAL BATTERY YES   
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NONE TRACK LOW LONG RANGE BATTERY NO 
NONE TRACK MEDIUM LONG RANGE BATTERY NO 
SMALL WHEEL FAST NORMAL BATTERY NO 
NONE LEGS LOW LONG RANGE BATTERY YES 
NONE TRACK MEDIUM NORMAL BATTERY YES 
NONE WHEEL LOW NORMAL SOLAR ONLY YES 
NONE WHEEL MEDIUM LIGHT ONLY BATTERY NO 
NONE LEGS MEDIUM NORMAL SOLAR ONLY YES 
NORMAL WHEEL FAST NORMAL BATTERY NO 
NORMAL TRACK FAST LONG RANGE TETHERED YES 
NONE TRACK LOW NORMAL TETHERED YES 
NORMAL WHEEL MEDIUM LIGHT ONLY SOLAR ONLY NO 
SMALL WHEEL LOW NORMAL TETHERED YES 
SMALL TRACK LOW LONG RANGE BATTERY YES 
SMALL WHEEL LOW NORMAL SOLAR ONLY YES 
NORMAL TRACK LOW LIGHT ONLY BATTERY YES 
NONE WHEEL FAST LONG RANGE SOLAR ONLY YES 
NORMAL WHEEL LOW NORMAL BATTERY NO 
SMALL WHEEL FAST LIGHT ONLY BATTERY NO 
NONE LEGS FAST LONG RANGE SOLAR ONLY NO 
NONE WHEEL MEDIUM LIGHT ONLY SOLAR ONLY NO 
NONE WHEEL MEDIUM NORMAL TETHERED YES 
NONE TRACK MEDIUM LIGHT ONLY TETHERED NO 
NORMAL WHEEL MEDIUM LIGHT ONLY BATTERY YES 
NORMAL WHEEL MEDIUM NORMAL BATTERY YES 
NORMAL LEGS LOW NORMAL BATTERY YES  

Table 9.  Agent population created and used for experiments in this chapter   

 
 
  

Each experiment used the same agent population. Each experiment was done using a 

simulation that consists of a number of execution cycles, usually 100 execution cycles 

(unless stated otherwise). An execution cycle consists of execution of a scouting task 

and a foraging task. Each of the tasks in turn consists of the five cooperative problem-

solving cycle components as given in section 5.5.4. 

 

It is important to note that each execution cycle can be seen as a small-scale 

simulation, as it independently simulates a complete task execution. Each execution 

cycle is subject to uncertainty due to the initial robot positioning (refer to section 

7.4.2) and usually to uncertainty due to environment variations (refer to section 7.4.1). 

Even if the environments are of the same type, they are randomly created with 

random positioning of food items and obstacles. However, the execution cycles are 

not totally independent simulations. Historical performance, as embedded in trust 

relationships, is passed from one execution cycle to the next one. In other words, 
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through social relationships, the society maintains a performance history for each 

agent. 

 

For each experiment, the simulation was defined using a set of parameters. The 

default simulation parameters are given in table 10. In all simulations, initial trust 

between agents is set to zero. In other words, there is no history between the agents. 

In the case of a scouting task, there is only one agent who executes the scouting task. 

In the case of the foraging task, the default (and maximum) team size is six members. 

The maximum number of successful team members is therefore six. The default 

environment type is variable, in other words the simulation is not restricted to a single 

environment type. 

 

Simulation Parameters Default Values 

Execution Cycle Scouting, Foraging 

Number of Execution Cycles 100 

Environment Type Variable 

Random Initial Positioning Yes 

Foraging Team Size 6 

Table 10.  Default simulation parameters 

 

The results of simulations are presented and discussed next. It is important to note that 

the data points in figures 14-21 represent the average value over 10 execution cycles. 

 

7.5.1 Performance Comparison to an Auction Based 
Approach (Single Environment Type) 

 
For the first experiment, the performance of the new social networks based approach 

to task allocation was compared to the performance of a simple auctioning 

mechanism. Only uncertainty due to environment variations was introduced in this 

simulation. The same environment type is used. Table 11 provides a summary of the 

simulation parameters. 
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Simulation Parameters Default Values 

Execution Cycle Scouting, Foraging 

Number of Execution Cycles 200 – 300 

Environment Type Single 

Random Initial Positioning Yes 

Foraging Team Size 6 

Table 11.  Default simulation parameter for a performance comparison to an auction based approach (single 
environment) simulation. 

 

The auctioning mechanism is aware of all ENVIRONMENT_DETAILS attribute 

values, with the exception of the LIGHT attribute. The auctioning mechanism selects 

agents according to environment attribute and rules, as described section 7.1. 

Uncertainty is simulated by omitting the LIGHT attribute. Figure 15 gives the results 

after 200 execution cycles. 
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Figure 15. Performance comparison between social networks based approach and auctioning approach on single 

environment 
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The main difference between the simple auctioning and the social networks based 

approach is in the prior knowledge used. The social networks based approach has no 

prior knowledge and performance is initially less than the performance of the 

auctioning mechanism. The experiments showed that auctioning mechanism 

performance remains more or less stable, while the performance of the social 

networks approach improves over time. Social networks approach during certain 

execution cycles reached the optimal performance (all team members were 

successful). To confirm the stability of social networks approach, an additional 100 

execution cycles were executed, with the results given in figure 16. 
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Figure 16. Performance comparison between social networks based approach and auctioning approach on single 

environment (300 execution cycles) 
 
Based on these experiments, it is safe to conclude that the social networks based 

approach to task allocation performs significantly better than the auctioning 

mechanism in conditions of limited uncertainty about the task details.  
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7.5.2 Performance Comparison to an Auction Based 
Approach (Multiple Environment Types) 

 
The results presented in section 7.5.1 are encouraging and the aim of the next 

experiment is to investigate if the social networks based approach performs equally 

well over a greater diversity of environments. In this simulation, the performance of 

the social network based approach to task allocation was again compared to the 

performance of a simple auctioning mechanism for task allocation. Uncertainty due to 

environment variations was introduced in this experiment (as in the previous 

experiment, refer to section 7.5.1). It is important to note that environments change 

from execution cycle to execution cycle. For each execution cycle, an environment 

was created by randomly choosing its attribute values. The aim of the simulation is to 

investigate if the social networks based approach generalises and if it can handle 

different environment types. A summary of simulation parameters is given in table 12. 

 

Simulation Parameters Default Values 

Execution Cycle Scouting, Foraging 

Number of Execution Cycles 200 – 300 

Environment Type Variable 

Random Initial Positioning Yes 

Foraging Team Size 6 

Table 12.  Parameters for a performance comparison to an auction based approach (multiple environment types) 
simulation. 

 

The implementation of the auctioning mechanism is the same as described in section 

7.5.1.  The results after 200 execution cycles are illustrated in figure 17. 
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 Figure 17. Performance comparison between social networks based approach and auctioning approach on multiple 

environments (200 execution cycles) 
 
The drop in performance in the last ten execution cycles (refer to figure 17) warranted 

further investigation and the number of execution cycles was increased to 300 in order 

to check if it was just a random fluctuation or if it was an indication of a downward 

trend. As can be seen in figure 18, it was just a random fluctuation. 
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Figure 18. Performance comparison between social networks based approach and auctioning approach on multiple 

environments (300 execution cycles) 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRooddii



 

138 
 

 

The observed performance leads to the conclusion that the social networks based 

approach to task allocation performs significantly better than auctioning mechanism 

in conditions of limited uncertainty over the task details and over multiple 

environment types. 

 

7.5.3 The Influence of Probabilistic Selection 
 
The social networks based approach uses a straightforward team selection method: the 

members with the highest scores (bids) are selected. As this is not the only possible 

team selection method, this section investigates the performance of different team 

selection methods for the social networks based approach. A probabilistic selection, 

based on roulette wheel selection, was implemented and compared with standard 

rank-based selection. Uncertainties due to environment variations and initial 

positioning were introduced in this experiment. The simulation was executed for 200 

execution cycles over single and multiple environment types. A summary of the 

simulation parameters is given in table 13. 

 

Simulation Parameters Default Values 

Execution Cycle Scouting, Foraging 

Number of Execution Cycles 200 

Environment Type Single, Variable 

Random Initial Positioning Yes 

Foraging Team Size 6 

Table 13.  Simulation parameters used for the investigation of probabilistic selection influence. 

 

Figures 19 and 20 respectively present the results for a single environment and for 

multiple environments.  
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 Figure 19. Performance comparison between standard and probabilistic selection on single type environment (200 

execution cycles) 
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Figure 20. Performance comparison between standard and probabilistic selection over multiple environment types   

(200 execution cycles) 
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It is important to note that, although slower than standard rank-based selection, the 

performance using the probabilistic selection also steadily improves over time. The 

advantage of probabilistic selection is in the fact that more agents get tested over time 

for their suitability to a task. This approach might be feasible for future applications 

that allow for a greater training period and where the availability of agents might be 

scarce, but in environments were all agents are available and there is a time constraint, 

the standard approach is more desirable. 

 

7.5.4 Learning Using Social Networks Approach 
 

One of the most useful features of social networks is their ability to store information 

[179]. The experiments presented in this section concentrate on increasing the number 

of execution cycles while keeping uncertainty limited to the randomness in the initial 

positions of the robots. Two simulations were done to investigate the ability of social 

networks to learn. For the purpose of these experiments, the ability to improve on 

performance is seen as a learning ability. The performance is defined as the number of 

successful team members. For the first experiment, a single environment was used, 

while the second experiment used variable environments. The results are presented 

and discussed next.  

 

7.5.4.1 Learning over Single Environment  
 
For the simulation in the first experiment, the number of execution cycles has 

increased in steps of 10, from 0 to 100. Only uncertainty in this experiment is due to 

initial positioning. A summary of the simulation parameters is given in table 14. 

Simulation Parameters Default Values 

Execution Cycle Scouting, Foraging 

Number of Execution Cycles 100  

Environment Type Single 

Random Initial Positioning Yes 

Foraging Team Size 6 

Table 14.  Simulation parameters used for the investigation of probabilistic selection influence 
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The results are presented in figure 21. The results show that the social networks 

approach improves performance over time. It is important to note that optimal 

performance is reached after 8 execution cycles. As previously noted, the 

improvement in performance is seen as learning ability. The learning characteristic of 

social networks has been observed in organisations [102].  
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Figure 21. Observed improvement in performance (single environment) 
 

7.5.4.2 Learning over Variable Environments  
 
For this simulation, the influence of variable environment types on learning was 

investigated. As in previous experiment, uncertainty in this experiment is due to initial 

positioning. A summary of the simulation parameters is given in table 15. 

Simulation Parameters Default Values 

Execution Cycle Scouting, Foraging 

Number of Execution Cycles 200  

Environment Type Variable 

Random Initial Positioning Yes 

Foraging Team Size 6 

Table 15.  Simulation parameters used for the investigation of probabilistic selection influence 
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The results are presented in figure 22. Initially, after 100 execution cycles, the 

performance was not as good as for the previous experiment (refer to section 7.5.4.2). 

The number of execution cycles was then increased to 200, after which performance 

was approached the optimal performance.  

Performance over Multiple Environments

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

Number of Execution Cycles

N
um

be
r o

f S
uc

ce
ss

fu
l T

ea
m

 M
em

be
rs

Social Networks Approach
Multiple Environments

10 per. Mov. Avg. (Social
Networks Approach Multiple
Environments)

 
Figure 22. Observed improvement in performance (multiple environments) 

 

Learning in multi-robot teams is a highly desirable feature due to the inherent 

challenges of real-world robotic applications. Some of the challenges facing real-

world multi-robot teams are: uncertainty in sensing the environment (due to imperfect 

sensors), limited amount of historical performance (for training purposes) and 

difficulties in non-symbolic learning mechanisms, to name but a few. More on multi-

robot team learning can be found in [143].   

 

7.5.5 Agent Specialisation  

 
The set of simulations presented in this section concentrate on the effect of social 

networks on agent specialisation. Specialisation is often observed in learning capable 

multi-robot architectures. For example, Balch reports that in such, learning capable, 

multi-robot team, individual robots automatically specialise in different roles in a 

team [13]. 
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For the purpose of this paper, only one scout was allowed to assume the task of 

exploring the environment. The environment had the following attributes: 

TERRAIN_NORMAL, SHADED_AREAS, FOOD_FAR, FOOD_HEAVY. The 

success of the scout was measured by the ability of the scout to find the food area in a 

given number of steps. It is interesting to observe how various robots first attempted 

the scout role but in the end only one robot emerged as the best scout. Initially, any 

robot can be selected for either scouting or foraging tasks. If the robot is successful in 

the scouting task, the robot is kept as a scout. If a robot’s performance in executing 

the scout task is less then an arbitrary threshold (defined as the ratio between the 

successful and attempted number of task executions), it is replaced by another robot. 

For the purpose of this thesis, the threshold was set to 0.8. The threshold can be 

interpreted as a minimum performance criterion. In other words, a scout with a 

success rate greater than 80% is an acceptable scout. The simulation executed for 100 

execution cycles, although stability was reached after 48 execution cycles. A 

summary of the simulation parameters is given in table 16. 

 

Simulation Parameters Default Values 

Execution Cycle Scouting 

Number of Execution Cycles 100 

Environment Type Variable 

Random Initial Positioning Yes 

Foraging Team Size N/A 

Table 16.  Simulation parameters used for the investigation of probabilistic selection influence 

 

After 48 execution cycles, one of the agents, characterised by the attribute value 

vector (SMALL, LEGS, FAST, LONG RANGE, BATTERY, NO) (refer to table 7) 

emerged as the best scout. Table 17 illustrates the attribute values of the 24 agents that 

were considered for the scouting task. The first column represents the number of 

execution cycles (out of total of 100) that an agent was selected for the scouting task. 
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TRIES LOAD DRIVE SPEED DETECTION POWER FALSE 
FOOD 

1 NONE WHEEL MEDIUM LIGHT ONLY SOLAR NO 
1 SMALL TRACK LOW LONG RANGE TETHERED YES 
1 NORMAL LEGS LOW LONG RANGE BATTERY NO 
3 NONE TRACK FAST LONG RANGE SOLAR YES 
1 NONE LEGS FAST LONG RANGE SOLAR YES 
1 NONE WHEEL FAST LIGHT ONLY SOLAR NO 
1 SMALL WHEEL FAST NORMAL TETHERED YES 
1 NONE LEGS FAST LONG RANGE SOLAR NO 
1 SMALL WHEEL LOW NORMAL TETHERED YES 
22 NORMAL WHEEL MEDIUM NORMAL BATTERY YES 
1 NONE TRACK FAST LIGHT ONLY SOLAR NO 
2 NONE TRACK FAST LONG RANGE SOLAR NO 
1 NORMAL LEGS LOW LIGHT ONLY TETHERED NO 
1 NONE WHEEL FAST LIGHT ONLY SOLAR YES 
1 NORMAL WHEEL FAST NORMAL BATTERY NO 
2 NORMAL TRACK LOW LONG RANGE SOLAR NO 
1 NONE TRACK MEDIUM LONG RANGE TETHERED NO 
1 SMALL TRACK MEDIUM LIGHT ONLY BATTERY YES 
1 NONE TRACK MEDIUM NORMAL BATTERY YES 
1 NORMAL TRACK LOW LONG RANGE TETHERED NO 
1 SMALL LEGS FAST LIGHT ONLY SOLAR NO 
1 NONE WHEEL MEDIUM LONG RANGE TETHERED YES 
1 NONE TRACK LOW LONG RANGE BATTERY NO 
52 SMALL LEGS FAST LONG RANGE BATTERY NO 

Table 17. Selected scout robot attributes 

7.5.6 Influence of Kinship and Trust Parameter Values  

 
The experiments that are presented in this section concentrate on the effects of 

changes in the ratio between kinship and trust. Three simulations were done with 

different parameter values for kinship and trust, while the rest of the simulation 

parameters were the same for all three simulations. A summary of the simulation 

parameters is given in table 18. 

 

Simulation Parameters Default Values 

Execution Cycle Scouting, Foraging 

Number of Execution Cycles 700 

Environment Type Variable 

Random Initial Positioning Yes 

Foraging Team Size 6 

Table 18.  Simulation parameters used for the investigation of probabilistic selection influence 
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The results of three sets of simulations are presented and discussed next.  
 

7.5.6.1 Performance of The Model Using Only Kinship 
 
For this simulation, only kinship was used to calculate the strength of social networks. 

Referring to equation 7.2, the value of parameter k is 1. The results are presented in 

figure 23. The result was somewhat surprising, as the social networks based approach 

still demonstrated the ability to learn by improving its performance over time. Trust 

was envisaged to be the main mechanism that stores historical performance, so how 

was it possible to improve performance over the time?  The answer lies in the fact that 

the strength of kinship is calculated in relation to the scout. This means that as scout 

selection improves, the performance of the whole team improves. The rest of the team 

is now selected according to the kinship relationship to a scout that is better than 

previous scouts. A scout is better than another scout if its attributes are more suited to 

a variety of environments. By selecting the team members that share similar attributes 

(due to the strong kinship), the performance of team improves, however the maximum 

performance is not reached. 
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Figure 23. Performance of social networks based approach with only kinship relationship (700 execution cycles) 
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7.5.6.2 Performance of The Model Using Only Trust 
 
For this experiment, only trust was used in the calculation of the strength of social 

networks. Referring to equation 7.2, the value of parameter k is 0. 

 

The results are presented in figure 24. As for the previous experiment, the social 

networks based approach demonstrated the ability to learn by improving its 

performance over time. In the social networks based approach, the trust is the main 

mechanism that allows for storage of the historical data that reflects the past 

performance of team members. It is also important to note that maximum 

performance is also occasionally reached. 
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Figure 24. Performance of social networks based approach with one social relationship only – trust relationship 

(700 execution cycles) 
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7.5.6.3 Performance of The Model Using Trust and 
Kinship 

 
In the last experiment that explores the effect of various parameter values to the 

performance of the social networks based approach the value of parameter k in 

equation 7.2 was set to 0.3. Various values ranging from 0.1 to 0.7, in increments of 

0.1, have been tested and the best performance has been observed for the value of 0.3.  

 

The results are presented in figure 25. The results were similar to the results from 

previous experiments. The ability of social networks to improve their performance 

over the time has been demonstrated in all experiments conducted for the purpose of 

this thesis.   
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Figure 25. Performance of social networks based approach with one social relationship only – kinship relationship 

(700 execution cycles) 
 

7.5.6.4 Discussion on Effects of Different Parameter 
Values 

 
The social networks based approach to team allocation has demonstrated the ability to 

improve performance regardless of the value of the parameters that determine the 
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ratio between kinship and trust (refer to equation 7.2). The results presented in the 

previous sections do, however, show that the behaviour of the social networks based 

approach differs for different values of parameter k.  

 

The results of experiments with varying value of k that were presented in sections 

7.5.6.1 – 7.5.6.3 are combined in figure 26. 

 

Initially, while there is no trust relationship (in other words, no historical performance 

data), the kinship relationship plays the predominant role in determining the strength 

of social networks. To illustrate this characteristic, the results of the first 100 

execution cycles for all three values of k are given in table 19. A column represents 

number of successful executions per ten execution cycles. Maximum is 60, as there 

are six team members and ten execution cycles. 

 
Execution 
Cycle 

Successful Executions  
Kinship Only 

Successful Executions 
Trust Only 

 Successful Executions 
Trust = 0.7 Kinship = 0.3 

10 23 18 23
20 35 9 31
30 41 19 49
40 44 27 55
50 43 45 48
60 48 31 40
70 47 38 56
80 50 42 57
90 49 50 55

100 50 49 49

Table 19.  Comparison of social networks over first 100 execution cycles 

 

It is interesting to note that a social network that uses both trust and kinship 

relationship performs either as the best approach or the second best. In other words, 

the performance of the combined approach is never the worst. This characteristic is 

observed throughout the experiments, leading to conclusion that the combined trust 

and kinship approach is the safest, if not always the optimal, option. 

 

As historical data based on previous execution cycles grows, the performance of all 

three social networks improve over time. This is illustrated in figure 26. It is 

interesting to note that it takes longer for a social network that uses only the trust 

relationship to achieve the same level of performance as a social network that uses 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRooddii



 

149 
 

 

only the kinship relationship, and that which uses both. However, the performance 

increases over time to exceed that of the kinship only method.  The combined 

approach, using kinship and trust out-performs the single relationships approaches, 

albeit only after more than 500 execution cycles. The performance summary for each 

of the approaches after 700 execution cycles is given in table 20.  

 

 

Performance over 700 

execution cycles 

Kinship Only Trust Only Kinship and 

Trust 

Total number of successful 

team members over 700 

execution cycles (max 4200) 

3370 3661 4011 

Table 20.  Comparison of social networks over 700 execution cycles 

 

The results of the experiments presented in sections 7.5.6.1 – 7.5.6.3 are combined in 

figure 26. 
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Figure 26. Performance of social networks based approach with one social relationship only – kinship relationship 

(700 execution cycles) 
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7.5.7 Evolution of Subgroups  
 
The forming of subgroups within a social network has been observed in human 

societies. The forming of subgroups and their effects was studied by many 

researchers, mainly in the field of sociology. An overview of such research falls 

outside the scope of this thesis and the reader is referred to [195].  

 

In relation to this thesis, the pertinent question is if the proposed social networks 

based approach indeed mimics real-life social networks as observed in higher 

mammalian societies. One of the characteristics of real-life social networks is the 

formation of social structures that are often referred to as subgroups. As noted by 

Collins [42], if a subgroup is tightly connected, it is referred to as a clique. Agents in a 

clique tend to exhibit homogenous beliefs and common characteristics.   

 

In order to confirm that cliques do form between the agents in the social network 

based approach as presented in this thesis, this section investigates forming and 

evolution of such structures. In the context of an abstract simulated environment a 

clique is a subgroup of agents that are well-suited to a particular environment type. 

The investigation focuses on two main characteristics of a clique - the relative 

stability (once established, the members of a clique do not easily leave the clique) and 

the homogeneity between the members (in the context of the abstract simulator, the 

similarity between agents’ attribute values).  

 

The formation of cliques has been observed, regardless of the environment type. 

However, for the purpose of illustrating the process, the results presented in this 

section are related to one, randomly selected,  environment type. The simulation used 

100 execution cycles. The summary of simulation parameters is given in table 21. 
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Simulation Parameters Default Values 

Execution Cycle Scouting, Foraging 

Number of Execution Cycles 100 

Environment Type Single 

Random Initial Positioning Yes 

Foraging Team Size 6 

Table 21.  Simulation parameters used for the investigation of evaluation of subgroups. 

 

The first part of the execution cycle is the scouting task. Agent 33, defined by 

attribute vector (NORMAL, TRACK, FAST, LONG RANGE, TETHERED, NO), 

was tasked with scouting (refer to table 7 and section 7.5.5). Once the scouting task 

was executed, agent 33 has formed a foraging team, using the social networks based 

approach to team selection (refer to algorithm 10). The selected team consisted of 

agents 0, 12, 14, 18, 19 and 33 (refer to table 7).  

 

During the execution of the foraging task, which is the second part of an execution 

cycle, four agents have completed the allocated foraging task. The graph presented in 

figure 27 shows the social network after the first execution cycle. Note that in order to 

keep the graph relatively uncluttered, the only social relationship illustrated is the 

trust relationship in relation to the team leader, agent 33. Nevertheless, the forming of 

a clique is clearly illustrated and the final state of the social network is given later in 

this section. The indices represented as a full line illustrate the current clique 

members, while indices represented as a dashed line indicate the agents that were 

considered and rejected as the clique members. The indices are weighted and their 

weight is given as a ratio between successful task executions and attempted task 

executions.  The selected team leader is indicated by the capital letter T in parentheses  

(T).  
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Figure 27. The sociogram after first execution cycle 
 
 
Figure 28 represents the social network after the second execution cycles. During the 

second execution cycle, only two agents have completed the task (agents 14 and 12). 

The team leader, agent 33, has also failed to complete the task due to the range (agent 

33 has TETHERED as attribute value of attribute POWER and according to the rules 

of interaction with its environment it has a limited range – refer to section 7.1). It is 

important to note that agents 0 and 19 have failed to complete the task due to their 

kinship to the scouting agent (TETHERED, refer to table 7 for agent attributes), since 

the scouting agent is selected as a team leader due to the initial lack of trust data. To 

illustrate, consider the initial state where there is no trust relationships established 

between the agents. The only agent with a historical performance record (agent’s own 

trust in its suitability to perform a task in a given environment) is the scouting agent. 

For the kinship calculation purposes, it is considered the team leader and agents are 

ranked according to their kinship related to the team leader (see section 6.6.4.2).  
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Figure 28. The sociogram after the second execution cycle 
 
 
The agent’s performance is considered unsatisfactory if the ratio between successful 

task executions and attempted task executions is less than 0.5 (a problem dependent 

parameter). After the second execution cycle, the performance of agent 33 that 

performed the roles of a scouting agent and team leader was deemed unsatisfactory. 

The performance of agents 0 and 19, was also deemed unsatisfactory. Agent 34 

became the next scouting agent and team leader. Agents 0 and 19 were replaced by 

agents 49 and 23 which, were the next best ranked agents in relation to the new team 

leader. The foraging task was executed and agents 12, 14 and 23 have successfully 

completed the task. Agent 34, which was selected as the team leader, has failed to 

complete the task and it was replaced in the next execution cycle. Figure 29 illustrates 

the social network after the third execution cycle.  
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Figure 29. The sociogram after third execution cycle 
 
 
It is important to note that after the third execution cycle there was sufficient 

historical information about previous performance related to the foraging task to 

enable agent 14 to become the next team leader. 

 

As the performance of agents 18, 33 and 49 was not satisfactory, they were replaced.  

The next execution cycle illustrates the importance of kinship, as kinship is now 

calculated in relation to the new team leader. The new permanent members 9, 20, and 

32, that have strong kinship relationships to the new team leader, were introduced as 

team members during the fourth execution cycle. The social network after the fourth 

execution cycle is illustrated in figure 30. 
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Figure 30. The sociogram after fourth execution cycle 

 

During the fourth execution cycle all agents, with the exception of agent 20, have 

completed the task. Agents 12 and 14 were successful in all execution cycles so far 

and they can be viewed as the core of a clique. Agent 20 was replaced by a new team 

member, agent 43. The resulting sociogram is presented in figure 31. 
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Figure 31. The sociogram after fifth execution cycle 
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It is important to note that after the fifth execution cycle, resilience (stability) of a 

clique has already been identified. Once part of the clique, members (agents 12, 23, 

32 and 9) do not easily leave. The team member introduced in the fifth execution 

cycle, agent 43 was the only unsuccessful team member agent and agent 25 replaced 

it. The sixth execution cycle again further enforced the clique. The new team member, 

agent 25 was yet another unsuccessful team member, while all other agents have 

completed the task. The social network after sixth execution cycle is illustrated in 

figure 32. 
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Figure 32. The sociogram after sixth execution cycle – established clique 

 

Finally, the seventh execution cycle has introduced the sixth and final member, agent 

15, of the clique around the team leader, namely agent 14. During the execution of the 

seventh execution cycle and subsequent execution cycles (the simulation executed 

100 execution cycles) all team members were successful in task execution. The social 

network after the seventh execution cycle is presented in figure 33. 
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Figure 33. The sociogram after seventh execution cycle - stable clique 

 

After the seventh execution cycle, the clique, consisting of agents 9, 12, 14, 15, 23 

and 32, has reached stability and no further fluctuations were observed. Stability was 

achieved relatively early. Similar results were obtained in further experiments. The 

final state of  the social network after 100 execution cycles is presented in figure 34.  
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Figure 34. The final social network after 100 execution cycles 
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The investigation has confirmed that cliques do form in an artificial agent society, 

such as a society of agents in an abstract simulated environment. Firstly, the stability 

of a clique was investigated by observing the fluctuation of members over the period 

of execution. The clique has reached stability relatively early, after 6 execution 

cycles. 

 

 

7.6 Summary 
 
A partial implementation of the INDABA architecture, consisting of the upper two 

layers, was presented in this chapter. The agents in the abstract simulated environment 

were implemented using this reduced INDABA architecture. The social networks 

based approach was used as the main coordination mechanism and it was compared to 

an auctioning mechanism. A number of experiments were conducted that investigated 

all the parameters of the social networks based approach. Characteristics of the social 

network based approach were discussed, namely learning capability, specialisation of 

agents and the formation of cliques.  

 

The next chapter presents a more comprehensive INDABA architecture 

implementation, again utilising the social networks based approach as a coordination 

mechanism.  
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Chapter 8: Experiments in the Simulated Robot 
Environment 
 
The simulation and experiments described in chapter 7 were done with a high level of 

abstraction and a more realistic simulator was developed for the purpose of this 

thesis. This chapter presents a description of the simulator and the experiments 

conducted using the simulator. Section 8.1 summarises the main purpose of the 

simulator, while section 8.2 overviews the main components of the simulator. The 

simulation set-up, including a description of the robot population and environments 

used is given in section 8.3. Section 8.4 presents the experimental results.  

 
 

8.1 Introduction 
 
For the purpose of further experiments into the applicability of social networks as 

coordination tools in multi-robot teams, robot simulator software was developed. The 

main purpose of the simulator is to visualise the behaviour and movement of multi-

robot teams during task execution. The robot simulator software itself is not a truly 

realistic simulation of the real-world, since many simplifications were made. A 

realistic robot simulation was considered at a certain stage (i.e. Webots [184]), but the 

limitations on social interaction models in readily availably robot simulations have 

necessitated the development of a simulator that focuses on multi-robot teams, albeit 

in a less realistic simulated environment.  

 

8.2 Robot Simulator Overview 
 
 
The robot simulator was developed in C++  in a Windows ™ environment. The robot 

simulator consists of the following components:  

 

•  The robot definition component, which encapsulates robots’ behaviours. 

•  The society component, which maintains social links between robots. 

•  The environment component, which provides interaction with the 

simulated environment. 

•  The display component, which visualises task executions. 
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Each of the components will be described in more detail in the following sections. 

The main loop of the robot simulator is illustrated in algorithm 10. 

 

For all Robots in team 

    If Task not accomplished 

         SetSensorReadings(Robot, Environment) 

         Execute(Robot) 

         ValidateAction(Robot, Environment) 

         Display(Robot) 

    EndIf       

EndFor 

 

Algorithm 10. The main loop of robot simulator 
 

8.2.1 Robot Definitions Component 
 
In order to keep the realism level high, robot-related functionality is kept and 

implemented independently in the robot definitions component. This facilitates a 

potential migration from the simulated robot to a real robot platform. The simulated 

robot architecture is based on a simplified INDABA agent architecture (refer to 

chapter 5), consisting of two layers: 

 

•  A controller layer that implements GoTo, AvoidObstacle, DetectObject and  

GrabObject behaviours. 

•  A combined sequencer and deliberator layer. 

 

Such simplifications are justified by the fact that the task was one of the benchmark 

tasks for robotic teams: a simple foraging task. It was deemed to be unnecessary to 

implement a full inference engine based deliberator layer. Similarly, the interaction 

between the agents is handled by the society component of the robot simulator. 

Implementation of the interaction layer was therefore not deemed necessary. These 

simplifications should not impact on the “realism” factor in any manner.  

The robot component receives input from the environment by reading sensor inputs 

from the environment. Based on the sensor inputs and the progress of task execution, 
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the combined sequencer and deliberator layer enables or disables behaviours in the 

controller layer. The desired robot actions are then sent to the environment component 

that evaluates their validity. 

 

8.2.2 Display Component 
 

The display component is used to monitor the execution of the allocated task. 

Minimum effort was spent on this component as it is of little relevance to the outcome 

of the experiments. A typical screenshot is presented in figure 35. White rectangles 

represent obstacles, small black rectangles represent “food”, while the larger dark 

grey area represents “rough terrain”. The symbol referred to by the white arrow on 

figure 35 indicates a robot. 

 

Figure 35. A Screenshot of Robot Simulator 
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8.2.3 Society Component 
 

The main role of the society component is to facilitate team selection. In the INDABA 

architecture [157] the agent’s interaction layer performs this task, as described in 

section 5.2. In the robot simulator, the society component allocates the tasks. This is 

done by finding the robot most suited to the task based on its performance history. If 

there is no performance history a robot is randomly selected. Then the strengths of 

social links are calculated using the definitions of kinship as given in section 7.1. The 

team allocation algorithm is given in pseudo-code in algorithm 11. 
 

Announce Task T 

For all Robots 

    If t(Robot, Robot, T)> t(leader, leader, T) 

      Leader = Robot 

EndFor 

If Leader found 

   For all Robot in society 

      Calculate s(leader, Robot, T) 

   EndFor 

   Select team based on highest s(leader, Robot, T)  

Else 

   Select team based on auctioning 

End Else 

 

Execute Task 
 
For all Robots in team   

  If Task successfully executed 

       Increase t (leader, Robot,T)     

  Else 

     Decrease t (leader, Robot,T)     

EndFor 
Algorithm 11. Task allocation and task success evaluation in simulated robot environment 
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8.2.4 Environment Component 
 
The environment component simulates the real-world. It provides sensor readings 

based on a description of the environment, described in a set-up file which is loaded 

before execution begins. All the robot actions are validated within the limits and 

constraints of the environment, i.e. the obstacles and environment variables that 

influence the outcome of desired robot actions. 

 

8.3 Simulation Set-up and Assumptions 
 

For the purpose of this simulation, robot, environment and task attributes were 

selected to resemble potential real-world environments and problems. The setup is 

described with reference to the robots and environments used (refer to section 8.3.1) 

and the tasks to be performed (refer to section 8.3.2). 

 

8.3.1 Robots and Environments 
 
Each robot is defined by a predetermined set of attributes, as listed in table 22.  
 

ROBOT ATTRIBUTE POSSIBLE VALUES 

LOAD_SMALL LOAD 

LOAD_NORMAL 

AVOIDANCE_AVAILABLE AVOIDANCE 

AVOIDANCE_NOT_AVAILABLE 

DRIVE_WHEEL 

DRIVE_TRACK 

DRIVE 

DRIVE_LEG 

SPEED_LOW 

SPEED_MEDIUM 

SPEED 

SPEED_FAST 

DETECTION_NORMAL 

DETECTION_LIGHT_ONLY 

DETECTION RANGE 

DETECTION_ADVANCED 

POWER_TETHERED 

POWER_SOLAR 

POWER 

POWER_BATTERY 

Table 22. Robot Attributes and possible values 
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It is important to note that the robots were defined by a set of attributes similar to that 

used in the experiments of chapter 7, but not identical. 

 

The environments were defined in a similar manner, with environment attributes 

listed in table 23, where food refers to collectable items. 

 
ENIVRONMENT ATTRIBUTE POSSIBLE VALUES 

TERRAIN_NORMAL  TERRAIN 

TERRAIN_ROUGH_AREA 

LIGHT_NO_OBSTACLES LIGHT 

LIGHT_SHADED_AREA 

OBSTACLES_NONE 

OBSTACLES_FEW 

OBSTACLES 

OBSTACLES_MANY 

FOOD_FAR FOOD_DISTANCE 

FOOD_CLOSE 

FOOD_LIGHT 

FOOD_HEAVY 

FOOD_WEIGHT 

FOOD_MIXED 

FOOD_PLENTY 

FOOD_AVERAGE 

FOOD_AVAILABILITY 

FOOD_SPARSE 

Table 23. Environment attributes and possible values 

 
Each robot action is expressed in terms of actuators, namely: 

 

•  Motor for left drive  (on/off) 

•  Motor for right drive  (on/off) 

•  Gripper motor (open/close) 

 

The simulator does not prescribe a limit on the number of different robots and 

environments that could be created and used. However, for the purpose of 

experiments presented in this chapter, a total of 15 robots and 15 environments were 

created, all having randomly selected characteristics.  
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8.3.2 Tasks 
 
While previous investigations focused on a simple foraging task using the same 

simulated robot environment [158], this thesis considers two tasks: scouting and then 

foraging.  

 

For the purpose of these experiments, it is assumed that a robot is aware of its 

approximate position in relation to the environment. It is also assumed that a scouting 

robot has knowledge of the approximate position of the area where food is located. 

Although the robots have an idea of the approximate position of food, they do not 

have the precise position. Then, during the process of finding the best scout, if a robot 

reaches the approximate position, then that robot performs a spiral search to reach the 

food.  

 
The following restrictions, similar but not identical to the rules given in section 7.1, 

are placed on the interaction between robots and the environment: 

 

•  If a robot’s LOAD attribute is LOAD_SMALL, it cannot load food that 

has FOOD_WEIGHT attribute FOOD_HEAVY. 

•  If a robot’s POWER attribute is POWER_SOLAR, it cannot move in an 

environment area that is in the shade.  

•  If a robot’s POWER attribute is POWER_TETHERED, it is limited in 

range. 

•  The detection range is reduced in the shaded area and if a robot’s 

DETECTION_RANGE attribute is DETECTION_LIGHT_ONLY, the 

robot cannot detect objects in shaded areas. 

•  A robot’s progress is determined based on terrain, drive and speed (refer to 

section 7.1). 

 

For each environment, the number of obstacles (depending on the value of the 

OBSTACLES attribute namely none, many (3-7 obstacles) or few (1-3 obstacles)) is 

randomly created. The same applies to food (depending on the value of the 

FOOD_AVAILABILITY attribute). Obstacles positioning is random, while food 

positioning is also random, but within the limits of the value of environment 
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parameter FOOD_DISTANCE. It is important to note that, due to the randomness of 

the environment attributes, in some cases a task could not be successfully executed at 

all. To illustrate, during the experiments conducted here, two of the environments 

were not successful due to the food being blocked by obstacles, so foraging was not 

possible. A consideration was given to recreating those two environment, but it was 

decided to use them unchanged. The reason for such decision is that, in real-world, it 

may happen that certain environments are just too difficult for robots to execute an 

allocated task [131].  

 

For each environment, three different strategies have been used to select teams: (1) 

random team selection, (2) team selection based on auctioning and (3) team selection 

based on social networks. Using each strategy, two teams were formed, a scouting 

team and a foraging team. The scouting team consisted of only one robot, while three 

robots were in each foraging team. Each team was allowed to perform the task for a 

limited period of time (50 seconds).  

 

If a robot did not complete the allocated task in the prescribed period of time (i.e. the 

robot did not find the food in the case of the scouting task, or did not return with the 

collected food to the home area in the case of the foraging task), it is considered that 

the robot failed to complete the task.  

 

 
8.4 Simulation Results 

 
 
In order to simulate a condition of market failure due to uncertainty, uncertainty about 

the task was introduced. Ucertainty was included by having incomplete information 

about environment attributes. For the purpose of this section, information was 

available for only FOOD_DISTANCE, FOOD_WEIGHT and TERRAIN attributes.  

 

As mentioned in the previous section, each team had a limited size. If more than the 

allowed number of team members satisfied the auctioning bid, teams were selected 

randomly from these robots until the team size constraint has been met. For the 

purposes of this chapter, two experiments have been conducted. 
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For the first experiment, performance was evaluated when the same selection method 

is used for both the scouting team and foraging team. Performance was evaluated for 

the three different selection strategies (i.e. auction, social networks and random).  

 

For the second experiment, the selection strategy used for the two teams were not 

necessarily the same. The strategy for selecting the scout was random selection. For 

the second experiment, three different studies have been done, where each study uses 

a different selection strategy for the foraging team.  

 

Each experiment consisted of six simulations, where each simulation was run for 

forty-five execution cycles. Three execution cycles (each using a different selection 

strategy) were applied to each of fifteen randomly generated environments. It is 

important to note that each execution cycle builds on the social network, consisting of 

trust and kinship relationship, established during the previous execution cycle. 

8.4.1 Results Using Same Selection Method  
 
For the results reported in this section, the scout and foraging team selection utilise 

the same selection method. The results are illustrated in figure 36.   
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 Figure 36. Comparative results of three selection methods over six simulations (same selection methods for both 

tasks) 
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It is important to note that for each of the three selection strategies, maximum number 

of successful agents per simulation is forty-five (three robots per team over fifteen 

randomly created environments). The social networks based team allocation 

mechanism on average performed better than the auctioning or random selection team 

allocation mechanisms.  

 

In the first simulation, at which point there is no history, the social networks based 

team selection utilises auctioning. Therefor, there is no significant difference between 

the performances of the auctioning and social network team selection methods. Only 

after the third run, does the social networks approach start to outperform the 

auctioning method. The reason for this improvement in performance is due to the trust 

that was developed between the agents during the first two runs. In the third run, trust 

and kinship start to play the primary role in team selection.  The performance of the 

auctioning system fluctuates, but on average does not improve. The random selection 

method performs far worse than the auctioning and social networks methods.  

 

Fluctuations were observed in the performance of all three selection methods. It is 

important to note that these fluctuations are due to the uncertainty of the robot and 

food positioning, which are randomly selected for each environment (in case of food 

positioning) and for each task execution (in case of robot positioning). To quantify the 

uncertainty, in the experiment reported in this section robots were randomly 

positioned 2700 times (four robots (one scouting and three foraging robots) using 

three selection strategies for each of the fifteen environments in six simulations). 

 

8.4.2 Random Scout Selection Method Simulation Results 
 
This section reports results of using different selection method for the scout and 

foraging teams. Scout selection uses the random selection method, while the foraging 

team selection respectively utilise auctioning, social networks or random selection 

methods. The results are illustrated in figure 37. 

 

Again the social networks based team allocation mechanism performed on average 

better than the auctioning and random selection team allocation mechanisms, but not 
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as well as for the previous experiments (refer to section 8.4.1). The lower 

performance can be attributed to the fact that whole task fails if the scout does not 

successfully complete its task. Random selection method does not guarantee that the 

best robot is selected for scouting task, while social networks based selection does 

(based on historical performance). The same selection method is therefore the 

recommended approach to fully utilise the advantages of the social networks based 

approach. 
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 Figure 37. Comparative results of three selection methods over six execution cycles (inconsistent selection) 

 

For both experiments it was noted that the social networks approach improved its 

performance over time, allowing for minor fluctuations. Social networks store 

information about relationships (kinship and trust) between members of the society. 

The stored trust relationship information is derived from the historical performance of 

the team members (refer to section 8.2.3 and algorithm 11). This information is used 

in the process of team selection, and leads to improvement in performance of the 

selected team.   
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The improvement in performance, due to the better team selection method based on 

kinship and trust relationships, can be seen as a learning capability. 

 

8.5 Summary 
 
The INDABA architecture was used as the agent architecture in a simulated robot 

environment, which was presented in this chapter. Scouting and foraging tasks were 

simulated in this environment and the results were presented and discussed. The 

social networks based approach was used as the main team selection mechanism. A 

comparison was made to alternative team selection strategies, namely auctioning and 

random selection. The results of conducted experiments indicate that social networks 

based approach performs better than alternative team selection strategies. 

 

The next chapter presents a full INDABA implementation in a physical environment, 

using a readily available robotic platform. 
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Chapter 9: Experiments in a Physical Environment 
 

The new agent architecture, INDABA, was proposed in chapter 5. INDABA was 

partially implemented for the purpose of the simulations and experiments described in 

chapters 7 and 8. The agents based on INDABA were implemented and they executed 

allocated tasks. The fourth layer of INDABA, the interaction layer has proved to be a 

valuable addition to the standard three layers. The interaction layer allowed for ease 

of implementation of various team selection methods. As a final confirmation of the 

applicability of INDABA to a robot architecture, this chapter provides results from a 

physical environment implementation. An introduction to the chapter is given in 

section 9.1. Section 9.2 describes the physical environment set-up, including an 

overview of the physical robots used, and environment types. Section 9.3 describes an 

implementation of the INDABA architecture to a hardware platform with limited 

capability, namely LEGO Mindstorms [185]. The social networks approach was used 

for robot selection for a scouting task. The results are presented in section 9.4.  

 
 

9.1 Introduction 
 
Section 3.2 discussed Shakey, a robotic architecture [137] implemented in physical 

environment. One of the lessons learned from the Shakey project was that although a 

certain architecture may perform well in theory, the same architecture, when 

implemented in a physical environment, may not perform up to the expectations 

[120]. The view proposed by some of the leading researchers [28][112] and adopted 

in this thesis is that a robotic architecture must be implemented in a physical 

environment in order to accurately evaluate its performance. To prove the 

applicability of the INDABA architecture, and more specifically the social based 

approach to task allocation, the implementation was done in a physical environment. 

However, the focus of this thesis is not in creating a sophisticated multi-robot team 

environment. Instead, a simplistic physical environment was chosen for the purpose 

of this thesis, to show proof of concept. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRooddii



 

172 
 

 

 
9.2 Physical Environment Set-up 

 
The physical environment used in this thesis uses standard “off-the-shelf” hardware 

and many simplifications (in comparison with a real-world application) were made. 

For example, the navigation method used is dead-reckoning (as applied to a LEGO 

platform [64]). The dead-reckoning navigation method is not ideal, especially 

considering the selected platform (due to the inaccuracies of the available sensors).  

 

The physical environment set-up can be described by describing its three main 

components: robotic platform, robot population and the environment set-up.  

 

9.2.1 Robotic Platform  
 
For the purpose of a physical robot implementation, LEGO Mindstorms robotic 

platform was selected. LEGO Mindstorms robotic platform [185] was developed by 

LEGO and it was inspired by research done on MIT’s Programmable Brick [162]. 

LEGO Mindstorms is an easy to use, reliable and cheap robotic platform that comes 

with a variety of development tools, the majority of which were developed by LEGO 

and the LEGO users community.  

 

At the heart of every LEGO robot is a RCX Brick [185], a simple computer that 

supports the concurrent execution of up to 10 processes at a time. The number of 

available variables is 32 for global variables and 16 for local variables. All variables 

are of 16-bit signed integer type. An RCX has a Hitachi H8/300 CPU and 32K RAM, 

and it also has a limited communication capability. It is equipped with an IR port that 

is capable of sending and receiving messages. The LEGO Mindstorms was 

investigated in [155]. 

 

There are a few major shortcomings of the LEGO Mindstorms communication 

capability, as implemented in standard RCX, that makes the communication 

unreliable and of limited use: 
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•  The communication is done via an IR port and as such it is basically line of 

sight communication with a limited range (in ideal conditions, about 10 

meters). 

 

•  The messaging protocol is extremely simple and there is no addressing 

mechanism. This in turn means that it is impossible to send a message to a 

particular robot in a multi-robot team. 

 

•  The application programming interfaces (APIs) for LEGO IR tower are 

usually a third-party software with limited usability and they are usually not 

error-free. Often the provided APIs are not general enough to provide simple 

integration into a more complex software application. 

 

The RCX Brick also supports numerous standard sensors (up to three at a time) and it 

can control up to three actuators. The supported sensors are very basic and not very 

accurate. The standard sensors include light, temperature, touch and rotation sensors. 

The standard actuators include micro motors and light sources.  

 

The RCX can be programmed using a variety of programming languages. The two 

most popular LEGO programming languages are: 

 

•  Not Quite C (NQC)  [182], which is a subset of the C programming language, 

adapted for RCX, and 

•  LASM (Lego ASEMBLER) [185]. 

 

 NQC [182] was selected as the programming language for robot implementation. 

 

9.2.2 Robot Population 
 
Unfortunately, the choice of agent attributes was mainly limited by the availability of 

LEGO Mindstorms sensors and actuators, which tend to be very basic (refer to section 

9.2.1). In order to increase the variety of attributes, some of the agent attributes are 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRooddii



 

174 
 

 

implemented as software features and they depend on particular robot programming. 

The list of attributes, together with possible attribute values, is given in table 24. 

 

AGENT ATTRIBUTE POSSIBLE VALUES 
NO_AVOIDANCE OBSATCLE AVOIDANCE 
AVOIDANCE 
DRIVE_WHEEL DRIVE 
DRIVE_TRACK 
SPEED_MEDIUM SPEED 
SPEED_HIGH 
NORMAL DETECTION  
LIGHT_ONLY 
TETHERED POWER 
BATTERY 

Table 24. Robot attributes and possible values 

 
Due to the limited availability of LEGO Mindstorms kits at the University of Pretoria, 

the robot population was restricted to six robots. The attribute values of agents’s 

attributes are given in table 25. Each row represents one of the agents in the 

population. 

 

ID 
(TYPE) 

OBSTACLE 
AVOIDANCE  DRIVE  SPEED DETECTION POWER 

0 AVOIDANCE DRIVE_WHEEL SPEED_MEDIUM LIGHT_ONLY   BATTERY 
1 NO_AVOIDANCE DRIVE_WHEEL SPEED_HIGH LIGHT_ONLY  TETHERED 
2 AVOIDANCE DRIVE_WHEEL SPEED_MEDIUM NORMAL  BATTERY 
3 NO_AVOIDANCE DRIVE_WHEEL SPEED_HIGH NORMAL TETHERED 
4 AVOIDANCE DRIVE_TRACK SPEED_SLOW NORMAL BATTERY 
5 AVOIDANCE DRIVE_TRACK SPEED_SLOW LIGHT_ONLY  BATTERY 

Table 25. Robot population 

 

An example of a robot  (type 5) defined by the 5-tuple (AVOIDANCE, 

DRIVE_TRACK. SPEED_MEDIUM, LIGHT_ONLY, BATTERY) is given in figure 

38. 
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Figure 38. An example of a robot used in the experiments (type 5). 
 
Robot type 5 utilises differential steering and it uses tracks as the main means of 

propulsion. As obstacle detection mechanism, two antennae are used. The robot has a 

simple light sensor for detection of collectable objects.  

 

An example of another robot (type 3), defined by the 5-tuple (AVOIDANCE, 

DRIVE_WHEEL, SPEED_MEDIUM, NORMAL, BATTERY) is given in figure 39. 

 
 

Figure 39. An example of a robot used in the experiments (type 3). 
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Robot type 3 again utilises differential steering but uses wheels as the main means of 

propulsion. Two bumpers are used as obstacle detection mechanism sensors. The 

robot has a simple light sensor for detection of collectable objects. Furthermore, the 

robot type has a Light Emitting Diode (LED) that allows for object detection in dark 

environments. 

9.2.3 Environment Set-up and Types of Environment 
 
For the purpose of the experiments in a physical environment, various environments 

were created. Each environment can be described by a set of attributes. The 

environment attributes and valid attribute values are given in table 26.  

ENIVRONMENT ATTRIBUTE POSSIBLE VALUES 
NORMAL  TERRAIN 
ROUGH_AREA 
NO_SHADED_AREA LIGHT 
SHADED_AREA 
FAR FOOD DISTANCE 
CLOSE 
NO_OBSTACLES OBSTACLES 
OBSTACLES 

Table 26. Environment attributes and possible values 

 
For the purpose of this thesis, four environments were created. These environments 

are described next. The first environment is described by the 4-tuple 

(ROUGH_AREA, NO_SHADED_AREA, FAR, NO_OBSTACLES). The 

environment (illustrated in figure 40) has two areas of a rough terrain.  
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Figure 40. First environment used in experiments 
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The second environment used in these experiments is described by the 4-tuple 

(ROUGH_AREA, NO_SHADED_AREA, FAR, OBSTACLES) and is illustrated in 

figure 41. 

3.05m .

3.
05

m
.

1 .98m .
1.

52
m

.

0 .53m .

1.
52

m
.

4 .40  sq . ft.

0.
61

m
.

0 .63m .

H O M E  A R E A

Food A rea

O bs tac le
0 .85 sq . ft.

0 .88  sq . ft.
R ough Terra in

F ood

1.87 sq . ft.0.
34

m
.

0 .48m .

 
Figure 41. Second environment used in experiments 

 

The 4-tuple (ROUGH_AREA, NO_SHADED_AREA, CLOSE, NO_OBSTACLES) 

describes the third environment, as illustrated in figure 42. 
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Figure 42. Third environment used in experiments 
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The fourth and last environment is described by the 4-tuple (NORMAL, 

SHADED_AREA, FAR, OBSTACLES) and is illustrated in figure 43. 
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Figure 43. The fourth environment used in experiments. 

 
Table 27 summarises the environments used in the experiments, together with their 

attribute values. 
ID 

(TYPE) 

TERRAIN LIGHT FOOD 

DISTANCE 

OBSTACLES 

0 ROUGH_AREA NO_SHADED_AREA FAR NO_OBSTACLES 

1 ROUGH_AREA NO_SHADED_AREA FAR OBSTACLES 

2 ROUGH_AREA NO_SHADED_AREA CLOSE NO_OBSTACLES 

3 NORMAL SHADED_AREA FAR OBSTACLES 

Table 27. Summary of environment types used in experiments 

 
 

9.3 INDABA Implementation 
 
The INDABA implementation presented in this chapter splits the four layers of 

INDABA  into two groups, one implemented in the robots and the other one 

implemented as an application on a desktop PC equipped with an IR tower for 

communications with the robots. The reason for such implementation is that the 
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computational requirements of a full INDABA four-layer architecture exceeded the 

computing capabilities of the selected robotic platform.  

 

Communication between the deliberator layer and the sequencer layer uses the 

infrared channel. The Phantom Application Programming Interface (API) [183] is 

used for communication purposes. 

 

The Phantom Control API allows for direct access to variables stored on the RCX 

Brick. This mechanism was utilized to set active goals (by setting the B variable) and 

for retrieving the status of each goal (by getting the G variable). In order to reduce 

communication traffic (as the RCX can send and receive only a byte at time) one 

variable was used for setting active behaviours and another for retrieving the status of 

each behaviour. Behaviours and statuses were encoded using simple binary encoding. 

The overall architecture is illustrated in figure 44. 
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Figure 44.  Implemented Hybrid Architecture 
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Due to the fact that the implemented method of communication allows only a PC to 

initiate communications, polling is used to gather date from robots. Polling occurs 

every 250ms.  
 
 

9.3.1 Implemented Robot Components 
 
Because of the processing power limitations of LEGO Mindstorms, only the lower 

two layers of INDABA could be implemented in the selected robotic platform. The 

lower two layers, that are computationally less demanding, are the controller layer 

(together with corresponding behaviours that are implemented therein) and sequencer 

layer.  

9.3.1.1 The Controller Layer 
 

The controller layer consists of several behaviours, namely basic behaviours and 

synthesised behaviours. Synthesised behaviours are combinations of basic behaviours. 

 

The basic behaviours, provided by the NQC implementation [182], are: 

 

•  On (OUTPUT); this simple behaviour activates output OUTPUT indefinitely. 

•  OnFor (OUTPUT, TIME); this behaviour activates output OUTPUT for a 

period TIME (TIME is expressed in tenths of a second). 

•  Off (OUTPUT); deactivates output OUTPUT. 

•  OnRev (OUTPUT); reverses the polarity of output OUTPUT. If a motor is 

connected to output OUTPUT, this behaviour will reverse its direction. 

 

The synthesised behaviours are implemented as tasks in NQC terminology [182]. The 

synthesised behaviours include: 

 

•  beh_move_for (DIRECTION, DURATION). This behaviour encapsulates the 

details in how motion is achieved. Only direction of the movement and its 

duration are provided as input to this behaviour. 
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•  beh_detect. This behaviour constantly monitors the input received from the 

light sensor. If the input exceeds a certain, predefined value, the behaviour 

terminates, signalling the detection of a food object. 

•  beh_spiral_search. A behaviour that executes increasing spiral search. 

•  beh_safe_move. A behaviour that allows for a movement with obstacle 

detection. If an obstacle is detected, an attempt is made to avoid the obstacle. 

•  beh_send. The behaviour that transmits the coordinate where food is detected. 

It is important to note that the coordinates are calculated using a dead-

reckoning navigation approach and as such is susceptible to error.  

 

The synthesised behaviours were sufficient for a simple scouting task. These 

behaviours are activated and deactivated by the next layer of INDABA, the sequencer 

layer. 

 

9.3.1.2 The Sequencer Layer 
 
The sequencer layer combines the behaviours, as implemented in controller layer, in 

order to achieve certain goals. The sequencer is also implemented as a task in NQC 

terminology. It uses NQC commands start task and stop task to activate and 

deactivate the behaviours in the controller layer. For the purpose of the scouting tasks, 

three goals are defined: 

 

•  GOAL_AREA. This goal is achieved when a robot is in the target area that is 

the start of the approximated food area.  

•  GOAL_FIND. This goal is activated when a robot is in the target area. It is 

achieved when a behaviour beh_detect  terminates, indicating the detection of 

a food object. 

•  GOAL_SEND. This goal transmits the coordinates of the area where food was 

detected.  

 

The goals are a combination of behaviours. For the purpose of this application the 

combinations are hard-coded. Table 28 illustrates the implementation of the sequencer 

layer. 
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GOAL ACTIVE BEHAVIOURS 
 beh_safe_move   beh_detect beh_spiral_search beh_send 

COMPLETION 

CRITERIA 
GOAL_AREA ACTIVE ACTIVE   Time or beh_detect 

GOAL_FIND  ACTIVE ACTIVE  beh_detect 

GOAL_SEND    ACTIVE beh_send 

Table 28. Illustration of the implemented sequencer layer. 

 

The sequencer layer constantly monitors a change in value of the variable G (see 

section 9.3). If a change is detected, the variable is decoded and the appropriate goal 

is activated, which in turn activates the corresponding behaviours (as in table 21). 

 

9.3.2 Components Implemented in the Desktop PC 
 
 
The higher two layers, i.e. the deliberator and interaction layers of INDABA are 

implemented in a desktop PC Windows ™ environment. The programming language 

used was C++. The implementation of deliberator and interaction layers is very 

similar to the implementation as described in chapter 7, and there was extensive re-

use of the code.  

 

9.3.2.1 The Deliberator Layer 
 

For the purpose of this particular INDABA implementation, a simple backward and 

forward chaining inference engine was developed. More on backward and forward 

chaining can be found in many AI textbooks, such as [170]. It is important to note that 

the backward chaining process is modified to suit the execution in a robot 

environment, as follows.  

 

The deliberator layer loads the rules from a text file. When a goal is selected, the rules 

are back-chained until the first sub-goal is identified. The first sub-goal is a goal that 

cannot be back-chained further. The sub-goal is then passed as a goal to the sequencer 

layer. When the sequencer layer returns the sub-goal results, the inference engine 
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determines the next sub-goal and the process continues until the value of the goal can 

be determined.  

 

To illustrate the process, consider the (very simple) set of rules as implemented for 

the purpose of the experiments described in this chapter. The implemented rules are: 

 

Rule 1 :   IF GOAL_AREA       THEN GOAL_FIND 

Rule 2:    IF GOAL_FIND     THEN GOAL_SEND 

Rule 3:    IF GOAL_SEND     THEN GOAL_SCOUT 

 
Consider the activation of goal GOAL_SCOUT. The inference engine back-chain 

rules until it gets to the first sub-goal from which it cannot back-chain further. That 

sub-goal is GOAL_AREA. The GOAL_AREA is then sent as a goal to the sequencer 

layer, utilising the mechanism described in section 9.3. Once the goal is achieved, the 

whole process repeats, but this time the first sub-goal is the GOAL_FIND and the 

process continues until the GOAL_SCOUT is satisfied or until the allocated time is 

exceeded.  

 

The activation of a goal and the allocation of time to the task execution are done by 

the fourth and last layer of INDABA, the interaction layer. 

 

 

9.3.2.2 The Interaction Layer 
 
The interaction layer consists of two main components: the task allocation and task 

evaluation components. The task allocation component utilises the social networks 

based approach, as described in section 7.1. 

 

•  Task Allocation 

The algorithm starts with the task details propagation. For the purpose of the 

experiments and the selected task (scouting) implemented in this chapter, the task 

details consisted only of a time constraint, defined as maximum execution time.  
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Each of the available robots evaluates its own suitability to the task, by examining its 

own historical performance (using a trust relationship to itself, as described in section 

7.1). The algorithm is similar to the general team leader selection algorithm 7.  

 

The robot with the highest score is selected. In the case where the highest scoring 

robot is not available for the task, the next best one (based on kinship relationship as 

described in 7.1) is selected for the task execution. Setting the goal GOAL_SCOUT in 

its deliberator layer then activates the selected robot.  

 

•  Task Evaluation 

If a robot is still executing when the allocated time expires, (the value of the goal 

GOAL_SCOUT in the deliberator layer is unknown), the agent is considered 

unsuccessful in the task.  

 

If the execution of the task was successful (the value of the goal GOAL_SCOUT is 

true), its affinity to the task is increased. In other words, its own trust rating relative to 

a particular task’s details improves (this represents its own historical performance; 

refer to section 7.3.). This in turn determines an agent’s affinity to a particular task 

type.  

 

9.4 Results 
 
In order to provide some historical data, robots were initially randomly selected for 

the scouting task. For each environment, a robot was ten times randomly selected 

from the population of six robots (refer to table 25) and tasked with the scouting task. 

 

To prove the validity of the social networks based team allocation mechanism, the 

fifth environment was randomly created and the social networks based team 

allocation mechanism was compared to random selection.  

 

The results of random selection and a brief discussion on encountered issues for each 

environment are presented next, followed by the comparison of the social networks 

based approach with random selection. 
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9.4.1 Random Selection Results  
 
The results of robots execution in various environments are presented in table 29.  

ENVIRONMENT SELECTED ROBOT  RESULT (Min:Sec) 
1 4 0:23 
1 5 FAIL (Lost Position) 
1 4 0:42 
1 2 FAIL (Rough Area) 
1 0 FAIL (Rough Area) 
1 1 FAIL (Range) 
1 0 0:45   
1 5 0:57 
1 0 FAIL (Rough Area) 
1 3 FAIL (Range) 
2 5 1:05 
2 2 FAIL (False Detect) 
2 0 FAIL (Avoidance) 
2 2 FAIL (Avoidance) 
2 5 FAIL (Avoidance) 
2 5 1:15 
2 0 0:54 
2 2 FAIL (Rough Area) 
2 4 FAIL (Avoidance) 
2 1 FAIL (Avoidance) 
3 0 0:22 
3 5 0:15 
3 4 1:03 
3 1 0:20 
3 2 FAIL (Rough Area) 
3 1 0:12 
3 2 0:53 
3 1 0:05 
3 2 0:06 
3 5 0:43 
4 4 0:37 
4 1 FAIL (Range) 
4 1 FAIL (Range) 
4 0 0:43 
4 3 FAIL (Range) 
4 1 FAIL (Range) 
4 3 FAIL (Range) 
4 5 0:16 
4 4 0:48 
4 2 FAIL (Rough Area) 

Table 29. The results of random selection robot scout execution in physical environments. 
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The task was considered unsuccessful if a robot could not complete it in less than two 

minutes. The results reflect the time that it took a robot to complete the task, or 

alternatively the reason why it failed.  

 

Numerous problems were encountered during the robots’ execution in a physical 

environment, mainly related to randomness in the environment and physical robot 

attributes. The two most common problems are:  

 

•  Changes in Lightning Conditions  

 

The LEGO Mindstorms light sensor is very sensitive to changes in light conditions. 

The robotic lab had a window and while every effort was made to restrict the light, 

the slightest change required recalibration. It was impossible to use the same settings 

in the morning and afternoon. To counter these effects, the robot was “trained” to 

recognise appropriate light sensor input for a food object every time before its 

execution. In other words, each robot was calibrated before execution. 

 

•  Changes in Navigation Accuracy 

 

Inevitably, after a few execution cycles robots frequently lost their capability to move 

forward in a straight line, due to dust and residue build-up in their drive assembly. 

Affected robots then start veering to one side.  This in turn leads to an imprecise spiral 

search process, and in extreme cases, the robots would get stuck turning in only one 

direction. Dead-reckoning navigation method then becomes useless. Furthermore, this 

inaccuracy also affected the obstacle avoidance algorithm, which was particularly 

visible when considering the results presented in table 26 for the environment 2. 

Although a simple obstacle avoidance mechanism was implemented, the sensors did 

not always accurately detect an obstacle and even when they did, the performed 

corrective action sometimes lead to potential loss of positioning.  

 
Table 30 provides a summary of results per robot.  
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ROBOT ATTEMPTED SUCCESS RATING (SUCCESS/ATTEMPTED) 
0 7 4 0.57 
1 8 3 0.38 
2 8 2 0.40 
3 3 0 0.00 
4 6 5 0.83 
5 8 6 0.75 

Table 30. The results sorted by robots 

 
 

9.4.2 Social Network Based Selection vs Random 
Selection  

 
In order to check the validity of the social networks based approach, a comparison 

was made to a random selection approach. The social networks based approach was 

used for scouting team selection. As in the previous experiment, the scouting team 

was limited to one member. The trust relationship between agents was non-existent, 

however agents had trust in their own capabilities (based on historical performance, 

refer to table 29).  

 

The kinship relationship table between the robots is pre-calculated and given in table 

31 (the maximum strength is 1.0 and the minimum 0.0 – refer to formula 7.1). 

 
 Robot 0 Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 
Robot 0 1.0 0.5 0.83 0.33 0.67 0.5 
Robot 1 0.5 1.0 0.33 0.83 0.17 0.0 
Robot 2 0.83 0.33 1.0 0.5 0.5 0.67 
Robot 3 0.33 0.83 0.5 1.0 0.0 0.17 
Robot 4 0.67 0.17 0.5 0.0 1.0 0.83 
Robot 5 0.5 0.0 0.67 0.17 0.83 1.0 

Table 31. Kinship between the robots 

 
A sociogram to illustrate the kinship based social network is given in figure 45. For 

the purpose of this illustration, a strong kinship relationship  is defined as a kinship 

with strength of 0.8 or more, and is illustrated by a thicker link between robots. 
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Figure 45. The sociogram of kinship relationship between robots 

 

In order to introduce uncertainty, a new environment was created, as illustrated in 

figure 46. 
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Figure 46. The fifth (test) environment used in experiments. 
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It is important to note that the test environment was a relatively easy one, as it had 

only one rough area and no shaded areas or obstacles. The social networks based 

approach was verified as follows: The best performing robot (robot 4) was considered 

unavailable. The social networks based approach therefore selected the next best 

available robot, based on the kinship relationship (refer to section 6.4.4). The result of 

the selected robot’s execution was then compared to that of the randomly selected 

robot. For each scout selection method (i.e. social networks based and random), ten 

simulations have been done. Each simulation executed for a maximum of two 

minutes.  

 

The task was considered unsuccessful if a robot could not complete it in less than two 

minutes. The results given in table 32 reflect the time that it took a robot to complete 

the task, or alternatively the reason why it failed. The results of the scouting task 

executions are presented in table 32.  

 

SOCIAL NET 
SELECTED  
SCOUT 

RESULT (Min:Sec) RANDOMLY 
SELECTED 
ROBOT 

RESULT (Min:Sec) 

5 0:41 2 0:23 
5 1:03 5 0:54 
5 FAIL (False Detect) 1 FAIL (Range) 
5 0:44 2 FAIL (Rough Area) 
5 0:53 0 FAIL (Lost Position) 
5 1:12 1 FAIL (Range) 
5 0:57 0 0:26   
5 0:48 5 0:39 
5 0:38 0 FAIL (Rough Area) 
5 FAIL (Lost Position) 3 FAIL (Range) 

Table 32. Comaparisson of the results 

 
The fluctuations in the time required for task execution were related to the intial robot 

positioning, changes in lightning conditions (which influenced light sensor readings) 

as well as the general failure of robots to maintain a straight direction without veering 

to one side.  
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The scout selected using the social networks based approach, successfully executed 

the task eight times, while randomly selected scouts succesfully executed the  task 

only four times. The social networks based approach is therefore more reliable than 

random selection method, as demonstrated in this experiment.  

 

 
9.5 Summary 

 
This chapter presented a full INDABA agent architecture implementation, applied to 

physical robots. The primary purpose of this chapter was to verify the applicability of 

INDABA to physical robots. The secondary purpose of this chapter was to investigate 

limited application of the social networks selection method to physical robots. It is 

important to note that the social networks approach was the focus of chapter 7, where 

the social networks approach has been investigated in great detail in simulated 

environments. In this chapter, the social networks approach was implemented in a 

much-simplified manner.  

 

The chosen task and chosen robotic platform were simplistic, as the focus was not on 

implementing a realistic real-world environment. Robots were given a scouting task to 

complete within a time constraint.  

 

While the full physical implementation of a simulated environment was somehow 

restricted, it nevertheless provided proof of the applicability of the INDABA 

architecture to real-world robotic applications.  

 

The social networks based approach, albeit using only a kinship relationship, 

performed better than a random selection strategy. 

 

The next chapter summarises the work presented in this thesis. 
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Chapter 10: Conclusion 
 
This chapter presents a brief summary of the contributions and findings of this thesis, 

as well as some discussion on future research. The contribution and findings related 

to the new proposed INDABA framework are discussed in section 10.1. Section 10.2 

discusses the main contribution of this thesis, i.e. the novel coordination approach 

through task allocation, based on social networks. Section 10.3 discusses a number of  

future directions for future research, following from this thesis.  

 

 
10.1 INDABA  

 
The first part of this thesis investigated agent architectures and multi-agent 

architectures, with the emphasis on a particular type of agent, namely robots.  

 

Chapter 3 provided an overview of three major robot architectures. Each of the 

architectures, namely reactive, symbolic and hybrid, were first discussed in general 

terms, followed up by a more detailed discussion of an example of each architecture.  

 

An overview of two major multi-robot team architectures was presented in chapter 4. 

Again, each architecture was first discussed in general terms, followed by a more 

detailed discussion of a particular example of each architecture.  

 

Based on the findings of the study of agent architectures, as presented in chapters 3 

and 4, a new architecture was proposed for the development of cooperative multi-

robot teams. The new architecture, INDABA, was introduced in chapter 5. INDABA 

is a conceptual framework and guideline for the agents’ implementation, rather than a 

fully developed and prescriptive framework. This allows the architecture to be applied 

to a variety of robotic platforms. Although INDABA is not prescriptive with respect 

to technologies, particular implementations and coordination mechanisms, INDABA 

is prescriptive in the adopted layering approach. 
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Most of the current robot architectures used hybrid robot architectures that consist of 

three layers. INDABA consists of four layers, with the fourth layer added to facilitate 

ease of implementation of coordination mechanisms.  

 

The INDABA framework was used to develop an abstract robot simulator and 

simulated robot environment. The abstract robot simulator was discussed in chapter 7 

and the simulated robot environment was introduced in chapter 8. In both examples, 

the INDABA framework was flexible enough to cater for different levels of 

abstractions used by the simulators, as well as to cater for different coordination 

mechanisms.  

 

A full implementation of all four-layers of the INDABA framework in a physical 

environment with robots was described in chapter 9.  

 

INDABA has proved to be a suitable architecture for implementing embedded agents, 

namely robots, either in simulated or in physical environments. The addition of the 

fourth layer, the interaction layer, facilitated the implementation of a coordination 

mechanism, for example the auctioning mechanism and the social networks based 

mechanisms.  

 

 

10.2 The Social Networks Based Approach  
 
 

The main contribution of this thesis is the development of a flexible, biology inspired 

approach to coordination through the use of social networks. 

 

Various existing coordination approaches to multi-robot team task allocation were 

overviewed in chapter 6. Social networks and related concepts were also introduced in 

chapter 6. A novel coordination mechanism for multi-robot teams, based on social 

networks, was also presented in chapter 6. This new, social networks based 

coordination mechanism was tested in the experiments in the following chapters. 
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The social networks based approach was presented in great detail and a comparison 

with a natural system was made to illustrate its biological and societal origins.  

 

The social networks based approach was first tested using the abstract robot 

simulator. The abstract robot simulator provided for simulations with a relatively 

large number of agents (a population of fifty agents was created) over a relatively 

large number of simulated tasks executions (ranging from 50 to 700). Probabilistic 

team selection was considered and rejected in favour of straightforward ranking 

selection, as it did not perform as well as the straightforward ranking selection.  

 

The social networks based approach consistently performed better than a pure market 

based approach in conditions of uncertainty about task details. Furthermore, the new 

approach exhibited excellent learning capacity. 

 

The social networks based approach exhibited an intriguing similarity between the 

overall behaviour of the multi-robot society and biological systems. Cliques emerged, 

as well as natural specialisation of agents toward particular tasks. The importance of 

kinship and trust were confirmed, even in artificial agent societies. Furthermore, the 

social networks approach has proven that concepts such as kinship and trust, 

traditionally related to higher mammalian societies, can be used for coordination of 

artificial societies of agents. 

 

Results from a simulated robot environment, using the same social networks based 

approach to coordination, followed up the results from the simulations done in the 

abstract robot simulator. The results were similar to the results from the simulations 

done in the abstract robot simulator. The social networks based approach was yet 

again confirmed to be valid.  

 

10.3 Directions for the Future Research  
 
 
A number of aspects have been identified that merit further research. These are 

summarised next.  
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10.3.1 Use of  Multiple Alternative Coordination Methods in 
INDABA  

 
Coordination through task allocation is not the only coordination method and the 

consequence of other coordination methods such as negotiation [140] and cooperation 

should also be explored. A possible direction for further research is to implement 

various coordination methods in the interaction layer of INDABA, and to build a 

mechanism that will choose the most appropriate one for the current task and for the 

society of agents. This possibility can be seen as a negotiation protocol between 

agents. In other words, based on agents’ capabilities, a consensus is reached on which 

coordination mechanism to use. 

 

10.3.2 Flexible Information Exchange in Multi-robot Teams 

 
For the purpose of this thesis, the information that is exchanged between the robots in 

a multi-robot team was predefined and its format was hard-coded (such as information 

about position of food and environment). Ideally, robots should be able to discover 

new concepts, and share these concepts and knowledge about the concepts with other 

team members. For example, new environment attributes could be detected that were 

not pre-defined. For this purpose, future applications should consider use of more 

flexible mechanisms, based for example on KQML [66][99] and XML [186] for 

information and knowledge exchange.  

 

10.3.3 Investigation of Applicability of Additional Social 
Relationships to Multi-robot Systems 

 
In this thesis, only two social relationships, kinship and trust, were used for the 

implementation of the social networks based approach to coordination. In the real-

world, more social relationships exist among human society. For example, by living 

in a specific area, working in a particular environment etc. One social relationship that 

easily comes to mind as a potential candidate for application in multi-robot teams is 

that of friendship. Friendship could be implemented around the concept of reciprocal 

altruism [203]. The mechanism for maintenance of social relationship can also benefit 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRooddii�ü�ü,,  DD    ((22000055))  



 

195 
 

 

from further research by investigating a partial goal completion reward system, as 

opposed to the currently implemented “all or nothing” approach. 

 

10.3.4 Social Networks as a Rule-Extraction Mechanism  
 
The learning capacity of the social network based approach opens interesting 

possibilities that can be explored in future work. In the INDABA deliberator layer, all 

robot and environment attributes are defined in almost symbolic terms. Using such 

definitions, it should be relatively possible to express selection rules in a symbolic 

form, for example in the form of production rules. Based on the best performing scout 

attributes (refer to section 7.5.2), it would be simple to extract a rule for scout 

selection, e.g.  

 

IF SPEED_FAST AND DETECTION_ADVANCED AND POWER_BATTERY 

THEN SCOUT. 

 

Future research will develop a mechanism to extract such symbolic rules from social 

networks. 

 

10.3.5 Investigation into a More Formal Kinship Rating 
Mechanism 

 
The current implementation of  kinship rating is fairly crude and heuristic. A 

different, more formal mechanism for determining the strength of kinship relationship 

should be investigated. A possible direction for research is to expand on work that 

proposes encoding of robot building blocks in a formal way, for example, using a 

graph grammar as in [147]. To illustrate the point, the research done for this thesis 

found that the sensitivity of the used robot platform to sensor positioning was 

somewhat of a surprise. Kinship rating, as currently implemented, takes into account 

only the existence of a sensor, not sensor positioning. The sensor positioning 

influences sensor readings and the kinship relationship should take this into account.  
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Appendix B : Acronyms 
 
This appendix provides a brief summary of the most commonly used acronyms in this 

thesis. 

 

ACL   Agent Communication Language. 

API   Application Programming Interface. 

AI   Artificial Intelligence. 

BBR   Behaviour Based Robotics. 

BSA   Behavioural Synthesis Architecture.  

BDI   Belief-Desire-Intention architecture. 

BLE    Broadcast of Local Eligibility.  

CBSE    Component Based Software Engineering. 

CNP    Contract Net Protocol. 

DAI    Distributed Artificial Intelligence. 

GPS    General Problem Solver.  

INDABA  INtelligent Distributed Agent Based Architecture. 

IT   Information Technology. 

KQML   Knowledge Query and Manipulation Language. 

KSE    Knowledge Sharing Effort. 

MDP    Markov Decision Process. 

MACTA   Multiple Automata for Complex Task Achievement. 

MAS    Multi-Agent System. 

NQC    Not Quite C.  

OOP    Object Oriented Programming. 

STRIPS   Stanford Research Institute Problem Solver. 

XML    eXtended Markup Language. 
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Appendix C : Terms and Definitions 
 
This appendix provides a brief summary of the most commonly used terms and 

definitions in this thesis. 

 
 
Agent: A computer system, situated in some environment that is capable of flexible 

autonomous action in order to meet its design objectives. 

 

Agency: A notion of characteristics that define an agent. In this thesis, the 

characteristics of agents are autonomy, interaction, collaboration and 

learning.  

 

Architecture: A general methodology for designing particular modular 

decomposition for particular tasks. 

 

Auctioning Coordination Approach: An approach to coordination based on 

organisational sciences in general and in market based approaches in 

particular. It is widely used as a coordination tool in MASs.  

 

Behaviour: An algorithm that acts as a control law that encapsulates sets of 

constraints in order to achieve a specific task. 

 

Clique: A subset of agents that is defined by the existence of strong relationships 

between them.  

 

Conflict: A negative interaction between agents in MAS. 

 

Controller Layer: A layer in hybrid three layer architectures. The controller layer 

usually encapsulates behaviours that allow for fast, real-time, interaction with 

the environment. It is sub-symbolic in nature. 

 

Cooperation: A process that promotes the optimal state of a MAS, by enabling 

positive interaction between agents in a MAS, usually requiring 

communication between agents. 
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Cooperative Problem Solving: A process that promotes cooperation between agents. 

The cooperative problem solving process consists of four sub processes, 

namely potential recognition, team formation, plan formation and plan 

execution.  

 

Coordination: A process that promotes positive interaction and restricts negative 

interaction between agents in MASs. The most common coordination 

approaches have origins in biological or organisational sciences. 

 

Deliberator Layer: A layer in hybrid three layer architectures. The deliberator layer 

usually reasons using symbolic reasoning techniques such as inference and 

backward chaining. The deliberator layer also maintains a symbolic world 

model. 

 

Hybrid Architecture: An architecture that uses both symbolic and sub-symbolic 

knowledge representation and exploits the strengths of each approach. 

 

Interaction Layer: A layer introduced in the INDABA framework. The main 

purpose of the interaction layer is to facilitate coordination between the agents 

in a MAS, by providing an easy way of encapsulating a coordination 

mechanism in the agent architecture.  

 

Learning: The ability of a system to learn, based on previous experience from its 

interaction with the environments, by improving its performance. 

 

Multi-Agent System: A society of agents. 

 

Multi-Robot Team: A society of robots. 

 

Reactive Architecture: An architecture that is used for implementing reactive agents. 

A reactive architecture is sub-symbolic in its nature. The central premise of 

reactive architectures is that intelligent behaviour will emerge from agent’s 

interaction with its environment. 
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Robot: An agent embedded in a real physical body in a physical environment. 

 

Sequencer Layer: A layer in hybrid three layer architectures. The sequencer layer 

usually serves as an interface between the deliberator layer (that uses a 

symbolic knowledge representation) and the controller layer (that uses a sub-

symbolic knowledge representation).  

 

Symbolic Architecture: Architecture that contains an explicitly represented, 

symbolic model of the world, and in which decisions are made via logical (or 

at least pseudo-logical) reasoning, based on pattern matching and symbolic 

manipulations. 

 

Social Network: A social network is a set of agents and a distinct relationship among 

the agents. 

 

Social Networks Based Approach: A novel approach to coordination in MASs, 

based on the use of identified social relationships in a MAS. 

 

Social Relationship: Relationships that link agents to each other. The relationships 

can either be positively or negatively weighted, and are directed. Examples of 

social relationships used in this thesis are trust and kinship. 

 

Three Layer Architecture: The predominant hybrid robot architecture. The three 

layer architectures consist of three layers, namely controller, sequencer and 

deliberator layers. 
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Appendix D : Definition of Symbols 
 
This appendix lists the commonly used symbols found throughout this thesis.  

 

 

Tk  A task that needs to be allocated to a multi-robot team, defined 

by the n-tuple (Tk1, Tk2,…, Tkn ).  

Tki,    i-th attribute of task Tk .  

 

Ax    An agent in a MAS, defined by the m-tuple (Ax1, Ax2,…, Axm ) 

 

Axi,    i-th attribute of agent  Ax .  

 

Alk    An agent selected as a team leader.  

 

Ri(Alk, Ax, Tk) The i-th relationships between the team leader Alk and agent Ax 

in relation to task Tk. 

 

Fxk(Alk, Ax, Tk) Scoring function for agent Ax in relation to team leader Alk and 

to task Tk. 

 

t(R1, R2, T)  Trust relationship that quantifies the reliability of robot R1 in 

relation to  R2, based on the historical performance related to 

task T that has involved both robots. 

 

d(R1, R2) Kinship relationship that is defined as the similarity between 

robots R1 and R2. 
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