Appendix A

Examples concerning ergodicity

A.1 On the definition of ergodicity

This section is devoted to the construction of a *-dynamical system \((\mathfrak{A}, \varphi, \tau)\) with the property that if \(\|\tau(A) - A\|_\varphi = 0\), then \(\|A - \alpha\|_\varphi = 0\) for some \(\alpha \in \mathbb{C}\), but for which the fixed points of the operator \(U\) defined in Proposition 2.3.3 in terms of some cyclic representation, form a vector subspace of \(\mathfrak{H}\) with dimension greater than one. This will prove the necessity of a sequence, rather than a single element, in Definition 2.3.2, in order for Proposition 2.3.3 to hold.

First some general considerations. Consider a dense vector subspace \(\mathfrak{G}\) of a Hilbert space \(\mathfrak{H}\), and let \(\mathcal{L}(\mathfrak{H})\) be the bounded linear operators \(\mathfrak{H} \to \mathfrak{H}\). Set

\[\mathfrak{A} := \{ A|_\mathfrak{G} : A \in \mathcal{L}(\mathfrak{H}), A\mathfrak{G} \subset \mathfrak{G} \text{ and } A^*\mathfrak{G} \subset \mathfrak{G} \} \]

where \(A|_\mathfrak{G}\) denotes the restriction of \(A\) to \(\mathfrak{G}\), then \(\mathfrak{A}\) is clearly a vector subspace of \(\mathcal{L}(\mathfrak{G})\). For any \(A \in \mathfrak{A}\), denote by \(\widetilde{A}\) the (unique) bounded linear extension of \(A\) to \(\mathfrak{H}\). Now define an involution on \(\mathfrak{A}\) by

\[A^* := \widetilde{A}^*|_\mathfrak{G} \]

for all \(A \in \mathfrak{A}\), then it is easily verified that \(\mathfrak{A}\) becomes a unital *-algebra. (For \(A, B \in \mathfrak{A}\) it is clear that \(AB\) is a bounded linear operator \(\mathfrak{G} \to \mathfrak{G}\) which therefore has the extension \(\widetilde{A}\widetilde{B} \in \mathcal{L}(\mathfrak{H})\) for which \(\widetilde{A}\widetilde{B}\mathfrak{G} \subset \mathfrak{G}\) and \((\widetilde{A}\widetilde{B})^* \mathfrak{G} = \widetilde{B}^*\widetilde{A}^* \mathfrak{G} \subset \mathfrak{G}\) by the definition of \(\mathfrak{A}\). Hence \(AB \in \mathfrak{A}\), which means that \(\mathfrak{A}\) is a subalgebra of \(\mathcal{L}(\mathfrak{G})\). Also, \((AB)^* = (\widetilde{A}\widetilde{B})^*|_\mathfrak{G} = (\widetilde{B}^*\widetilde{A}^*)|_\mathfrak{G} = \widetilde{B}^*\left(\widetilde{A}^*|_\mathfrak{G}\right) = \widetilde{B}^*\widetilde{A}^* = B^*A^*\). Similarly for the other defining properties of an involution.) Note that for \(A \in \mathfrak{A}\) and \(x, y \in \mathfrak{G}\) we have

\[\langle x, Ay \rangle = \langle x, \widetilde{A}y \rangle = \langle \widetilde{A}^*x, y \rangle = \langle A^*x, y \rangle . \]
A. CONCERNING a norm one vector $n \in \mathcal{B}$ we define a state φ on \mathfrak{A} by

$$\varphi(A) = \langle \Omega, A\Omega \rangle.$$

Next we construct a cyclic representation of (\mathfrak{A}, φ). Let

$$\pi: \mathfrak{A} \to L(\mathcal{G}): A \mapsto A$$

then clearly π is linear with $\pi(1) = 1$ and $\pi(AB) = \pi(A)\pi(B)$. Note that for any $x, y \in \mathcal{G}$ we have $(x \otimes y)^* = y \otimes x$, hence $(x \otimes y)\mathcal{G} \subseteq \mathcal{G}$ and $(x \otimes y)^*\mathcal{G} \subseteq \mathcal{G}$, so $(x \otimes y)|_{\mathcal{G}} \in \mathfrak{A}$. Now, $\pi((x \otimes \Omega)|_{\mathcal{G}})\Omega = x (\Omega, \Omega) = x$, hence $\pi(\mathfrak{A})\Omega = \mathcal{G}$. Furthermore,

$$\langle \pi(A)\Omega, \pi(B)\Omega \rangle = \langle A\Omega, B\Omega \rangle = \langle \Omega, A^*B\Omega \rangle = \varphi(A^*B).$$

Thus $(\mathcal{G}, \pi, \Omega)$ is a cyclic representation of (\mathfrak{A}, φ).

Suppose we have a unitary operator $U: \mathfrak{H} \to \mathfrak{H}$ such that $U\mathcal{G} = \mathcal{G}$ and $U\Omega = \Omega$. Then $U^*\mathcal{G} = U^{-1}\mathcal{G} = \mathcal{G}$, so $V := U|_{\mathcal{G}} \in \mathfrak{A}$, and $V^* = U^*|_{\mathcal{G}}$. It follows that $VAV^* \in \mathfrak{A}$ for all $A \in \mathfrak{A}$, hence we can define a linear function $\tau: \mathfrak{A} \to \mathfrak{A}$ by

$$\tau(A) = VAV^*.$$

Clearly $V^*V = 1 = VV^*$, so $\tau(1) = 1$ and $\varphi(\tau(A)^*\tau(A)) = \varphi(VA^*AV^*) = \langle U^*\Omega, A^*AU^*\Omega \rangle = \varphi(A^*A)$, since $U^*\Omega = U^{-1}\Omega = \Omega$. Therefore $(\mathfrak{A}, \varphi, \tau)$ is a dynamical system. Note that $U|_{\mathcal{G}}$ satisfies equation (3.1) of Section 2.3, namely $U\pi(A)\Omega = UAU\Omega = \tau(A)\Omega = \varphi(\tau(A))\Omega$, hence U is the operator which appears in Proposition 2.3.3.

Assume $\{x \in \mathcal{G}: Ux = x\} = \mathbb{C} \Omega$. If $\|\tau(A) - A\|_\varphi = 0$, it then follows for $x = \iota(A)$, with ι given by equation (2.1) of Section 2.2, that $\|Ux - x\| = \|\iota(\tau(A) - A)\| = \|\tau(A) - A\|_\varphi = 0$, so $x = \alpha\Omega$ for some $\alpha \in \mathbb{C}$. Therefore $\|A - \alpha\|_\varphi = \|\iota(A - \alpha)\| = \|x - \alpha\Omega\| = 0$.

In other words, assuming that the fixed points of U in \mathcal{G} form the one-dimensional subspace $\mathbb{C}\Omega$, it follows that $\|\tau(A) - A\|_\varphi = 0$ implies that $\|A - \alpha\|_\varphi = 0$ for some $\alpha \in \mathbb{C}$.

It remains to construct an example of a U with all the properties mentioned above, whose fixed point space in \mathfrak{H} has dimension greater than one. The following example was constructed by L. Zsidó:

Let \mathfrak{H} be a separable Hilbert space with an orthonormal basis of the form

$$\{\Omega, y\} \cup \{u_k : k \in \mathbb{Z}\}$$

(that is to say, this is a total orthonormal set in \mathfrak{H}) and define the linear operator $U: \mathfrak{H} \to \mathfrak{H}$ via bounded linear extension by

$$U\Omega = \Omega,$$

$$Uy = y,$$

$$Uu_k = u_{k+1}, \quad k \in \mathbb{Z}.$$
ON THE DEFINITION OF ERGODICITY

Clearly U is isometric, while $U\mathcal{H}$ is dense in \mathcal{H}, hence U is surjective, since \mathcal{H} is complete. Since U is a surjective isometry, it is unitary. Let \mathcal{G} be the linear span of

$$\{\Omega\} \cup \{y + u_k : k \in \mathbb{Z}\}.$$

Then $U\mathcal{G} = \mathcal{G}$. Furthermore, \mathcal{G} is dense in \mathcal{H}. Indeed,

$$\|y - \frac{1}{n} \sum_{k=1}^{n} (y + u_k)\| = \frac{1}{n} \sum_{k=1}^{n} u_k = \frac{1}{\sqrt{n}} \to 0$$

implies that $y \in \mathcal{G}$, the closure of \mathcal{G}, hence also

$$u_k = (y + u_k) - y \in \mathcal{G}$$

for $k \in \mathbb{Z}$.

Next we show that

$$\{x \in \mathcal{G} : Ux = x \} = \mathbb{C}\Omega. \quad (1.1)$$

If $\alpha\Omega + \sum_{k=-n}^{n} \beta_k(y + u_k) \in \mathcal{G}$ is left fixed by U, then

$$\alpha\Omega + \sum_{k=-n}^{n} \beta_k y + \sum_{k=-n}^{n} \beta_k u_{k+1} = \alpha\Omega + \sum_{k=-n}^{n} \beta_k y + \sum_{k=-n}^{n} \beta_k u_k$$

and it follows that $\beta_{-n} = 0$, and that $\beta_{k+1} = \beta_k$ for $k = -n, \ldots, n - 1$. Thus

$$\alpha\Omega + \sum_{k=-n}^{n} \beta_k(y + u_k) = \alpha\Omega$$

proving (1.1).

On the other hand,

$$\{x \in \mathcal{H} : Ux = x \}$$

clearly contains the two-dimensional vector space spanned by Ω and y.
A.2 An example of an ergodic system

Here we give the proof that Example 2.5.7 is indeed ergodic. It is clear that \(\tau \) is linear and that \(\tau(1) = 1 \). Let

\[
A = \begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\]

and

\[
B = \begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\]

be complex matrices. Then

\[
\tau(A)^* = \begin{pmatrix}
a_{22} & c_{2}a_{21} \\
c_{1}a_{12} & a_{11}
\end{pmatrix}
\]

and

\[
\tau(A)^*\tau(A) = \left(\frac{|a_{22}|^2 + |c_{2}a_{21}|^2}{c_{1}a_{12}a_{22} + a_{11}c_{2}a_{21}} \quad \frac{a_{22}c_{1}a_{12} + c_{2}a_{21}a_{11}}{a_{11}^2 + |a_{12}|^2 + |a_{11}|^2} \right)
\]

while

\[
A^* = \begin{pmatrix}
a_{11} & a_{21} \\
\overline{a_{12}} & \overline{a_{22}}
\end{pmatrix}
\]

and

\[
A^*A = \left(\frac{|a_{11}|^2 + |a_{21}|^2}{a_{12}a_{11} + a_{22}a_{21}} \quad \frac{\overline{a_{11}}a_{12} + \overline{a_{21}}a_{22}}{|a_{12}|^2 + |a_{22}|^2} \right)
\]

so

\[
\varphi(\tau(A)^*\tau(A)) = \frac{1}{2} \left(|a_{22}|^2 + |c_{2}a_{21}|^2 + |c_{1}a_{12}|^2 + |a_{11}|^2 \right)
\]

\[
\leq \frac{1}{2} \left(|a_{22}|^2 + |a_{21}|^2 + |a_{12}|^2 + |a_{11}|^2 \right)
\]

\[
= \varphi(A^*A)
\]

for all \(A \), meaning that \(\mathfrak{A}, \varphi, \tau \) is a *-dynamical system, if and only if \(|c_{1}| \leq 1 \) and \(|c_{2}| \leq 1 \), which is what we will assume.

Next we prove that it is ergodic. For even \(k \geq 0 \) we have

\[
\tau^k(B) = \begin{pmatrix}
b_{11} & c_{1}^{k}b_{12} \\
c_{2}^{k}b_{21} & b_{22}
\end{pmatrix}
\]
and therefore
\[A^k(B) = \begin{pmatrix} a_{11}b_{11} + a_{12}c_k b_{21} & a_{11}c_k b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}c_k b_{21} & a_{21}c_k b_{12} + a_{22}b_{22} \end{pmatrix} \]

which means
\[\varphi(A^k(B)) = \frac{1}{2} (a_{11}b_{11} + a_{12}c_k b_{21} + a_{21}c_k b_{12} + a_{22}b_{22}) \]

For odd \(k > 0 \) we then get
\[\varphi(A^k(B)) = \frac{1}{2} (a_{11}b_{22} + a_{12}c_k b_{31} + a_{21}c_k b_{12} + a_{22}b_{11}) \]

by switching \(b_{11} \) and \(b_{22} \). For \(c \in \mathbb{C} \) it is clear that \(U : \mathbb{C} \to \mathbb{C} : x \mapsto cx \) is a linear operator with \(\|U\| \leq 1 \) if and only if \(|c| \leq 1 \), and for \(c \neq 1 \) the only fixed point of \(U \) is 0, in which case

\[\frac{1}{n} \sum_{k=0}^{n-1} c^k x = \frac{1}{n} \sum_{k=0}^{n-1} U^k x \to 0 \]

for all \(x \in \mathbb{C} \) as \(n \to \infty \), by the Mean Ergodic Theorem 2.4.1. Hence, for \(c_1 \neq 1 \) and \(c_2
eq 1 \) it follows that

\[\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(A^k(B)) = \varphi(A) \varphi(B) \]

which means that \((\mathcal{A}, \varphi, \tau)\) is ergodic, by Proposition 2.5.6(ii).

On the other hand, if \(c_1 = 1 \) and \(c_2
eq 1 \), then we have by a similar calculation that

\[\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(A^k(B)) = \varphi(A) \varphi(B) + \frac{a_{21} b_{12}}{2} \]

Likewise for the other cases where either \(c_1 \) or \(c_2 \) or both are equal to 1. So \((\mathcal{A}, \varphi, \tau)\) is ergodic if and only if \(c_1 \neq 1 \) and \(c_2 \neq 1 \).
A.2.1 Remark. It is easily seen that \(\tau \) is not a homomorphism, namely

\[
\tau(AB) = \left(\begin{array}{cc}
 a_{21} b_{12} + a_{22} b_{22} & c_1 (a_{11} b_{12} + a_{12} b_{22}) \\
 c_2 (a_{21} b_{11} + a_{22} b_{21}) & a_{11} b_{11} + a_{12} b_{21}
\end{array} \right)
\]

while

\[
\tau(A) \tau(B) = \left(\begin{array}{cc}
 a_{22} b_{22} + c_1 c_2 a_{12} b_{21} & c_1 (a_{23} b_{12} + a_{12} b_{11}) \\
 c_2 (a_{21} b_{22} + a_{11} b_{21}) & c_1 c_2 a_{21} b_{12} + a_{11} b_{11}
\end{array} \right).
\]

In fact, unless \(c_1 c_2 = 1 \), it follows that we don’t even have \(\tau(A^2) = \tau(A)^2 \) for all \(A \). Nor, for that matter, do we have \(\tau(A^*) = \tau(A)^* \) for all \(A \), unless \(c_2 = \overline{c_1} \). This is opposed to the situation for a measure theoretic dynamical system as defined in Section 2.1, where \(\tau \) in equation (1.1) of that section is always a \(* \)-homomorphism. It therefore makes sense not to assume that \(\tau \) is a \(* \)-homomorphism in Definition 2.3.1, since we now have an example where it isn’t.

A.2.2 Remark. We note that \(\varphi(\tau(A)) = \varphi(A) \), i.e. \(\varphi \) is \(\tau \)-invariant, but this fact in itself does not imply that \(\varphi(\tau(A)^* \tau(A)) \leq \varphi(A^* A) \), since \(\tau \) is not a \(* \)-homomorphism, by Remark A.2.1.

Furthermore, \(\varphi(AB) = \varphi(BA) \) for all \(A, B \in \mathfrak{A} \), so \(\varphi \) is commutative (so to speak) even though \(\mathfrak{A} \) is not. Also, while \(\tau(AB) \neq \tau(BA) \) for some \(A, B \in \mathfrak{A} \), we still have \(\varphi(\tau(AB)) = \varphi(AB) = \varphi(BA) = \varphi(\tau(BA)) \), so \(\tau \) is noncommutative (so to speak), but with respect to \(\varphi \) it is again commutative. We conclude that while \(\mathfrak{A} \) is noncommutative, \((\mathfrak{A}, \varphi, \tau) \) is still in many respects commutative simply because \(\varphi(AB) = \varphi(BA) \) for all \(A \) and \(B \).

A.2.3 Question. Is there an example of an ergodic \(* \)-dynamical system \((\mathfrak{A}, \varphi, \tau) \) in which \(\varphi(AB) \neq \varphi(BA) \) for some \(A, B \in \mathfrak{A} \)?
Bibliography

[BR] O. Bratteli and D.W. Robinson (1987). *Operator Algebras and Quantum Statistical Mechanics 1*, Springer-Verlag, 2nd edition. (Sections 1.2, 1.8 and 2.6, the GNS-construction 2.2.2, and Remarks 1.7.4 and 2.2.3.)

BIBLIOGRAPHY

[I] C.J. Isham (1995). *Lectures on Quantum Theory: Mathematical and Structural Foundations*, Imperial College Press. (Section 1.6 and Examples 1.6.5 and 1.6.6.)

BIBLIOGRAPHY

[Mu] G.J. Murphy (1990). *C*-algebras and operator theory, Academic Press. (Section 1.2, Remarks 1.7.4 and 1.9.2, Theorem 2.7.3 and Lemma 3.2.5.)

[Pete] K. Petersen (1983). *Ergodic theory*, Cambridge University Press. (Sections 2.1, 2.4 and 2.6, and Remark 3.2.8.)

[Rue] D. Ruelle (1969). *Statistical Mechanics: Rigorous Results*, W.A. Benjamin. (Remarks 1.3.1, 3.2.4 and 3.2.8.)

BIBLIOGRAPHY

The remark at the end of each reference indicates where in this thesis (apart from the Introduction) the reference appears.