

Isolation, phylogeny and characterisation of proteases and *p*-hydroxyphenylacetic acid hydroxylase from thermophilic *Geobacillus* strains from Buranga Hot Springs in Uganda

by

JOSEPH HAWUMBA

Submitted in partial fulfilment of the requirements of the degree Philosophiae Doctor in the Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria

August 2003

© University of Pretoria

Isolation, phylogeny and characterisation of proteases and *p*-hydroxyphenylacetic acid hydroxylase from thermophilic *Geobacillus* strains from Buranga Hot Springs in Uganda

by

JOSEPH HAWUMBA

Submitted in partial fulfilment of the requirements of the degree Philosophiae Doctor in the Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria

August 2003

ACKNOWLEDGEMENTS

I am most grateful to my supervisors: Prof. Volker S. Brözel and Prof. Jacques Theron for the guidance and advice that they have unreservedly provided me during the course of this study, and above all, the cordial working atmosphere, which has made my work enjoyable. The staff in the Department of Biochemistry has been so helpful, providing me with access to equipment and technical advice. Special recognition goes to Prof. A. Neitz, Sandra Van Wyngraardt and Ben Mans. Fellow research students are greatly acknowledged. Though I will not mention each and everyone by name, I will be cheating myself if I forgot to single out: Boet Weyers, who has always had time for me whenever I needed help from him, Sonya, for the encouragement she has always provided all of us on a daily basis, Julian Jaftha, for the help he has so willingly given whenever requested, Francois and Coenie, for their technical advice, and not forgetting Jacques and Antoinette for their friendliness.

I also wish to recognise the brotherly love I received from Claude Sabeta, John Muyonga, Yusufu Byaruhanga, Pius Chin-Molo, Dan Annor, Malebogo Legodi, Bennie Du Toit, Edison Mwanje and Fred Shaws. Working in the background, the following ladies have been an inspiration to me, throughout my research. My sisters - Ruth Nabwire and Naome Hasacha - have given me unsurpassable encouragement and financial support. Aida Bosch, Carol Inocencio and Laura Kirstein have been more than friends and have made my stay in South Africa meaningful through their encouragement and always having time for me.

I am greatly indebted to colleagues in the Academic Registrar's office and the Biochemistry Department (Makerere University), especially Paul Semwanga, Agara, Prossy Nammande and Jane Nabulya, who have worked hand-in-hand with the administration to see that my studies are not hampered by financial difficulties. In addition, they have unrelentingly supported me both morally and financially. Lastly, the whole family of the Hawumba's who has been with me throughout in their prayers. A sense of nearness to the family has made my stay have meaning.

Finally, I wish to acknowledge the following institutions: Makerere University (Staff Development Committee), International Foundation for Science (IFS) and the Council for the Development of Social Science Research in Africa (CODESRIA) for providing me with a staff development fellowship and research grant that have enabled me to further my studies. In the same spirit, I wish to acknowledge the generosity of Prof. Volker S Brözel who met my bench fees.

DECLARATION

I declare that the thesis, which I hereby submit for the degree, Philosophiae Doctor (Microbiology) at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at another University.

anin Signed:

Date: 05/08/2003

DEDICATION

To my parents; Pr. W.W. Hawumba and Suzan Hawumba, Charles Mukiibi and Kezia Mukiibi, Mr.and Mrs. Esau Kato, brothers and sisters, and, above all, my lord God.

SUMMARY

Isolation, phylogeny and characterisation of proteases and *p*hydroxyphenylacetic acid hydroxylase from thermophilic *Geobacillus* strains from Buranga Hot Springs in Uganda

by

JOSEPH HAWUMBA

Supervisor:	Dr Volker S. Brözel
Co-supervisor:	Dr Jacques Theron
Department:	Microbiology and Plant Pathology
	University of Pretoria

for the degree Ph.D

Enzymatic processes that can be run at high temperatures are attractive, as the reaction rates and the substrate solution is often increased. Consequently, there is a continuous search for new thermostable enzymes with the required technological properties. In this study, two thermophilic bacterial isolates, *Geobacillus* PA-9 and PA-5, obtained from the Buranga hot springs in western Uganda, were characterised with the specific aim of isolating and characterising genes encoding novel enzymes.

Both bacterial isolates grew at an optimum temperature and pH of 60°C and 7.5-8.5, respectively, and zymogram analyses indicated that the isolates produced two (isolate PA-5) or more (isolate PA-9) extracellular protease enzymes. The optimum temperature and pH for casein-degrading activity were 70°C, pH 6.5 for isolate PA-9, but caseinolytic activity could also be observed at 2°C. Isolate PA-9 was thus selected for further characterisation. Although various strategies were used to isolate the protease-encoding genes, including enzyme purification and functional screening of a constructed genomic DNA library in *Bacillus megaterium* and in *Escherichia coli*, none resulted in the isolation of the desired

genes. The inability to purify the protease(s) may suggest that low amounts of the protease(s) are being produced or that the protease(s) may be distinct from other characterised proteases.

A clone containing the gene encoding the hydroxylase involved in the degradation of 4hydroxylphenylacetic acid was, however, isolated from the *Geobacillus* sp. PA-9 genomic DNA library. Sequence analysis indicated the presence of three novel open reading frames (ORFs) of which *PheH* exhibited homology to several 4-hydroxyphenylacetate 3hydroxylases (4-HPA hydroxylase), *PheH2* appeared to be unique and *PheC* exhibited homology to 2,3-dioxygenases. The 4-HPA hydroxylase has an optimum pH and temperature of 9.0 and 50°C, respectively. Purified PheH did not display hydroxylase activity, suggesting that the 4-HPA 3-hydroxylase from *Geobacillus* isolate PA-9 is composed of two proteins with PheH being the hydroxylase and PheH2 serving as a helper protein required for efficient substrate hydroxylation.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	1
DECLARATION	ii
DEDICATION	iii
SUMMARY	iv
LIST OF ABBREVIATIONS	xi
LIST OF FIGURES	xiii
LIST OF TABLES	xv
RESEARCH COMMUNICATIONS	xvi
CHAPTER ONE: INTRODUCTION	1
1.1. GENERAL INTRODUCTION	2
1.2. THERMOPHILIC ENVIRONMENTS	3
1.2.1. Hot springs	3
1.3. MICROORGANISMS IN HOT ENVIRONMENTS	6
1.4. IMPORTANCE OF THERMOPHILIC MICROORGANISMS	6
1.5. AIM OF THIS STUDY	7
1.6. REFERENCES	8
CHAPTER TWO: LITERATURE REVIEW	12
2.1. INTRODUCTION	13
2.2. PROKARYOTIC SYSTEMATICS	13
2.2.1. Methodological approaches to prokaryotic systematics	14
2.2.1.1. Phenotypic traits used in prokaryotic systematics	14
2.2.1.2. Genotypic methods	15
2.2.1.2.1. DNA base composition	15
2.2.1.2.2. DNA-DNA hybridisation	16
2.2.1.2.3. Ribosomal RNA (rRNA)-based methods	16
2.3. DISTRIBUTION OF THERMOPHILES IN THE ENVIRONMENT	18
2.3.1. Archaea	18

vi

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

2.4.

2.5.

2.6.

vii

48

2.3.2.	Bacteria			18
	2.3.2.1.	Hypertherm	nophilic eubacteria	19
	2.3.2.2.	Thermophi	lic eubacteria	19
PHYS	IOLOGIC	AL ADAPTA	ATIONS OF THERMOPHILES	21
2.4.1.	Respirato	ory / Energy r	needs	21
2.4.2.	Stabilisat	ion of protein	as at high temperatures	22
2.4.3.	Maintena	nce of a hom	eostatic intracellular environment	25
THER	MOSTAB	LE ENZYM	ES	26
2.5.1.	Carbohyd	Irate-degradin	ng enzymes	26
2.5.2.	Lipid-deg	grading enzyr	nes	26
2.5.3.	Proteases	¢.		26
	2.5.3.1.	Classificati	on of proteases	27
	2.5.3.2.	Bacterial p	roteases of commercial importance and	
		their produ	ction in heterologous hosts	27
	2.5.3.3.	Export of e	extracelluar proteins	29
	2.5.3.4.	Biotechnol	ogical applications of bacterial proteases	29
		2.5.3.4.1.	Industrial uses	30
		2.5.3.4.2.	Catabolism of aromatic compounds	
			and xenobiotics	30
REFE	RENCES			33

CHAPTER THREE: THERMOPHILIC PROTEASE-PRODUCING Geobacillus FROM BURANGA HOT SPRINGS IN WESTERN UGANDA

3.1.	INTRODUCTION	49
3.2.	MATERIALS AND METHODS	50
3.2.1.	Isolation of protease-secreting thermophiles	50
3.2.2.	Culture conditions	50
3.2.3.	Morphological properties and growth limits	50
3.2.4.	Phylogenetic analysis by 16S rDNA sequence analysis	.51
3.2.5.	Preparation of crude extracellular protease extracts	51
3.2.6.	Proteolytic activity assays	51
3.2.7.	Influence of pH and temperature on protease activity	52
3.2.8.	Electrophoresis and zymograms	52

3.2.9.	Nucleotide sequence accession numbers	52
3.3.	RESULTS AND DISCUSSION	53
3.3.1.	Morphology	53
3.3,2.	Effect of temperature and pH on growth	53
3.3.3.	Phylogenetic analysis	55
3.3.4.	Caseinolytic characteristics of the different Bacillus isolates	55
3.3.5.	Zymogram analysis of secreted proteases	57
3.4.	REFERENCES	61
CHAP	TER FOUR: ISOLATION OF PROTEASE-ENCODING GENE(S) OF <i>Geobacillus</i> sp. PA-9	64
4.1.	INTRODUCTION	65
4.2.	MATERIALS AND METHODS	66
4.2.1.	Bacterial strains, plasmids and culture conditions	66
4.2.2.	Preparation of crude extracellular enzyme extracts	67
4.2.3.	Purification of protease enzymes	67
4.2.4.	Purification of proteases from SDS-PAGE gels	68
4.2.5.	SDS-PAGE electrophoresis and zymogram analysis	69
4.2.6.	Protein blotting and N-terminal amino acid sequence determination	69
4.2.7.	Construction of a Geobacillus sp. PA-9 genomic DNA library in Escherichia co	li 70
4.2.8.	Preparation of recombinant plasmids for transformation of B. megaterium	70
4.2.9.	Preparation of B. megaterium MS941 protoplasts	70
4.2.10	Transformation of B. megaterium MS941 protoplasts	71
4.2.11	Screening for protease-positive recombinants in B. megaterium MS941	71
4.2.12	Screening for protease-positive recombinants in E. coli DH5 α	71
4.2.13	Isolation of protease genes by PCR amplification	72
4.2.14	. Sequencing of cloned genes	73
4.3.	RESULTS AND DISCUSSION	73
4.3.1.	Enzyme purification	73
4.3.2.	Purification of proteins from negative-stained SDS-PAGE gels	74
4.3.3.	Construction of a Geobacillus sp. PA-9 genomic DNA library and functional	
	screening of the library in B. megaterium MS941 and E. coli DH5 α	76

viii

171	damain of	he Centres Was as DA O server is DNIA library union	
4.3.4.	Screening of t	he Geobacilius sp. PA-9 genomic DNA library using	
	PCR-generate	d probes	79
4.3.5.	Identification	of protease-encoding genes by PCR	80
4.4.	REFERENCE	S	83
CHAI	PTER FIVE:	NUCLEOTIDE SEQUENCE AND BIOCHEMICAL CHARACTERISATION OF A 4-HYDROXYPHENYLAC ACID 3-HYDROXYLASE FROM THERMOPHILIC Geobacillus sp. PA-9	ETIC 88
5.1.	INTRODUCT	TON	89
5.2.	MATERIALS	AND METHODS	91
5.2.1.	Bacterial strai	ns, plasmids and growth conditions	91
5.2.2.	Preparation of	plasmid DNA	91
5.2.3.	Origin of a clo	one displaying 4-HPA hydroxylase activity	92
5.2.4.	DNA sequence	ing	92
5.3.5.	Nucleotide an	d deduced amino acid sequence analysis	92
5.2.6.	Isolation of th	e putative promoter region	94
5.2.7.	Cloning of the	promoter fragment	94
5.2.8.	Assay for pror	moter activity	94
5.2.9.	Preparation of	cell extracts and fractions	95
5.2.10	Assay for 4-h	ydroxyphenylacetic acid 3-hydroxylase activity	95
5.2.11	. Effect of pH a	and temperature on enzyme activity	96
5.2.12	Preparation of	4-HPA-coupled amino-agarose	96
5.2.13	. Enzyme purif	ication	96
5.2.14	. Electrophores	is	97
5.3.	RESULTS AN	ND DISCUSSION	97
5.3.1.	Characterisati	on of a clone encoding a putative 4-HPA hydroxylase	97
5.3.2.	Nucleotide se	quence analysis of the 4-HPA hydroxylase-encoding region	
	of Geobacillu	s isolate PA-9	98
5.3.3.	Analysis of th	e deduced amino acid sequence of the putative	
	4-HPA hydro	xylase of Geobacillus isolate PA-9	102
5.3.4.	Biochemical f	features of the 4-HPA hydroxylase from Geobacillus strain PA-9	105
	5.3.4.1. Cell	ular location	105
	5.3.4.2. Effe	ct of temperature and pH on enzyme activity	105

ix

x

	5.3.4.3. Puri	fication and SDS-PAGE analysis of the purified enzyme	106
5.4.	REFERENCE	ES	110
СНА	PTER SIX:	CONCLUSIONS AND RECOMMENDATIONS	115
APP	ENDICES		118

LIST OF ABBREVIATIONS

ABC	ATP-binding cassette
Ala	alanine
amp	ampicillin resistance
Arg	arginine
ATP	adenosine trisphosphate
bp	base pair
ca.	approximately
CO	carbon monoxide
CO ₂	carbon dioxide
Cys	cystein
°C	degrees Celsius
DNA	deoxyribonucleic acid
dNTP	deoxyribonucleoside-5'-triphosphate
EARS	East African Rift valley Systems
e.g.	for example
EtOH	ethanol
4-HPA	4-hydroxyphenylacetic acid
FAD	flavin adenine dinucleotide
Fe	iron
Fig.	figure
Gly	glycine
h	hour
H ₂	hydrogen
His	Histidine
H_2S	hydrogen sulphide
IPTG	isopropyl β -D-thiogalactoside
kb	kilobase pairs
kDa	kilodalton
1	litre
lacZ	β -galactosidase gene
LB-broth	Luria-Bertani broth
Lys	lysine
M	molar
mA	milliampere
min	minute

.....

ml	millilitre
mM	millimolar
Mn	manganese
NAD*	nicotinic adenine dinucleotide
nm	nanometer
nt	nucleotide
OD	optical density
ORF	open reading frame
PAGE	polyacrylamide gel electrophoresis
PCR	polymerase chain reaction
PEG	polyethylene glycol
pmol	picomole
Pro	proline
RNA	ribonucleic acid
rRNA	ribosomal ribonucleic acid
rpm	revolutions per minute
s	second
SDS	sodium dodecyl sulphate
Ser	serine
3,4-DHPA	3,4-dihydroxyphenylacetic acid
TE	Tris-EDTA
tet ^r	tetracycline resistance
Tyr	tyrosine
U	units
μg	microgram
μl	microlitre
V	volts
\mathbf{v}/\mathbf{v}	volume per volume
w/v	weight per volume
X-gal	5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside

LIST OF FIGURES

FIGURE NUMBER

FIGUR	LIVOWBER	
Fig. 1.1	Map of the East African Rift Valley	4
Fig. 1.2	Map of Uganda indicating the three major geothermal areas of Katwe, Buranga and Kibiro, and survey maps indicating the distribution of hot springs in the Katwe and Buranga areas.	5
Fig. 2.1	Schematic overview of various cellular components and currently used techniques in systematics, as well as the taxonomic resolution of the respective techniques.	17
Fig. 3.1	Micrographs showing typical cell morphologies of isolates PA-5 and PA-9 after different incubation times.	54
Fig. 3.2	Influence of temperature on maximal specific growth rates of isolates PA-5 and PA-9 cultivated in modified Castenholz medium D.	54
Fig. 3.3	Neighbor-joining tree showing the phylogenetic affiliation of isolates PA-9 and PA-5 to a selected number of members of <i>Bacillus</i> spp.	56
Fig. 3.4	Influence of pH and temperature on the activity of crude extracellular enzyme preparations prepared from the culture supernatants of isolates PA-5 and PA-9.	58
Fig. 3.5	Analysis of the presence of caseinolytic proteases in cell-free supernatants of isolate PA-5.	59
Fig. 3.6	Analysis of the presence of caseinolytic proteases in cell-free supernatants of isolate PA-9.	59
Fig. 4.1	Zymogram analysis of proteases purified from the culture supernatant of <i>Geobacillus</i> sp. PA-9 by ion-exchange chromatography.	75

xiii

	YUNIBESITHI YA PRETORIA	den l
Fig. 4.2	Analytical spectrum of fraction $IE2_{II}$ following analysis by electrospray mass	
	spectrophotometry,	75
Fig. 4.3	Zymogram analysis of proteins purified from negative-stained SDS-PAGE gels,	78
Fig. 4.4	Agarose gel electrophoretic analysis of the purified amplicons, obtained using	
	genomic DNA of Geobacillus sp. PA-9 as template DNA in PCR reactions with	
	different primer sets.	81
Fig. 5.1	Proposed steps in the degradation of L-tyrosine to pyruvic and succinic acids.	90
Fig. 5.2	Nucleotide sequence of the 2715-bp HindIII fragment containing the genes	
	of the 4-HPA hydroxylase-encoding region of Geobacillus PA-9 and the	
	deduced amino acid sequence.	101
Fig. 5.3	Dendogram resulting from the multiple alignment of different phenol hydroxylases	
	and 4-hydroxyphenylacetic acid 3-hydroxylases (4-HPA 3-hydroxylases) with	
	PheH from Geobacillus PA-9.	104
Fig. 5.4	Influence of pH and temperature on the activity of the 4-hydroxyphenylacetic	
	acid 3-hydroxylase (4-HPA 3-hydroxylase) from Geobacillus isolate PA-9.	107
Fig. 5.5	SDS-PAGE analysis of the expression and purification of the 4-hydroxyphenylacetic	
	acid 3-hydroxylase (4-HPA 3-hydroxylase) from Geobacillus isolate PA-9.	107

XIV

LIST OF TABLES

TABLE NUMBER

-

Table 2.1	Thermostable protease enzymes and their potential industrial relevance	32
Table 4.1	Bacterial strains, plasmids and primers used	67
Table 4.2	Summary of the amplicons sequenced, their homologous proteins and putative function of the homologous proteins	81
Table 5.1	Bacterial strains and plasmids used	93
Table 5.2	Primers used	93

RESEARCH COMMUNICATIONS

Papers published:

- Hawumba, J.F., Theron, J. and Brözel, V.S. (2002). Thermophilic protease-producing Geobacillus from Buranga hot springs in western Uganda. Current Microbiology 45: 144-150
- Hawumba, J.F., Theron, J. and Brözel, V.S. (2001). Thermophilic protease-producing Bacillus from Buranga hot spring in western Uganda. Proceedings of the 8th NAPRECA Symposium, Nairobi, Kenya.

Papers submitted:

 Hawumba, J.F., Brözel, V.S. and Theron, J. (2003). Nucleotide sequence and biochemical characterization of a 4-hydroxyphenylacetic acid 3-hydroxylase from thermophilic *Geobacillus* sp. PA-9. Submitted for publication: *Applied and Environmental Microbiology*.

Conference contributions:

National conferences:

- J.F. Hawumba, J. Theron and V.S. Brözel. Characterisation of three protease-secreting thermophilic bacteria from hot springs in western Uganda. BioY2K Combined Millennium Meeting, Grahamstown, South Africa, January 2000 (Poster).
- J.F. Hawumba, J. Theron and V.S. Brözel. Characterisation of extracellular proteases produced by extremely thermophilic *Bacillus* isolates. BioY2K Combined Millennium Meeting, Grahamstown, South Africa, January 2000 (Poster).

International conferences:

- J.F. Hawumba, J. Theron and V.S. Brözel. Isolation of thermophilic *Bacillus* producing small proteases active over a wide temperature range from a Ugandan hot spring. American Society for Microbiology Meeting, Orlando, USA, May 2001 (Poster).
- J.F. Hawumba, J. Theron and V.S. Brözel. Thermophilic protease-producing *Bacillus* from Buranga hot spring in Western Uganda. NAPRECA Symposium, Nairobi, Kenya, 28 - 31 August 2001 (Paper presentation and poster).