
Chapter 1

Introduction

Diffusion and heat flow processes occur extensively in science, engineering and in fact in real

life situations. In the linear case, these processes are mathematically modeled by parabolic

partial differential equations of the form

∂u

∂t
− Lu = f in Ω× (0,+∞) (1.0.1)

where

• L =
∑
|α|≤2m aαD

α is a strongly elliptic operator of order 2m with constant coefficients,

• Ω is a domain of Rn, with boundary ∂Ω ≡ Γ.

• f is a given real-valued function.

The parabolic equation (1.0.1) coupled with suitable boundary and initial conditions has

been extensively studied in the literature under some smoothness assumptions on the domain

Ω. Following Lions and Magenes [38], the most popular assumption is to consider Ω to be a

bounded open set with boundary Γ being a C∞-manifold of dimension n−1, the set Ω being

locally located at one side of Γ. In other words, Ω̄ is a compact manifold with boundary Γ

of class C∞.

Under this smoothness assumption, the famous qualitative result by Agmon, Douglis and

Nirenberg [2] regarding elliptic problems can be stated as follows:

Let u in the Sobolev space Hm
0 (Ω) be such that Lu ∈ L2(Ω). Then u is optimally regular in

the sense that

u ∈ H2m(Ω) and ‖u‖H2m(Ω) ≤ C‖Lu‖L2(Ω)
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for some constant C > 0 which does not depend on u.

In this smooth framework, similar results for parabolic and hyperbolic problems as well as

further contributions to elliptic problems can be found in [38] and [39].

The qualitative analysis in the more difficult case when the domain Ω is non-smooth was

considered relatively later. In this regard, the historical reference is Kondratiev [36] who

investigated the singular behavior of solutions of elliptic equations in domains with conical

and angular points. Since this seminal contribution of Kondratiev, there has been a surge

of works on elliptic problems in non-smooth domains ranging from the case of operators of

mathematical physics in simple two dimensional geometry (see [29], [31]) to more complicated

cases that involve both conical and edge singularities (see [19], [30], [44], [49]). The specific

two dimensional case of the parabolic problem (1.0.1) is investigated in the thesis [46]. Our

work is mostly based on this thesis [46]. Given the level of generalization and complexity in

[46], the purpose of our thesis is:

• To analyze and better understand the results obtained.

• To obtain results that are as explicit as possible;

• To visualize the impact of the rough geometry Ω in the result;

• To enrich and complete the theoretical study of [46] with reliable numerical methods

in which the singularities of the continuous problem are relatively easily incorporated.

To achieve the above objectives, the setting of this thesis is made explicit as follows:

• The domain Ω is a polygon (n = 2)

• The operator L is taken to be

Lu = −∆u+ λu, λ ≥ 0

where

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

is the Laplace operator.
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In other words, we are dealing with the following boundary value problem for the two di-

mensional heat/diffusion operator on a polygon:

∂u

∂t
−∆u+ λu = f in Ω× (0,+∞)

u(x, 0) = 0, x ∈ Ω

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞).

There exist several methods for solving evolution problems (see for example [21]). In this

work, we mainly employ the Laplace transform for the analytical part, whereas the finite

element method (in space variable) coupled with the finite difference method or Fourier series

method (in time variable) is used for the constructive part.

The use of the Laplace transform reduces the heat equation to a family of Helmholtz

equations for a complex parameter p ∈ C. The main challenge is to obtain for the solutions

of the Helmholtz problems, a priori estimates with the same constant that is independent of

the parameter p so that the inverse Laplace transform (i.e. the Paley-Wiener Theorem) is

applicable to obtain solution of the heat equation in suitable function spaces. More precisely,

our contribution can be outlined as follows:

1. We provide a comprehensive study of Laurent Schwartz extension of the Laplace trans-

form to vector-valued distributions, which constitute a suitable framework for the heat

equation;

2. We show that the family of solutions of the resulting Helmholtz equations satisfy the

following properties:

(a) the solutions belong to appropriate weighted Sobolev spaces and they depend

continuously upon the family of the right hand side with the same constant that

is independent of p;

(b) the solutions admit decompositions into regular and singular parts, where the

regular part (in usual Sobolev spaces) and the coefficients of the singular parts

depend continuously upon the family of the right hand sides with independent

constants;

3

 
 
 



3. We deduce from (2) above global regularity and singular decomposition results for the

heat equation.

4. We design an optimally convergent mesh refinement finite element method for the

Helmholtz equation, as a consequence of the regularity in (2) above.

5. We present two discrete methods for the heat equation. Firstly, we couple the Fourier

series method (in the time variable) with the mesh refinement finite element method

(FEM) (in the space variable). Secondly, we use the Non-standard finite difference

(NSFD)method (in the time variable) in conjunction with the mesh refinement FEM

(in the space variable).

The idea of using the (NSFD) method for such problems is new. NSFD techniques

introduced by Mickens [52] more than two decades ago have laid the foundation for

designing methods that preserve the dynamics of the continuous differential models.

In our context, the NSFD-FEM we obtained preserves some intrinsic properties of the

solution of the heat equation.

The results of this thesis are published in the papers [14] and [13]. In view of our focus to

better understand the complex issue of singularities, we deliberately spend a lot of time on

some crucial details. This contributes to give a self-contained flavor to the thesis, which is

essential given the amount of tools and deep concepts from various areas that are needed in

this work. This also explains why despite the title of the thesis on the heat equation, much

time and space are devoted to the Helmholtz problem, which is the backbone of the analysis

of the heat equation.

As a matter of principle comments as to how our thesis fits in the literature are generally

made throughout the text next to where the results are stated and proved. See for example

Remark 4.3.3 regarding the literature on singularities.

We outline now chapter by chapter the content of the thesis. Chapter 2 is devoted to

some basic tools mostly related to function spaces (e.g Sobolev spaces, etc) we need. A key

aspect of this chapter is the analysis of the Laplace transform of vector-valued distributions,

which requires from us to elaborate substantially on Laurent Schwartz’s canonical topology

of the space of test functions D in order to prove the density of the space of finite rank

distributions into the space of vector-valued distributions [61].

Chapter 3 and 4 deal with the quantitative and qualitative analysis of the Dirichlet prob-

lem for the Helmholtz operator involving a parameter p ∈ C. The quantitative analysis
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amounts to the well-posedness (with constant independent of p) of the problem in appropri-

ate Sobolev spaces. The qualitative analysis takes care of two aspects. Firstly, in Chapter

3, we deal with the case when the domain is smooth and the Agmon, Douglis and Nirenberg

[2] regularity results are presented. Secondly, in Chapter 4 when the domain is a polygon,

the decomposition of solutions into regular and singular parts is investigated and this is

exploited to establish the global regularity of the solutions into a weighted Sobolev space in

such a way that the solutions depend continuously on the data with a constant independent

of the parameter p ∈ C.

The uniform (with respect to p) estimates obtained in the previous chapters combined

with the Paley-Wiener theorem permit in Chapter 5 to establish for the heat equation, the

existence of a unique variational solution, the tangential regularity (in the time variable) of

the solution, the singular decomposition of the solution and its global regularity in vector-

valued weighted Sobolev spaces.

Chapter 6 is reserved for numerical approximations of the heat equation. First, we design

a semi-discrete (in time) mesh refinement finite element method which is optimally con-

vergent. Next the time variable is discretized by the Fourier series method and the space

variable by the mesh refinement FEM. This leads to a full discrete method which is opti-

mally convergent in both the time and the space variables. Finally, we use an alternative

approach of discretizing the time variable by the NSFD scheme while the mesh refinement

FEM is used for the space variable. In addition to the optimal convergence, this NSFD-FEM

procedure preserves some qualitative property of the continuous model of the solution such

as the decay property in the limit case of space independent equation. These theoretical

results are supported by numerical experiments.

Concluding remarks are gathered in chapter 7. They underline how this work fits in the

literature and how it can be extended.
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Chapter 2

Basic Tools

The study of boundary value problems such as the heat equation conventionally takes as

its starting point the idea of function spaces in which the solution of the problem will be

handled. For this reason, we will start this thesis with some introductory aspects of function

spaces. The underlying domain on which the functions are defined is presented in section

2.1. The most prominent function spaces of interest in our study will be the spaces of

continuous functions, Lebesgue space (section 2.2), Distributions (section 2.3) and Sobolev

spaces (section 2.4). Some relevant results on Laplace transform (the second tool used in

our study) are described in section 2.5.

2.1 The domain Ω

In what follows, we shall work with functions defined on a domain Ω ⊂ R2, i.e., an open

and connected set, with boundary denoted by ∂Ω or Γ. The domain Ω or its boundary

Γ is supposed to satisfy some regularity conditions. Following Grisvard [29], our standard

reference for function spaces, the regularity conditions can be grouped into the two categories.

The first category is to view Γ ≡ ∂Ω as being locally the graph of a function ϕ. The

regularity of Γ is then described through the differentiability properties of ϕ. The precise

definition reads as follows:

Definition 2.1.1. We say that the boundary Γ is continuous (respectively, Lipschitz, m

times continuously differentiable, etc.) if for every x ∈ Γ, there exist a neighborhood V of x

in R2 and a new system of co-ordinates (y1, y2) such that,
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1. V is a rectangle in the new co-ordinate system:

V := {y = (y1, y2) : −a1 < y1 < a1, −a2 < y2 < a2} ,

2. there exists a function ϕ : (−a1, a1) → R which is continuous (respectively Lipschitz,

m times continuously differentiable etc) and satisfies the following conditions:

|ϕ(y1)| <
a2

2
for every y1 ∈ V ′ := (−a1, a1),

Ω ∩ V = {y = (y1, y2) ∈ V : y2 < ϕ(y1)} ,
Γ ∩ V = {y = (y1, y2) ∈ V : y2 = ϕ(y1)} .

More generally, Γ is called of class H when the above function ϕ is of class H.

Definition 2.1.1 is illustrated in Figure 2.1
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Figure 2.1: Lipschitz boundary Γ

Definition 2.1.1 implies that Ω is locally on one side of its boundary Γ. Indeed, it follows

that Ω ∩ V is below the graph of ϕ and Γ ∩ V is the graph. Consequently domains with

cusps do not satisfy Definition 2.1.1.

The second category is to consider the closure Ω, of the domain Ω as a 2-dimensional

manifold with the boundary imbedded in R2. The regularity assumptions are then added on

the manifold.
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Definition 2.1.2. We say that Ω is a 2-dimensional continuous (respectively, Lipschitz, m

times continuously differentiable etc.) sub-manifold with boundary in R2, if for every x ∈ Γ

there exists a neighborhood V of x in R2 and a mapping T from V into R2 such that

1. T is injective,

2. T together with T−1 (defined on T (V )) are continuous (respectively, Lipschitz, m times

continuously differentiable),

3. Ω ∩ V = {y ∈ Ω : T2(y) < 0} where T2(y) denotes the 2th component of T (y).

Definition 2.1.2 is illustrated in Figure 2.2.

V

T
2
(y) = 0

x

   VU
T

2
(y) < 0

 

Figure 2.2: Local charts of the boundary Γ

As a result of condition (3) of Definition 2.1.2, the boundary Γ of Ω is defined locally by

the equation T2(y) = 0.

The comparison of Definition 2.1.1 and Definition 2.1.2 is an issue of interest. To this

end, assuming that Definition 2.1.1 holds, let us define T by

T (y) = {y1, y2 − ϕ(y1)} . (2.1.1)

The function in (2.1.1) has its inverse given by

T−1(z) = {z1, z2 + ϕ(z1)} .
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It is clear that T in (2.1.1) fulfils all the conditions in Definition 2.1.2 with the same amount

of differentiability for T and T−1 as the function ϕ. In other words, Definition 2.1.1 implies

Definition 2.1.2. However, the converse is partly true, namely when T is at least of class C1.

Indeed, assuming that Definition 2.1.2 holds,

T2(y1, y2) = 0 for (y1, y2) ∈ Γ ∩ V. (2.1.2)

Let (y?1, y
?
2) ∈ Γ ∩ V be such that ∂T2

∂y2
(y?1, y

?
2) 6= 0. Then by the implicit function theorem,

there exists open neighborhoods U ⊂ R2 of (y?1, y
?
2) and V ′ ⊂ R of y?1 as well as C1 function

ϕ : V ′ → R such that

(y1, y2) ∈ U solves (2.1.2) if and if y2 = ϕ(y1), y1 ∈ V ′.

The above constraint on the use of the implicit function theorem, motivates why we prefer

Definition 2.1.1. In this regard, a typical example on which our thesis is based is given in

the next result taken from [55].

Proposition 2.1.3. A domain Ω with polygonal boundary Γ is Lipschitz in the sense of

Definition 2.1.1.

Proof. We take Ω to be the unit square represented by

Ω = (−1, 1)× (−1, 1) ,

as illustrated in Figure 2.3.

Let z ∈ Γ not be a vertex. We let the new co-ordinate system y1, y2 centered at z be

such that the y1-line coincides with the side of the square that contains z, while the y2-line

is perpendicular to the y1-line (see Figure 2.4).We then take V = [−α+ z1, α+ z1]× [−β +

z2, β + z2] in the new system and ϕ(y1) = 0. It is clear that y2 is of class C∞. Next we

consider the case when z is a vertex. In view of the symmetry of the square Ω, it is enough

to restrict ourselves to the point z = (1, 1). By Definition 2.1.1, we consider new co-ordinate

system as follows, in in view of Figure 2.4. We pass to the co-ordinate (y1, y2) from (x1, x2)

after performing a rotation through an angle of π/4 and a translation of (3/4, 3/4). These

transformations yield the follow equation[
x1

x2

]
=

[ √
2/2

√
2/2

−
√

2/2
√

2/2

][
y1

y2

]
+

[
3/4

3/4

]
.
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Figure 2.3: Polygon as Lipschitz domain (a)
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Figure 2.4: Polygon as Lipschitz domain (b)
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In the new co-ordinate system, we take

V =
(
−
√

2/4,
√

2/4
)
×
(

3
√

2/4, 3
√

2/4
)

;

for a neighborhood of the point (1, 1). For the function ϕ, we consider

ϕ(y1) =
√

2/4− |y1|.

With reference to Definition 2.1.1, we can check that

|ϕ(y1)| <
3
√

2

8
for every y1 ∈ V ′ =

(
−
√

2/4,
√

2/4
)
,

Ω ∩ V = {y = (y1, y2) ∈ V : y2 < ϕ(y1)} ,
Γ ∩ V = {y = (y1, y2) ∈ V : y2 = ϕ(y1)} .

For y1 6= 0 we have

ϕ(y1)− ϕ(0)

y1

=


−1 if y1 ≥ 0

1 if y1 ≤ 0,

which implies that

|ϕ(y1)− ϕ(0)| ≤ |y1|,∀ y1 ∈ V ′.

Now for arbitrary y1 and y′1 in V ′, we have

|ϕ(y1)− ϕ(y′1)| = |y1 − y′1|,

if the signs of y1 and y′1 are the same. In the case where the signs are different we have

|ϕ(y1)− ϕ(y′1)| ≤ |ϕ(y1)− ϕ(0)|+ |ϕ(0)− ϕ(y′1)|
≤ |y1|+ |y′1|
= |y1 − y′1|
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We then have that

|ϕ(y1)− ϕ(y′1)| ≤ |y1 − y′1|, ∀ y1, y
′
1 ∈ V ′,

which conclude the proof.

With Definition 2.1.1, we associate once and for all the notation below which will be used

in future. For all z ∈ Γ there exists a neighborhood Vz defined in a new co-ordinate system

xz = (x1,z, x2,z) ≡ (x1, x2) ≡ x by

Vz = {x = (x1, x2) : −a1,z < x1 < a1,z, −a2,z < x2 < a2,z} .

Since the boundary Γ is compact, there exist z1, z2, , .....zk ∈ Γ such that Γ ⊂ ∪kj=1Vj, where

Vj ≡ Vz,j, a1,zj ≡ a1,j and a2,zj ≡ a2,j. In view of this notations, we can find an open set V0

with V̄0 ⊂ Ω such that the family of open sets Vj, j = 0, 1, 2, ....k is a covering of Ω̄.

Without loss of generality and following Necas [54], we can assume that for all 1 ≤ j ≤ k

Vj = {x = (x1, x2) :, −α < x1 < α, −β < x2 < β} , for some α, β > 0

where we recall that (x1, x2) in the right hand side should be viewed as in the new co-ordinate

system (x1,j, x2,j).Furthermore, we have the following regions of R2 demarcated by:

V 0
j = Γ ∩ Vj = {(x1, x2) : x2 = ϕj(x1), −α < x1 < α} ,

V +
j = Vj ∩ Ω = {(x1, x2) ∈ Vj : ϕj(x1)− β < ϕj(x1), −α < x1 < α} ,

V −j = Vj ∩ (R2/Ω) = {(x1, x2) ∈ Vj : ϕj(x1) + β > ϕj(x1), −α < x1 < α} .

For a fixed j, 1 ≤ j ≤ k, we consider the Tj with its inverse T−1
j

Tj : Vj → Q and T−1
j : Q→ Vj,
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defined by

Tj(x) ≡ Tj(x1, x2) =

(
x1

α
,
ϕj(x1)− x2

β

)
, (2.1.3)

and

T−1
j (y) ≡ T−1

j (y1, y2) = (αy1, ϕj(αy1)− βy2) . (2.1.4)

where

Q = {(y1, y2) : |y1| < 1, |y2| < 1} ,

is the unit square. The smoothness of Tj and T−1
j is determined by that of the map ϕj in

Definition 2.1.1. Furthermore, under the transformation Tj

V +
j becomes Q+ = {(y1, y2) : |y1| < 1, 0 < y2 < 1} ,

V −j becomes Q− = {(y1, y2) : |y1| < 1, −1 < y2 < 0} ,

V 0
j becomes Q0 = {(y1, 0) : |y1| < 1} ,

as seen in Figure 2.1.2.

With these notation in mind, there exist non-negative functions θj ∈ D(Vj), θj ≤ 1, 0 ≤
j ≤ k

satisfying

∀x ∈ Ω̄,
k∑
j=0

θj(x) = 1 and ∀x ∈ Γ,
k∑
j=1

θj(x) = 1. (2.1.5)

The family (θj)
k
j=0 and (θj)

k
j=1 are called C∞-partition of unity on Ω̄ and Γ subordinated to

the open coverings (Vj)
k
j=0 and (Vj)

k
j=1 respectively.
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Figure 2.5: Boundary Γ of piecewise Cm class

2.2 Usual Function Spaces

With the domain Ω, we associate the following classical function spaces that we will use:

Definition 2.2.1. ([40])

Given an integer m ≥ 0, we define

• Cm(Ω) = {v : Ω→ R; Dαv is continuous on Ω ∀ |α| ≤ m}. This is the space of m

times continuously differentiable functions on Ω.

• Cm
b (Ω) := {v ∈ Cm(Ω), Dαv is bounded ∀ |α| ≤ m}, Cm

b (Ω) is a Banach space under

the norm

‖v‖m,∞,Ω := max
|α|≤m

sup
x∈Ω
|Dαv(x)|. (2.2.1)

• Cm
0 (Ω) := {v ∈ Cm(Ω) : v has a compact support contained in Ω} .
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• D(Ω) ≡ C∞0 (Ω) =
⋂
m≥0 C

m
0 (Ω). This is the space of test functions, which consists of

infinitely differentiable functions v : Ω→ R with compact support in Ω.

• Cm(Ω̄) := {v ∈ Cm(Ω);∀ |α| ≤ m,x→ Dαv(x) is bounded and uniformly continuous on Ω}.

• Cm,θ(Ω̄) :=
{
v ∈ Cm(Ω̄); ∃ C ≥ 0 : |Dαv(x)−Dαv(y)| ≤ C|x− y|θ ∀ x, y ∈ Ω ∀ |α| = m

}
is the Hölder space of order m and exponent θ ∈ (0, 1].

Definition 2.2.2. ([40])

Let 1 ≤ p ≤ +∞ be a real number. The Lebesgue space Lp(Ω) consists of classes of measur-

able functions v on Ω such that

‖v‖0,p,Ω =


V 1 < +∞, if p <∞

V 11 < +∞, if p =∞,
(2.2.2)

where

V 1 =

(∫
Ω

|v(x)|pdx
)1/p

and

V 11 = ess sup
x∈Ω
|v(x)| := inf {k ≥ 0 : |v(x)| ≤ k a.e on Ω} .

Notice that L1(Ω) is the space of classes of measurable functions on Ω which are Lebesgue-

integrable. Notice also that Lp(Ω) is a Banach space under the natural norm in (2.2.2) while

L2(Ω) is a Hilbert space for the inner product

(u, v)0,Ω :=

∫
Ω

u(x)v(x)dx. (2.2.3)

Definition 2.2.3. The space of locally integrable functions is denoted by L1
loc(Ω) and defined

by

L1
loc(Ω) :=

{
v : φv ∈ L1(Ω), ∀ φ ∈ D(Ω)

}
=

{
v : vχK ∈ L1(Ω), ∀ K ⊂ Ω, K compact in R2

}
,

where χK is the characteristic function of the set K.
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Remark 2.2.4. Spaces of functions C∞0 (Ω) and L1
loc(Ω) are the smallest and the largest

spaces of functions of interest in applications as depicted in Figure 2.6.

C∞0 (Ω) ⊂ Cm
0 (Ω) ⊂ Lp(Ω) ⊂ L1

loc(Ω)
∪

Cm
b (Ω) ⊂ Cm(Ω)

∪
Cm(Ω̄) .

Figure 2.6: Smallest and Largest spaces

2.3 Distributions

Functions in the smallest space D(Ω) have many nice properties that functions in the largest

space L1
loc(Ω) fail to have. By duality on D(Ω) we will construct a much larger space which

contains L1
loc(Ω) and possess the said nice properties in a weaker sense.

Definition 2.3.1. ([40])(Pseudo-topology of D(Ω))

A sequence (ϕn)n≥1 in D(Ω) converges to ϕ ∈ D(Ω) if

1. There exists a compact set K of R2 such that K ⊂ Ω, supp(ϕn) ⊂ K, ∀n ≥
1, supp(ϕ) ⊂ K;

2. For every multi-index α, (Dαϕn) converges to (Dαϕ) uniformly on K.

We will elaborate a bit more on the topology of D(Ω) in subsection 2.5.3 below.

Definition 2.3.2. ([40]) (Pseudo-topology of L1
loc(Ω))

A sequence (vn) converges to ϕ in L1
loc(Ω) if

∀ compact K ⊂ Ω, lim
n→∞

∫
K

|vn − ϕ|dx = 0.

With all these structures we can then define distributions as follows:
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Definition 2.3.3. ([40])

1. By definition, D′(Ω) the dual of D(Ω), is the space of distributions on Ω. This means

T ∈ D′(Ω) if and only if the convergence to 0 in D(Ω) of any sequence (ϕn) implies

the linear convergence to 0 of the scalar sequence (〈T, ϕn〉). (The symbol 〈·, ·〉D′×D or

〈·, ·〉 when there is no risk of confusion denotes the duality pairing between D′(Ω) and

D(Ω)).

2. A sequence (Tn) of distributions on Ω converges to 0 ∈ D′(Ω) if

〈Tn, ϕ〉 → 0, ∀ϕ ∈ D′(Ω).

Remark 2.3.4. The definition of convergent sequence Tn of distributions given in Definition

2.3.3 and used often in the literature is incomplete but sufficient in applications. The complete

definition of this concept will be clarified when we equip D′(Ω) with the topology of uniform

convergence on bounded subsets of D(Ω) (see Proposition 2.5.17).

Another type of space of test functions which will be useful to us in the context of Fourier

transform of distributions, is given in the next definition.

Definition 2.3.5. ([61])

Schwartz’s space S(R) of test functions consists of C∞ functions which together with all their

derivatives are rapidly decreasing at infinity. In other words ϕ ∈ S(R) if ϕ : R −→ R is

infinitely differentiable and for all integers m,n ≥ 0, there exists a constant Cm,n ≥ 0 such

that

sup{|x|m|d
nϕ

dxn
(x)| : x ∈ R} < Cm,n. (2.3.1)

This is equivalent to ϕ ∈ C∞(R) and lim|x|→∞ |x|mdnϕ(x)
dxn

= 0 ∀ m ∈ N, ∀ n ∈ N.

The space S(R) has the structure of a locally convex topological space when equipped with

Schwartz canonical topology. In terms of this topology, we have the following definitions:

Definition 2.3.6. ([40])(Pseudo-topology of S(R))

A sequence (ϕj) converges to ϕ in S(R) whenever

lim
j−→0

sup
x∈R
|xm

(
dnϕj
dxn

− dnϕ

dxn

)
(x)| = 0, ∀n ∈ N, ∀m ∈ N.

18

 
 
 



Definition 2.3.7. ([40])

By definition, the dual S ′(R) of S(R) is the space of tempered distributions in R. This

means T ∈ S ′(R) if and only if the convergence to 0 in S(R) of any sequence (ϕn) implies

the convergence to 0 of numerical sequence (〈T, ϕn〉). (Again the symbol 〈·, ·〉 denotes the

duality pairing between S ′(R) and S(R).)

Definition 2.3.8. ([40])

Given a distribution T ∈ D′(Ω), its derivative with respect to xi, 1 ≤ i ≤ 2 is the distribution

denoted by ∂T
∂xi

and defined by

∀ϕ ∈ D(Ω), <
∂T

∂xi
, ϕ >= − < T,

∂ϕ

∂xi
> .

In general, for a multi-index α ∈ N2, the derivative of T of order α is the distribution DαT

defined by

∀ϕ ∈ D(Ω), < DαT, ϕ >= (−1)|α| < T,Dαϕ > .

2.4 Sobolev Spaces

For a fixed parameter which is either the time variable t or a complex number p, the solutions

of the heat and Helmholtz equations that we will consider in this thesis belong to the class

of Sobolev spaces that we outline now. Our standard reference for Sobolev spaces is [29],

though we add from time to time those references that we used most.

Definition 2.4.1. ([29])

Let m ≥ 0 be an integer. The Sobolev space Hm(Ω) is defined by

Hm(Ω) :=
{
v ∈ D′(Ω) : Dαv ∈ L2(Ω), ∀ |α| ≤ m

}
. (2.4.1)

In other words, Hm(Ω) is the collection of all functions in L2(Ω) such that all distributional

derivatives up to order m are also in L2(Ω).

We make Hm(Ω) a Hilbert space under the norm

‖v‖m,Ω :=

∑
|α|≤m

∫
Ω

|Dαv|2dx

1/2

(2.4.2)
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and the inner product

(w, v)m,Ω :=
∑
|α|≤m

∫
Ω

DαwDαvdx.

We denote by | · |m,Ω the semi-norm

|v|m,Ω :=

∑
|α|=m

∫
Ω

|Dαv|2dx

1/2

. (2.4.3)

Clearly the Sobolev space of order 0 i.e H0(Ω) = L2(Ω). Unless Ω = R2, or m = 0 the space

D(Ω) is not dense in Hm(Ω). For this reason we introduce the following subspace.

Definition 2.4.2. ([29])

We define the Sobolev subspace Hm
0 (Ω) as the closure of D(Ω) in the space Hm(Ω).

Theorem 2.4.3. ([29])(Poincaré-Friedrichs Inequality)

Assume that Ω is bounded in one of the directions, say xn. Then there exists a constant

C > 0 depending upon Ω such that

∀v ∈ H1
0 (Ω), ‖v‖0,Ω ≤ C‖ ∂v

∂xn
‖0,Ω. (2.4.4)

Consequently for m ≥ 1 the semi-norm | · |m,Ω is a norm on Hm
0 (Ω) equivalent to ‖ · ‖m,Ω.

Occasionally, we will use the non-Hilbertian Sobolev space defined as follows:

Definition 2.4.4. 1. For 1 ≤ p <∞ the Sobolev space of integer order m ≥ 0 is denoted

Wm,p(Ω) and defined by

Wm,p(Ω) := {v ∈ D′(Ω) : Dαv ∈ Lp(Ω), ∀ |α| ≤ m} . (2.4.5)

It is clear that Wm,p(Ω) coincides with the Hilbertian Sobolev space Hm(Ω). However

for p 6= 2 the space Wm,p(Ω) is a Banach space (not a Hilbert space) with the norm

and semi-norm defined respectively by

‖v‖m,p,Ω =


(∑

|α|≤m
∫

Ω
|Dαv(x)|pdx

)1/p

if p <∞

max|α|≤m ess supx∈Ω |Dαv(x)| otherwise
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and

|v|m,p,Ω =


(∑

|α|=m
∫

Ω
|Dαv(x)|pdx

)1/p

if p <∞

max|α|=m ess supx∈Ω |Dαv(x)| otherwise.

Theorem 2.4.5. ([29])(Sobolev Continuous Embedding Theorem and Rellich Kondrachov

Compact Embedding Theorem).

Assume that a bounded open set Ω has boundary ∂Ω ≡ Γ which is Lipschitz if m = 1 or is

of class Cm if m > 1. Consider the number p? defined by

1

p?
=

1

p
− m

2
, 1 < p <∞, m ≥ 1.

1. If 1
p?
≥ 0, i.e. m ≤ 2

p
, then we have, for any q ∈ [1, p?], the continuous embedding

Wm,p(Ω) ↪→ Lq(Ω)

which is compact in the particular case when q 6= p?;

2. If 1
p?
< 0, i.e. m > 2

p
, we have the continuous and compact embedding

Wm,p(Ω) ↪→ Cs(Ω̄).

where s is the non-negative integer satisfying s ≤ m− 2
p
< s+ 1.

Furthermore, if m− 2
p

is not an integer, we have the continuous embedding

Wm,p(Ω) ↪→ Cs,θ(Ω̄)

where θ = m− 2
p
− s and Cs,θ(Ω̄) the Hölder space equipped with the norm

‖v‖Cs,θ(Ω̄) := max
|α|≤s

sup
x∈Ω
|Dαv(x)|+ max

|α|=s
sup
x∈Ω

|Dαv(x)−Dαv(y)|
|x− y|θ

Remark 2.4.6. Theorem 2.4.5 is valid in the one-dimensional case (i.e Ω is an interval)

provided that 2 is replaced with 1 in the identity that defines p?.
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2.5 Laplace transform

The evolution equations that we study will be transformed into complex-parameter family

of elliptic equations through the Laplace transform, which we outline in this section.

2.5.1 Laplace transform of functions

Given a test function v ∈ D(0,+∞), its Laplace transform is denoted and defined by

(Lv) (p) ≡ v̂(p) =
1√
2π

∫ +∞

0

e−ptv(t)dt, p = ξ + iη ∈ C. (2.5.1)

The connection of the Laplace transform with the Fourier transform is straight forward on

extending the function v ∈ D(0,+∞) to ṽ ∈ D(−∞,+∞) given by

ṽ(t) =


v(t) for t ≥ 0

0 for t < 0.

(2.5.2)

Indeed from (2.5.1), we have

v̂(p) =
1√
2π

∫ +∞

0

e−iηte−ξtv(t)dt

=
1√
2π

∫ +∞

−∞
e−iηte−ξtṽ(t)dt.

Thus

v̂(p) = F
(
e−ξtṽ(t)

)
(η), (2.5.3)

where

F(w)(η) =
1√
2π

∫ +∞

−∞
e−iηtw(t)dt, (2.5.4)

is the Fourier transform of w ∈ D(−∞,+∞) and

w(t) = F−1 (F(w)) (t) =
1

(2π)
1
2

∫ +∞

−∞
eiηtF(w)(η)dη (2.5.5)

22

 
 
 



is the inverse Fourier transform of F(w).

Given a function v ∈ D(0,+∞), it is easy to show by integration by parts that the Laplace

transform of the derivative dkv
dtk

is given by the relation

L
(
dkv

dtk

)
(p) = pkL (v) (p) for k ∈ N. (2.5.6)

If another function w ∈ D(0,+∞) is considered, we have for ξ ∈ R the Parseval identity∫ +∞

0

v(t)w(t)e−2ξtdt =

∫ +∞

−∞
v̂(ξ + iη) · ŵ(ξ + iη)dη, (2.5.7)

which implies that the Laplace transform satisfies the relation

(∫ +∞

0

|v(t)e−ξt|2dt
) 1

2

=

(∫ +∞

−∞
|v̂(ξ + iη)|2dη

) 1
2

. (2.5.8)

Furthermore, we have∫ +∞

0

v̂(ξ + iη)w(η)dη =

∫ +∞

0

e−ξtv(t)F(w)(t)dt. (2.5.9)

It is clear that the Laplace transform of a function v ∈ L1(0,∞) is well-defined by the

integral (2.5.1) whenever the condition

ξ ≥ 0, (2.5.10)

is satisfied.

Theorem 2.5.1. Let g(t) ∈ L2(−∞,+∞) have its support in the unbounded interval Iα =

(−∞, α) or Iα = (α,+∞) where α ∈ R. Then the Laplace transform

ĝ(p) =
1√
2π

∫
Iα

e−ptg(t)dt,

is defined for Re(p) = ξ > 0 if Iα = (α,+∞) or for Re(p) = ξ < 0 if Iα = (−∞, α).
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Furthermore, ĝ(p) is a holomorphic function in the complex region

Cα =


p; ξ > 0 if Iα = (α,+∞)

p; ξ < 0 if Iα = (−∞, α)

such that, for p ∈ Cα with a fixed ξ, the function η → ĝ(ξ+ iη) is of class L2(−∞,+∞) and

satisfies the relation ∫ +∞

−∞
|ĝ(ξ + iη)|2dη ≤ e−2ξα

∫
Iα

|g(t)|2dt.

Proof. We prove the theorem for the case when Iα = (α,+∞), the situation Iα = (−∞, α)

being analogue. We show that for ξ > 0, the function t → e−ξtg(t) is of class L1(α,+∞).

Indeed, we have

|ĝ(ξ + iη)| =
1√
2π
|
∫ +∞

α

e−iηte−ξtg(t)dt|

≤ 1√
2π

∫ +∞

α

e−ξt|g(t)|dt

≤ 1√
2π

(∫ +∞

α

e−2ξtdt

) 1
2
(∫ +∞

α

|g(t)|2dt
) 1

2

;

where the previous inequality is due to Cauchy Schwarz inequality. This shows that ĝ(ξ+ iη)

is defined for ξ > 0 and also holomorphic by differentiation under the sum symbol.

On the other hand Plancherel-Parseval theorem yields for ξ > 0∫ +∞

−∞
|ĝ(ξ + iη)|2dη =

∫ +∞

α

|e−ξtg(t)|2dt

=

∫ +∞

α

e−2ξt|g(t)|2dt

≤ e−2ξα

∫ +∞

α

|g(t)|2dt.
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2.5.2 Laplace transform of distributions

We want to define the Laplace transform of more general objects; namely, distributions in

such a way that properties (2.5.6) and (2.5.8) remain valid. However, since the space D(R) is

not invariant under the Fourier transform, we use Schwartz [61] space of test functions S(R)

introduced in Definition 2.3.5. The estimate (2.3.1) guarantees that the Fourier transform

of φ ∈ S(R) is well-defined by the relation (2.5.4). More importantly, we have the following

result.

Theorem 2.5.2. ([21])

The Fourier transform F is an isometric isomorphism, (with inverse F−1 given in (2.5.5))

from S(R) onto S(R) when S(R) is equipped with the L2(R)-norm.

Motivated by the relations (2.5.3) and (2.5.9), we give the following definition:

Definition 2.5.3. ([21])

For a tempered distribution T ∈ S ′(R), its Fourier transform is the tempered distribution

denoted by F(T ) and given by

〈F(T ), ϕ〉S′(Rη)×S(Rη) = 〈T, F(ϕ)〉S′(Rt)×S(Rt) ∀ ϕ ∈ S(Rη). (2.5.11)

Here and after, the notation Rt means that distributions and test functions are considered

with the argument t.

Remark 2.5.4. Note that Definition 2.5.3 does not make sense for an arbitrary distribution

T ∈ D′(R) in view of the fact that F(ϕ) /∈ D(R) for ϕ ∈ D(R). Therefore we had to use the

largest space of test functions S(R) into which D(R) is densely and continuously embedded in

order for Definition 2.5.3 to work for the small space S ′(R) of tempered distributions which

is densely and continuously embedded in D′(R).

One of the important properties of the Fourier transform of distributions we shall need in

this study is the Fourier transform of the derivative with respect to the time t. For T ∈ S ′(R)

and any non-negative integer n, we have

F d
nT

dtn
= (iη)nF(T ) ∈ S ′(Rη). (2.5.12)
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Indeed if ϕ ∈ S(Rη), we have〈
F(

dnT

dtn
)(η), ϕ

〉
S′(Rη)×S(Rη)

=

〈
dnT

dtn
, F(ϕ)

〉
S′(Rt)×S(Rt)

, by (2.5.11)

= (−1)n
〈
T,

dn

dtn
(F(ϕ))

〉
S′(Rt)×S(Rt)

, by Definition 2.3.8, which

is the same for tempered distributions

= (−1)n 〈T, (iη)nF(ϕ)〉S′(Rt)×S(Rt) , by the properties of Fourier

transform of usual functions

= 〈(iη)nF(T ), ϕ〉S′(Rη)×S(Rη) by (2.5.11).

With the above in mind, we are led to study the subspace D′+(R) of D′(R) consisting of

distributions T with support limited to the left. i.e. supp(T ) ⊂ [α,+∞) α ∈ R. Notice

that distributions D′+(R) are tested against functions ϕ in the space D−(R) where ϕ ∈ D(R)

is such that supp(ϕ) ⊂ (−∞, β], β ∈ R. (The spaces D′−(R) and D+(R) are defined analo-

gously). For T ∈ D′+(R) we want to connect its Laplace transform to the Fourier transform

of distributions via the analogue (2.5.3) and (2.5.11). To investigate this connection, we

consider an important set introduced in [22].

Definition 2.5.5. ([22])

With a distribution T ∈ D′(Rt), we associate the set IT of real numbers given by

IT =
{
ξ ∈ R : e−ξtT ∈ S ′(R)

}
. (2.5.13)

The properties of the set IT are summarized in the following result:

Proposition 2.5.6. ([22])

1. For T ∈ D′(R), IT is a convex set which may be empty;

2. If T ∈ D′+(R) and if IT 6= ∅, then IT = R or [ξ0,+∞) with ξ0 ∈ R.

The next proposition specifies some useful properties of tempered distributions associated

with T ∈ D′(R) and IT .
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Proposition 2.5.7. ([22]).

Let T ∈ D′(R). Denote by int(IT ) the interior of IT and suppose that it is non-empty. Then:

1. For all ξ ∈ int(IT ) the Fourier transform F
(
e−ξtT

)
(η) of the distribution e−ξtT is a

function of OM where OM is the space of C∞ functions which together with all their

derivatives are slowly increasing at infinity. That is, v ∈ OM ⇔ v ∈ C∞(R),∀j ∈ N
there exists N ∈ N such that

lim
|x|→∞

|x|−N |v(j)(x)| = 0,

2. The function

p = ξ + iη → F
(
e−ξtT

)
(η)

is holomorphic in the band int(IT )× R.

In view of Proposition, 2.5.6 and 2.5.7, we can define the Laplace transform of a distri-

bution as follows:

Definition 2.5.8. ([22]).

Let T ∈ D′(R) be such that int(IT ) 6= ∅. The holomorphic function denoted by L(T ) : p −→
L(T )(p) and defined for p ∈ int(IT )× R by

T̂ (p) ≡ L(T )(p) := F
(
e−ξtT

)
(η) (2.5.14)

is called the Laplace transform of the distribution T ∈ D′(R).

As mentioned earlier, the properties (2.5.6) and (2.5.9) are valid in this general setting of

Definition 2.5.8 as shown below. For T ∈ D′(R) with IT 6= ∅, and ϕ ∈ S(R), we have

〈L(T )(p), ϕ〉S′(Rη)×S(Rη) =
〈
F(e−ξtT )(η), ϕ

〉
S′(Rη)×S(Rη)

by (2.5.14)

=
〈
e−ξtT,F(ϕ)

〉
S′(Rt)×S(Rt)

by (2.5.11)

= 〈T,L(ϕ)(p)〉S′(Rt)×S(Rt) .
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This is the analogue of (2.5.9). On the other hand, by (2.5.11)〈
L
(
dkT

dtk

)
(p), ϕ

〉
=

〈
F
(
e−ξt

dkT

dtk

)
(η), ϕ

〉
S′(Rη)×S(Rη)

=

〈
e−ξt

dkT

dtk
, F(ϕ)

〉
S′(Rt)×S(Rt)

. (2.5.15)

Since

d

dt

(
e−ξtT

)
= −ξe−ξtT + e−ξt

dT

dt
,

then (2.5.15), for k = 1, yields〈
L
(
dT

dt

)
(p), ϕ

〉
=

〈
ξe−ξtT +

d

dt

(
e−ξtT

)
, F (ϕ)

〉
S′(Rt)×S(Rt)

=

〈
ξF
(
e−ξtT

)
(η) + F

(
d

dt

(
e−ξtT

))
(η), ϕ

〉
=

〈
ξF
(
e−ξtT

)
(η) + iηF

(
e−ξtT

)
(η), ϕ

〉
by (2.5.12)

=
〈
pF
(
e−ξtT

)
(η), ϕ

〉
= 〈pL (T ) (p), ϕ〉 .

Hence by induction on k ∈ N, we have
〈
L
(
dkT
dtk

)
(p), ϕ

〉
=
〈
pkL(T )(p), ϕ

〉
, which means

that

L
(
dkT

dtk

)
(p) = pkL(T )(p) in S ′(Rη). (2.5.16)

Our aim at this stage is to characterize Laplace transform of distributions in L2(0,+∞).

This is achievable first by considering the next definition.
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Definition 2.5.9. ([67]) (Hardy-Lebesgue Space)

The Hardy-Lebesgue space denoted by H2(0) is defined as the set of functions V : p −→ V (p)

from the half complex plane

C+ = {p = ξ + iη ∈ C, ξ > 0}

into the space C such that the following two conditions are satisfied:

1. The function V (p) is holomorphic for ξ > 0;

2. For each ξ > 0, the function η −→ V (ξ + iη) is of class L2(−∞,+∞) such that

sup
ξ>0

(∫ ∞
−∞
|V (ξ + iη)|2dη

)
< +∞.

Proposition 2.5.10. ([67])

Let v(t) ∈ L2(0,+∞). Then its Laplace transform v̂(p) exists for ξ ≥ 0 and v̂(p) ∈ H2(0).

Proof. Let ξ ≥ 0. We denote by ṽ(t) the extension of v(t) by 0 outside (0,+∞) given in

(2.5.2). Then, the function t ∈ R −→ e−ξtṽ(t) is of class L2(−∞,+∞) and is therefore a

tempered distribution. In other words ξ ∈ Iṽ; in fact [0,+∞) ⊂ Iṽ and thus intIṽ 6= 0.

Thus, in view of Definition 2.5.8, v̂(p) is well-defined for p = ξ + iη with ξ ≥ 0. The

holomorphic property of p −→ v̂(p) follows from Proposition 2.5.6 and Definition 2.5.8.

For condition 2 we have using the extension to L2 of (2.5.3) and of the Parseval identity

(2.5.8) ∫ ∞
−∞
|v̂(ξ + iη)|2dη =

1√
2π

∫ ∞
−∞
|F(ṽ(t)e−tξ)(η)|2dη

=
1√
2π

∫ ∞
−∞
|ṽ(t)e−tξ|2dt

=
1√
2π

∫ ∞
0

|v(t)|2e−2tξdt

≤ 1√
2π

∫ ∞
0

|v(t)|2 since ξ > 0.
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Hence

sup
ξ>0

(∫ ∞
−∞
|v̂(ξ + iη)|2dη

)
≤ 1√

2π

∫ ∞
0

|v(t)|2dt < +∞. (2.5.17)

Theorem 2.5.11. ([67])( Paley-Wiener Theorem)

Let V (ξ+iη) ∈ H2(0). Then the boundary function V (iη) of V (ξ+iη) exists in L2(−∞,+∞)

in the sense that

lim
ξ→0

∫ +∞

−∞
|V (iη)− V (ξ + iη)|2dη = 0. (2.5.18)

Furthermore, there exists a function t −→ v(t) of class L2(−∞,+∞) such that v(t) = 0 for

t < 0 and V (ξ + iη) with ξ > 0, is the Laplace transform of v(t) at p = ξ + iη.

2.5.3 Laplace transform of vector-valued distributions

After the definition of the Laplace transform of scalar distributions, we extend this definition

to vector-valued distributions. We denote by X the Hilbert space, with norm ‖·‖X , in which

the vector distributions take values.

Definition 2.5.12. ([22])

1. We denote by D(X), the space of functions t→ f(t) from R into X which are of class

C∞ and which have compact support.

D(X) is equipped with a pseudo-topology according to which a sequence (ϕj) converges

to ϕ whenever we have the following conditions:

• there exists a compact set K of R, such that

supp(ϕj) ⊂ K, ∀j ≥ 1, supp(ϕ) ⊂ K

• ϕ(n)
j converges to ϕ(n) in X uniformly on K, for every n ∈ N.

2. We denote by D+(X) the subspace of D(X) consisting of vector-valued functions with

support limited to the left i.e. contained in some [α,+∞). The space D+(X) is equipped
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with a pseudo-topology in which a sequence of functions ϕj ∈ D+(X) converges to ϕ in

D+(X) if

• the functions ϕj and ϕ are zero for t0 ≤ t, where t0 is independent of j

• ϕ(n)
j converges uniformly to ϕ(n) in X over all compact set in [α,+∞[.

Remark 2.5.13. The corresponding space denoted by D−(X) is the subspace of D(X) con-

sisting of vector-valued functions with support limited to the right i.e. contained in some

(−∞, α]). D−(X) also has a pseudo-topology similar to the one in Definition 2.5.12(2).

We recall that to avoid confusion, we will, whenever it is necessary, write Rt to emphasize

that the argument of the functions ϕ ∈ D(X) is ”t”. We also would like to emphasize that,

if X = C or R, then the spaces described above will be written as follows:

D(X) = D, D+(X) = D+ and D−(X) = D−

Definition 2.5.14. ([22])

We denote by D′(X) the space of distributions over Rt, with values in X, defined by

D′(X) := L(D;X)

where L(D;X) is the space of continuous linear mapping from D into X.

The space D′(X) is equipped with the topology of uniform convergence over bounded

subsets of D. To emphasize on this, we denote L(D, X) by Lσ(D, X) where σ is the collection

of bounded subsets of D. Given the importance of this topology in what follows, we spend

some space and time to make it more explicit. We do this by considering the following useful

concepts of the space D(R) found in [15],[26], [27], [61] and [62].

Definition 2.5.15. ([15], [26])

Let A ⊂ D(R). The subset A is said to be bounded if there exists a compact subset K ⊂ R
such that

1. ∀ ϕ ∈ A,

supp(ϕ) ⊂ K, (2.5.19)
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2. ∀m ∈ N, there exists Mm > 0, such that

sup
x∈R
|d
pϕ(x)

dxp
| ≤Mm, ∀ p ≤ m. (2.5.20)

Instead of the pseudo-topology of D(R) given in Definition 2.3.1, we want now to specify

Schwartz canonical topology of D(R). To this end, let us take (Kn)n≥1 to be an increasing

sequence of compact sets in R such that

∪nKn = R.

For each compact set Kn, we denote by DKn(R) the subspace of D(R) that consists of

functions

ρ ∈ C∞0 (R) such that supp(ρ) ⊆ Kn.

On each DKn(R), we introduce the sequence of semi-norms (PKn,m)m≥1 defined by

PKn,m(ρ) = sup
x∈Kn

∣∣∣∣ dmdxmρ(x)

∣∣∣∣ .
By a standard procedure [26, 27], the sequence (PKn,m)m≥1 generates on DKn(R) a structure

of locally convex topological vector space, with topology denoted by TKn . From the same

references, it is known that a fundamental system of neighborhoods of 0 for the topology

TKn consists of the sets

V (m, ε) :=

ρ ∈ DKn(R) : sup
x∈Kn

0≤j≤m

∣∣∣∣ djdxj ρ(x)

∣∣∣∣ ≤ ε

 , ε > 0, m ∈ N. (2.5.21)

It is clear that

D(R) = ∪∞n=1DKn(R). (2.5.22)

The said Schwartz canonical topology T of D(R) is the inductive limit of the topologies

(TKn)n≥1. That is, T is the largest but not discrete locally convex topology on D(R) that

makes all the embeddings DKn(R) ↪→ D(R) continuous. Thus V is a convex neighborhood

of 0 in D(R) if and only if V ∩ DKn(R) is a neighborhood of 0 in DKn(R) for every n.
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The topology T of D(R) is generated by a family of semi-norms obtained as follows from

an increasing sequence of non-negative integers (mj)j≥0 where mj → ∞ as j → ∞ and a

decreasing sequence of positive real numbers (εj)j≥0 such that εj → 0:

N({mj}, {εj})(ρ) := sup
j

 sup
|x|≥j

0≤α≤mj

|dαρ(x)
dxα
|

εj

 . (2.5.23)

In line with (2.5.21) we introduce the set

V ({mj}, {εj}) :=

{
ρ ∈ D(R) : ∀j |x| > j and 0 ≤ α ≤ mj

∣∣∣∣dαρ(x)

dxα

∣∣∣∣ ≤ εj,

}
which forms a fundamental system of neighborhoods of 0 in D(R) when {mj} and {εj} vary

arbitrary.

Our next task is to be more explicit about the topology of D′(X) given in Definition 2.5.14.

To this end, let Y be a locally convex topological vector space with topology generated in a

standard way ([26, 27]) by a family of semi-norms

WI = {qα, α ∈ I}.

We define L(D, Y ) as the space of linear continuous operators from D into Y . To understand

the topology of L(D, Y ), we denote by σ the collection of all bounded subset of D(R) as

defined in Definition 2.5.15. With each A ∈ σ and α ∈ I, we associate a semi-norm qα,A on

L(D, Y ) defined by

qα,A(T ) = sup
ρ∈A

qα(T (ρ)).

The family of semi-norms

WI,σ = {qα,A : α ∈ I, A ∈ σ} (2.5.24)

defines on L(D, Y ) a locally convex (vector) topology called σ-topology. Thus again the

notation Lσ(D, Y ).
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Definition 2.5.16. If Y0 denotes the collection of balanced neighborhoods of 0 for the topol-

ogy of Y , then a fundamental system of neighborhood of 0 for the σ-topology of L(D, Y ) is

given by

B = {V (A,M) ⊂ L(D, Y ) : ∀A ∈ σf , ∀M ∈ Y0}

where σf is the collection of finite union of bounded set in σ and

V (A,M) = {T ∈ L(D, Y ) : T (A) ⊂M}.

We recall that all these concepts can be found in [26, 27]).

Proposition 2.5.17. Let (Tj) be a sequence in Lσ(D, Y ) and let T ∈ Lσ(D, Y ) where the

local convex topology of Y is generated by a filtered family W = {qα, α ∈ I} of semi-norms.

Then the following statements are equivalent:

1. The sequence (Tj) converges to T in Lσ(D, Y ). That is for any neighborhood V of 0

in Lσ(D, Y ), there exists an integer j0 = j0(V ) such that Tj − T ∈ V whenever j ≥ j0.

2. The sequence (Tj) converges to T uniformly on any bounded subset A ∈ σ. That is for

any neighborhood W of 0 in Y and any A ∈ σ, there exists j0 = j0(A,W) such that

Tj(ρ)− T (ρ) ∈ W for any ρ ∈ A whenever j ≥ j0.

3. For any α ∈ I, and A ∈ σ the sequence of real-valued numbers

qα(Tj(ρ)− T (ρ)) converges to 0 uniformly on A.

Proof. To prove that (1) implies (2), let A ∈ σ and W be a neighborhood of 0 in Y . Then

the set V (A,W) introduced in Definition 2.5.16 is a neighborhood of 0 in Lσ(D, Y ). Since by

assumption (1), Tj → T in Lσ(D, Y ), there exists j0 = j0(A,W) such that Tj−T ∈ V (A,W)

for j ≥ j0. By definition of V (A,W), we have Tj(ρ) − T (ρ) ∈ W , ρ ∈ A, for j ≥ j0. This

proves (2).

Assume that (2) is true and let us prove (3). Fix ε > 0, α ∈ I and A ∈ σ so that

the set W = {y ∈ Y ; qα(ρ) < ε} in a neighborhood of 0 in Y . Using (2), we can find

j0 = j0(ε, α,A) such that Tj(ρ) − T (ρ) ∈ W for any ρ ∈ A and j ≥ j0. By definition of W ,
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we have qα(Tj(ρ)− T (ρ)) < ε for every ρ ∈ A whenever j ≥ j0 where j0 does not depend on

ρ. This proves (3).

To conclude, we assume that (3) holds and we want to prove (1). To this end let V be a

neighborhood of 0 in Lσ(D, Y ). By the definition of the fundamental system of neighborhood

of 0 given in Definition 2.5.16, there exist Ak ∈ σ, 1 ≤ k ≤ s, and W a neighborhood of 0

in Y such that

V (∪sk=1Ak, W) ⊂ V .

It is easy to show that

V (∪sk=1Ak, W) = ∩sk=1V (Ak, W).

On the other hand since the topology of Y is generated by the filtered family {qα, α ∈ I}
of semi-norms there exists α0 ∈ I and ε > 0 such that the ball

Wε0 := {y ∈ Y ; qα0(y) < ε0} ⊂ W .

Applying the assumption in (3) to α0, ε0 and each 1 ≤ k ≤ s, there exists an integer jk such

that qα0(Tj(ρ) − T (ρ)) < ε0 for any ρ ∈ Ak and j ≥ jk. Take j0 = j1 + .. · +jk. Then for

j ≥ j0, we have qα0(Tj(ρ)− T (ρ)) < ε0 for ρ ∈ ∪sk=1Ak. This means that

Tj − T ∈ V (∪sk=1Ak, Wε0) ⊂ V (∪sk=1Ak, W) ⊂ V

for j ≥ j0. This proves (1).

Remark 2.5.18. Proposition 2.5.17 motivates the fact that the σ-topology of Lσ(D, Y ) is

also called the topology of uniform convergence on bounded subsets of D.

The material collected until now enable us to deal with the particular case of the space

L(D,D) ≡ Lσ(D,D) where Y = D(R). With the family of semi-norms N({mj}, {εj}) in

(2.5.23) that generate the topology ofD, we associate the family of semi-normsNA({mj}, {εj}),
A ∈ σ, on L(D,D) defined by

NA({mj}, {εj})(T ) = sup
ρ∈A

N({mj}, {εj})(T (ρ)).

By the approach followed ealier in the general case, the family of semi-norms NA({mj}, {εj}),
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A ∈ σ, generate the σ-topology of the space L(D,D), which as shown in Proposition 2.5.17

and Remark 2.5.18 is the topology of uniform convergence on bounded subsets of D.

With the above useful concepts on the space D(R), we return to the initial space D′(X).

We also consider the notation D′+(X) and D′−(X) to represent the subspaces of D′(X)

consisting of distributions with supports limited to the left and right, respectively:

D′+(X) := L(D−;X), D′−(X) := L(D+;X).

The vector distributions in D′(X) have generally a very complex structure. That is why we

approximate them by distributions that are relatively easy to work with. The first step is to

define the tensor product of a distribution T with v.

Definition 2.5.19. ([22])

Given T ∈ D′ and v ∈ X we defined T ⊗ v ∈ D′(X) the tensor product of T and v by

(T ⊗ v) (ϕ) = 〈T, ϕ〉D′×D v, ϕ ∈ D(R). (2.5.25)

Definition 2.5.20. ([27])

A linear operator T : D(R) 7−→ X is a finite operator, if there exists p1, p2, ...., pn ∈ D′(R)

and g1, g2, ...., gn ∈ X such that

T (f) =
n∑
i=1

pi(f)gi. (2.5.26)

More generally, we denote by D′(R) ⊗X ≡ D′ ⊗X the subspace of D′(X) consisting of

finite operators:

D′ ⊗X =

{
T ∈ D′(X), T =

nT∑
j=1

Tj ⊗ vj, Tj ∈ D′, vj ∈ X
}
. (2.5.27)

In the same way, we could define the subspaces of D′+(X) and D′−(X) denoted by D′+ ⊗X
and D′− ⊗ X, respectively. We are now in a position to state the main theorem of this

section, on which the definition and the properties of the Laplace transform of vector-valued

distributions are based.
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Theorem 2.5.21. ([22])

The subspace D′ ⊗X is dense in D′(X). Equally D′+ ⊗X and D′− ⊗X are dense in D′+(X)

and D′−(X), respectively.

The proof of Theorem 2.5.21 is not straightforward. It will follow from a series of topo-

logical concepts of the space D(R) described after Definition 2.5.15 as well as on the results

that we consider now.

Theorem 2.5.22. ([61])

The space D ≡ D(R) satisfies the strict approximation property. That is, the identity op-

erator I ∈ Lσ(D(R),D(R)) can be approximated in Lσ(D(R),D(R)) by a sequence of finite

operators.

Proof. Let (αν)ν≥1 be a sequence in D(R) such that the sequence (α2
ν)ν≥1 is a partition of

unity of R sub-ordinate to the open covering (Qν)ν≥1 of R where Qν = (−ν, ν). Thus we

have ∑
ν≥1

α2
ν(x) = 1 ∀x ∈ R. (2.5.28)

Let ψ ∈ C∞(R) be such that supp(ψ) ⊂ Qν i.e. ψ ∈ DQν (R).

We associate with ψ the unique periodic function ψ̃ν of period 2ν defined by

ψ̃ν(x) = ψ(x) if x ∈ Qν . (2.5.29)

We can therefore expand ψ̃ν in Fourier series

ψ̃ν(x) =
∑
l∈Z

cl,ν(ψ)e−iπlx/ν . (2.5.30)

By the properties of Fourier series, the linear functional

ψ  cl,ν(ψ) (2.5.31)

is continuous in the following sense of the pseudo-topology of DQν (R):

If a sequence (ψj)j≥1 in DQν (R) converges to zero i.e.

∀m ∈ N
dmψj
dxm

converges to 0 uniformly on Qν ,
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then the sequence of scalars cl,ν(ψj) converges to 0 as j → +∞.

The next step is to construct a finite operator Lk for k ∈ N. To this end let ρ ∈ D(R)

be given. By the partition of unity property (2.5.28) and by the Fourier series expansion

(2.5.30), we have consecutively the following for any x ∈ R:

ρ =
∑
ν≥1

α2
ν(x)ρ

=
∑
ν≥1

αν(x)ανρ

=
∑
ν≥1

αν(x)
∑
l∈Z

cl,ν(ανρ)e−iπlx/ν

=
∑
ν≥1

∑
l∈Z

αν(x)cl,ν(ανρ)e−iπlx/ν .

From this, we construct a finite operator Lk by the following truncation process:

Lkρ :=
∑
ν≥1
|l|<k

αν(x/2ν)cl,ν(ανρ)e−iπlx/ν . (2.5.32)

In view of the continuity stated in (2.5.31), the Lk is continuous from D(R) into D(R).

We now show that, for a fixed ρ ∈ D(R), Lkρ converges to ρ in D(R) as k → ∞. Since

supp(ρ) is compact, there exists k0 ≥ 1 such that suppρ ⊂ Qk0 and

ανρ ≡ 0 for all ν ≥ k0. (2.5.33)

Thus (2.5.32) becomes

Lkρ =
∑
ν<k0
|l|<k

αν(x/2ν)cl,ν(ανρ)e−iπlx/ν . (2.5.34)

Clearly, from (2.5.33), supp(Lkρ) ⊂ supp(ρ) ∩Qk0 for all k ≥ 1. For k → +∞, the sequence

Lkρ in (2.5.34) converges uniformly on supp(ρ) ∩Qk0 to∑
ν<k0
l∈Z

ανcl,ν(ανρ)e−iπ
lx
ν =

∑
ν<k0

ανα̃νρ(x) by (2.5.30)

= ρ(x). (2.5.35)
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The same thing applies by induction to the derivatives of (Lkρ).

Let now A be a bounded subset of D(R). By Definition 2.5.15, there exists a compact set

K ⊂ R such that (2.5.19) and (2.5.20) hold. In view of (2.5.19), the argument used to prove

(2.5.33) can be adapted to obtain the following: there exists k0 ≥ 1 such that

ανρ ≡ 0 ∀ν ≥ k0 and ∀ρ ∈ A. (2.5.36)

Thus the sequence Lkρ converges to ρ uniformly on A and K in the sense that

lim
k→∞

sup
ρ∈A
x∈K

∣∣∣∣ dmdxm [(Lkρ)(x)− ρ(x)]

∣∣∣∣ = 0 ∀ m ∈ N.

Thus Lk converges to the identity operator I in Lσ(D(R),D(R)).

Proof. (Theorem 2.5.21)

Let T ∈ Lσ(D(R), X). Let Vj defined by

Vjρ =
∑
k≤nj

ck,j(ρ)ρk,j i.e Vj =

nj∑
k=1

ck,j ⊗ ρk,j with ck,j ∈ D′ and ρk,j ∈ D

be a sequence of finite operators that approximate I in Lσ(D(R),D(R)) according to Theo-

rem 2.5.22. By the continuity of T , the sequence of finite operators

T ◦ Vj =

nj∑
k=1

ck,j ⊗ T (ρk,j) converges to T in Lσ(D(R), X).

This complete the proof.

In what follows, we introduce another space of vector-valued distributions.

Definition 2.5.23. ([22])

We denote by S ′(X) the space of tempered distributions over Rt with values in X, defined by

S ′(X) = L(S;X),

S ≡ S(R) being equipped with the pseudo-topology given in Definition 2.3.6.
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Remark 2.5.24. The topologies of S(X) and S ′(X) can be defined explicitly from appropri-

ate family of semi-norms as we did for D′(X). For example the topology of S(R) is generated

by the sequence of semi-norms

dα,β(v) = sup
x∈R
|xαd

βv(x)

dxβ
| α, β ∈ N.

Note that a fundamental system of neighborhood of 0 for this topology is obtained in a stan-

dard way. Note also that the space S(R) is metrisable, through the metric

d(u, v) =
∑
α,β≥1

dα,β(u− v)

1 + dα,β(u− v)
,

in contrast to the space D(R).

Now given Y a locally convex topological space with topology generated by a family of semi-

norms WI = {qα, α ∈ I}, the topology of the space L(S, Y ) ≡ S ′(Y ) of linear continuous

operators from S(R) into Y is generated by the family of semi-norms

WI,σ = (qα,A)α∈I,A∈σ

defined in a similar manner to (2.5.24).

In equation (2.5.27), we introduced the subspaces of D′(X) denoted by D′ ⊗ X. In the

same way, the subspace of S ′(X) denoted by S ′ ⊗X will consists of finite operators:

S ′ ⊗X =

{
T ∈ S ′(X), T =

nT∑
j

Tj ⊗ vj, Tj ∈ S ′(R), vj ∈ X
}
.

For T ∈ S ′ ⊗X, we have

T (ϕ) =

nT∑
j=1

〈Tj, ϕ〉S′×S vj ∀ϕ ∈ S(R). (2.5.37)

We now state the result similar to Theorem 2.5.21.

Theorem 2.5.25. ([22])

The subspace S ′ ⊗X is dense in S ′(X).

Proof. The proof of this theorem is analogous to that of Theorem 2.5.21.
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Definition 2.5.26. ([22])

Given a vector-valued distribution T in S ′ ⊗X with representation

T =

nT∑
j=1

Tj ⊗ vj,

its Fourier transform denoted as in the scalar case, by F(T ), is defined by

F(T ) =

nT∑
j=1

F(Tj)⊗ vj. (2.5.38)

For the Fourier transform of distributions as defined by (2.5.38), the analogous of the

duality relation (2.5.11) is:

for ϕ ∈ S, F(T )(ϕ) = T (F(ϕ)) (2.5.39)

Indeed, we have

F(T )(ϕ) =

(
nT∑
j=1

(F(Tj)⊗ vj)
)

(ϕ) by (2.5.38)

=

nT∑
j=1

〈F(Tj), ϕ〉 vj

=

nT∑
j=1

〈Tj,F(ϕ)〉 vj by (2.5.11)

= T (F(ϕ)) by (2.5.37).

Theorem 2.5.27. The definition of the Fourier transform of T does not depend on its

representation in Definition 2.5.26.

Proof. Let T ∈ S ′ ⊗X be represented in two different ways:

T =

nT∑
j=1

Tj ⊗ vj =

mT∑
k=1

Sk ⊗ uk. (2.5.40)
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In view of (2.5.39) and (2.5.40) we have for ϕ ∈ S

F(T )(ϕ) =

(
F(

nT∑
j=1

Tj ⊗ vj)(ϕ)

)

=

nT∑
j=1

〈Tj,F(ϕ)〉 vj

=

mT∑
j=1

〈Sk,F(ϕ)〉uk

=

mT∑
j=1

〈F(Sk), ϕ〉uk

=

(
F(

mT∑
k=1

Sk ⊗ vk)(ϕ)

)
. (2.5.41)

This proves the Theorem.

We now proceed to extend the Fourier transform of the vector-valued distributions from

the subspace S ′ ⊗X to the space of tempered vector-valued distributions S ′(X); as a con-

sequence of Theorem 2.5.25.

Theorem 2.5.28. The Fourier transform F defined over S ′ ⊗ X by (2.5.39) is uniquely

extended by continuity into an isomorphism of S ′(X) onto S ′(X).

Thus we have the following definition:

Definition 2.5.29. ([22])

Given a vector-valued distribution T ∈ S ′(X), its Fourier transform denoted by F(T ) is

defined by

F(T ) = lim
j→+∞

F(Tj),

where Tj is a sequence of finite operators in S ′ ⊗X that converges to T in S ′(X).

The extension in Theorem 2.5.28 leads us to the connection of the Fourier transform of

vector-valued distributions to the Laplace transform of vector-valued distributions. This

connection is achieved by stating the analog of the set IT introduced in the scalar case in

equation (2.5.13).
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Definition 2.5.30. ([22])

For T ∈ D′(X), we denote by IT the subset of R given by

IT =
{
ξ ∈ R : e−ξtT ∈ S ′(X)

}
. (2.5.42)

where e−ξtT (ϕ) = T (e−ξtϕ), ϕ ∈ S.

We state without proof the following result:

Proposition 2.5.31. ([22])

Let T ∈ L+(X) where L+(X) is the space of distributions on R with values in X which have

a Laplace transform.

• For all ξ ∈ int(IT )(6= ∅), the Fourier transform of the distribution e−ξtT is a function

of OM(X) where OM(X) is the space of functions of class C∞ with values in X which

are ”growing slowly in X” as are all their derivatives.

• The function L(T ) : p −→ V (p) = F(e−ξtT )(η) is holomorphic in the band int(IT )×R
with values in X.

In view of the Proposition 2.5.31, we can define the Laplace transform of vector-valued

distribution as follows:

Definition 2.5.32. ([22])

Let T ∈ D′(X) be such that int(IT ) 6= ∅. The holomorphic function denoted by L(T ) : p −→
L(T )(p) and defined for p ∈ int(IT )× R by

L(T )(p) := F(e−ξtT )(η) (2.5.43)

is called the Laplace transform of the vector-valued distribution T ∈ D′(X).

It should be noticed that for T ∈ S ′ ⊗X a finite operator with intIT 6= 0, we have

L
(
dkT

dtk

)
= pkL(T ).

By the density result in Theorem 2.5.25, we have

Theorem 2.5.33. For T ∈ D′+(X) with intIT 6= 0

L
(
dkT

dtk

)
(p) = pkL(Tj)(p). (2.5.44)
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After obtaining the Laplace transform of general vector-valued distributions, we restrict

the analysis to vector-valued Lebesgue’s space defined as follows:

Definition 2.5.34. ([21])

We denote by L2[(−∞,+∞);X] the space of (classes) of measurable functions t −→ v(t)

from (−∞,+∞) into a Hilbert space X such that

‖v‖L2[−∞,+∞;X] =

(∫ +∞

−∞
‖v(t)‖2

Xdt

) 1
2

< +∞.

The Hardy-Lebesgue space H2(0) is extended to vector-valued functions as follows:

Definition 2.5.35. ([21]) (Hardy-Lebesgue Space)

Let X be a complex Hilbert space with norm denoted by ‖ · ‖X . The Hardy-Lebesgue space

denoted by H2 [0;X] is defined as the set of vector-valued functions V : p −→ V (p) from the

half complex plane

C+ = {p = ξ + iη ∈ C, ξ ≥ 0},

into the space X such that the following two conditions are satisfied:

1. The function V (p) is holomorphic for ξ > 0,

2. For each ξ > 0, the vector-valued function η −→ V (ξ+iη) is of class L2 [(−∞,+∞);X]

such that

sup
ξ>0

(∫ ∞
−∞
‖V (ξ + iη)‖2

Xdη

)
< +∞.

Proposition 2.5.36. ([21])

Let v(t) ∈ L2 [(0,+∞);X]. Then its Laplace transform v̂(t) exists for ξ ≥ 0 and v̂(t) ∈
H2 [0; X].

Proof. The proof works word by word as that of the scalar case in Theorem 2.5.1 replacing

everywhere the absolute value | · | by the Hilbert norm ‖ · ‖X .

The analogue of the Paley-Wiener theorem for vector-valued functions read as follows:
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Theorem 2.5.37. ([21])( Paley-Wiener Theorem)

Let V (p) ∈ H2 [0;X]. For all ξ > 0, we put vξ : R→ X where

vξ(η) := V (ξ + iη).

Then, we have the following:

• For ξ → 0, the family of functions vξ(η) converges in L2 [(−∞,+∞);X] to some

function v0 : R→ X denoted by

v0(η) := V (iη),

and called the trace or boundary function of V (ξ + iη);

• There exists a v(t) ∈ L2 [(−∞,+∞);X] such that v(t) = 0 for t < 0 and

L(v(t))(p) = F
(
e−ξtṽ(t)

)
(η) = v0(η), for ξ ≥ 0 (2.5.45)

where L and F are the Laplace and Fourier transforms of vector-valued distributions.

The final result that we shall use reads as follows:

Theorem 2.5.38. ([20], [60], [64])

The operator −∆+p, p ∈ C, is analytic hypoelliptic. That is for any distribution v ∈ D′(R2),

the fact that (−∆ + p)v is an analytic function on an open set of R2 implies that v is equally

analytic on this open set.
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