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Abstract

The diffusion phenomenon arises in several real-life situations in engineering, science and

technology. Typical examples include heat flow, reaction diffusion, advection/convection-

diffusion, chemotaxis, nonlocal mechanisms, models for animal dispersal and the spread of

diseases.

Mathematically, diffusion problems are modeled by parabolic equations which are clas-

sically studied in the ideal framework of smooth domains. In this thesis, we focus on the

model parabolic equation, which is defined by linear heat equation. This equation associated

with an initial condition and the Dirichlet boundary condition is considered on a non-smooth

domain namely a polygonal domain. In considering such a domain with edge singularities,

one main difficulty arises: the variational solution is not smooth and this negatively impacts

on the accuracy and performance of any classical numerical method. In this thesis, we clarify

as optimally as possible the singular nature of the variational solution. More precisely, we

show that the variational solution admits a decomposition into a regular part and a singular

part, which captures the rough geometry of the domain. Furthermore, we show that the

solution achieves global regularity in weighted Sobolev spaces in which the rough nature of

the domain is once again suitably incorporated.

On the constructive side, the global regularity result is used to design and analyze an

optimally convergent semi-discrete Finite Element Method (FEM) in which the mesh of

the triangulation is adequately refined. Two types of fully discrete mesh refinement (FEM)

are constructed. The first method is made of Fourier series discretization in time while the

second method is the Non-standard Finite Difference (NSFD) discretization. It is shown that

these fully discrete methods converge optimally in relevant norms, with the coupled NSFD

and mesh refined FEM presenting the additional advantage of replicating the dynamics of

the heat equation in the limit case of space independent equation.

The tool used throughout the thesis is the Laplace transform of vector-valued distribu-

tions, a topic on which we elaborated substantially in order to show that any (tempered)
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vector-valued distribution can be approximated by a sequence of finite operators. Applied

to the heat equation, the Laplace transform leads to a family of Helmholtz equations for a

complex parameter p ∈ C. This raises a second main challenge that we dealt with success-

fully by using another type of weighted Sobolev spaces. The said challenge is to obtain the

solutions of the Helmholtz problems with a priori estimates with the same constant that is

independent of the parameter p.
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Key Notation

N, Z, R, C Sets of natural numbers, (positive and negative) integers, real num-

bers and complex numbers.

R2
+ Half-plane {x = (x1, x2, ......., xn−1) ∈ R2};{xn > 0}.

Cm(Ω), m ≥ 0 integer Space of m-times continuously differentiable real-valued functions

on Ω.

Cm
b (Ω) Space of bounded continuous functions on Ω.

D(Ω) ≡ C∞0 (Ω) Space of infinitely differentiable real-valued functions in Ω with

compact support contained in Ω.

Lp(Ω), 1 ≤ p <∞, ‖ · ‖0,p, Lebesgue space of classes of measurable real-valued functions f on

Ω such that x� |f(x)|p is integrable on Ω, with its natural norm.

Lploc(Ω), 1 ≤ p <∞ Space of classes of measurable functions f on Ω such that x �

|f(x)|p is integrable on any compact set contained in Ω.

S(Rn) Space of C∞(Rn) functions f which together with their derivatives

are rapidly decreasing at infinity i.e. |x|k|Dαf(x)| → 0 as |x| →
∞, ∀ k ∈ N, α ∈ Nn .

OM(Rn) Space of C∞(Rn) functions f which together with all their deriva-

tives are slowly increasing at infinity ∀α ∈ Nn, ∃K ∈ N such that

|x|−k|Dαf(x)| → 0 as |x| → ∞. The subscript M refers to the fact

that OM(Rn) is a multiplicator of S ′(Rn) defined below.

D′(Ω) Space of distributions on Ω.

S ′(Rn) Space of tempered distributions on Rn.

D′+(R) or D′−(R) Space of distributions on R with support limited to the left or right.

L+(R) Space of distributions on R which have a Laplace transform.
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Lp [(−∞,+∞);X] Lebesgue space of functions on R with values in X, where X is here

and after either a Hilbert with inner product (,̇·)X or Banach space

with norm ‖ · ‖X , X ′ being the dual of X.

D′(X) ≡ L(D(R), X)

or S ′(X) = L(S(R, X) Spaces of distributions or tempered distributions on R with values

in X.

Hm(Ω), ‖ · ‖m,Ω, | · |m,Ω Sobolev space of non-negative integer of order m, with its natural

Hilbert norm and semi-norm.

Wm,p(Ω); 1 ≤ p <∞
‖ · ‖m,p,Ω, | · |m,p,Ω The general Sobolev space of order m, with its natural Banach

norm and semi-norm.

Hm
0 (Ω) Closure of D(Ω) in Hm(Ω).

H−m(Ω) The dual space of Hm
0 (Ω).

L(v)(p) ≡ v̂(p) Laplace transform of the function or distribution v at the point

p = ξ + iη.

F(w)(η) Fourier transform of the function or distribution w at the point

η ∈ R.

F−1(w)(t) Inverse Fourier transform of the function or distribution w at the

point t ∈ R.

〈·, ·〉 Duality pairing between S ′(Rn and S(Rn) or D′(Ω) and D(Ω).

v ∗t w The convolution product of v and w over the argument t.

IT Set IT :=
{
ξ ∈ R : e−ξtT ∈ S ′(R)

}
for T ∈ D′(Rt) where Rt means

that the distributions are taken with argument t.

H2(O) and H2 [O,X] Hardy-Lebesgue scalar and vector-valued spaces.

E ⊗ Y Tensor product of the spaces E and Y .

DK(R), The subspace of DK(R) consisting of functions with compact sup-

port in K.

(PK,m) m ≥ 1 A sequence of semi-norms on DK(R) defined by PK,m(ρ) =

supx∈K

∣∣∣dmρ(x)
dxm

∣∣∣
V (m, ε) A fundamental system of neighborhoods of the origin 0 for the

topology of DK(R).

V ({mj}, {εj}) A fundamental system of neighborhoods of the origin 0 for the

topology of D(R), where the sequences {mj} and {εj} vary arbi-

trarily.

N({mj}, {εj}) A family of semi-norms that generates the topology of D(R).
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σ The collection of all bounded subsets A of D(R).

WI = {qα}α∈I Family of semi-norms that generate the topology of a locally convex

topological vector space Y .

qα,A Semi-norm defined on L (D(R), Y )) with α ∈ I.

WI,σ = {qα,A}qα∈WI , A∈σ A family of semi-norms qα,A that generate the σ-topology

L (D(R), Y )) with the topology of uniform convergence on bounded

subsets.

Lσ (D(R), Y )) The space L(D(R)) equipped with the σ-topology.

σf The collection of finite union of bounded set σ.

B = {V (A,M),A ∈ σf} A fundamental system of neighborhoods of the origin 0 for the σ-

topology of L (D(R), Y ).

NA({mj}, {εj}) A family of semi-norms that generate the σ-topology

L (D(R),D(R)).

Vj The rectangle [−α, α] × [−β, β] in a new co-ordinate system (x =

x1,j, x2,j).

V +
j The set {(x1, x2) ∈ Ω : −β < x2 < ϕj(x1), −α < x1 < α}.
V −j The set {(x1, x2) ∈ Ω : β > x2 > ϕj(x1), −α < x1 < α}.
V 0
j The set {(x1, x2) ∈ Γ : x2 = ϕj(x1), −α < x1 < α}.
Q The unit square described by {(y1, y2) : |y1| < 1, |y2| < 1}.
Q+ Positive half of the unit square i.e the set consisting of (y1, y2) ∈ Q

such that y2 > 0.

Q− Negative half of the unit square i.e the set consisting of (y1, y2) ∈ Q
such that y2 < 0.

Q0 Intersection of the unit square Q with the horizontal line y2 = 0.

G A sector described in polar co-ordinates (r, θ) centered at a vertex

of Γ the origin of the plane such that

G = {(r cos θ, r sin θ) : r > 0, 0 < θ < ω}.
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P k
2 (G) Kondratiev weighted Sobolev space of all distributions v in G such

that r|α|−kDαv ∈ L2(G) ∀ |α| ≤ k where k is a non-negative integer

with its natural norm ‖ · ‖Pk2 (G).

H2,β(Ω) Weighted Sobolev space of all distributions w ∈ H1(Ω) such that

rβDαw ∈ L2(Ω) ∀ α such that |α| = 2 with its natural norm

‖ · ‖H2,β(Ω).

H̃m [(0,+∞);L2(Ω)] Space of functions v ∈ Hm [(0,+∞);L2(Ω)] such that the extension

ṽ by zero outside (0,+∞) belong to Hm [(−∞,+∞); L2(Ω)] with

its natural norm ‖ · ‖H̃m[(0,+∞); L2(Ω)].
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